6,713,676 research outputs found

    Reclaiming Lost Moments

    Get PDF
    Linfield’s Second Chance Prom was a dance and so much mor

    Building safe and supportive communities

    Get PDF
    Holistic and student-led approaches increase safety on Linfield’s campuse

    Recipient of the 2023 Alumni Titan Award

    Get PDF
    Dr. Angel Alvarez ‘98 Dr. Angel Alvarez is the Director of the Stem Cell Core and a Research Assistant Professor in the Department of Neurology at Northwestern University. He has extensive experience in stem cell biology, imaging, gene delivery, and biotechnology. As the Director of the Northwestern Stem Cell Core, he establishes disease models to accelerate therapeutic development using organoid technology and patient-derived induced pluripotent stem cells. Many of the most rewarding aspects of his current position are derived from the Core’s exciting collaborations in reproductive biology, neuroscience, and pathology. Beyond his lab research, Dr. Alvarez has a passion for employing his analytical skills to address inequity in education. During his doctoral research, Dr. Alvarez investigated the development of stem cell technologies and the biology of cancer. He demonstrated the critical role of nanog in facilitating induced pluripotency and established patient-derived cell lines to characterize gene expression, cell pathway activation, and protein markers in brain tumors. During his post-doctoral research, he developed tumor stem cell lines to study oncogenic signaling and factors that mediate tumor growth, invasion, and radiation resistance, notably through Wnt signaling and exosome secretion. Dr. Alvarez has earned several competitive awards, including separate pre- and post-doctoral T32 fellowships, in addition to funding from universities, private foundations, and the NIH. His research has led to the development of exciting intellectual property in both stem cell technology and cancer, yielding 11 issued US patents as well as multiple pending and international patents. He has served as a mentor to numerous emerging scholars, including several IMSA SIR students, and is most proud of being a father to his amazing daughter

    Changed by the pandemic

    Get PDF
    A resurgent interest in public health and a sharper focus on the mental health of those delivering care are among the lasting transformations resulting from a worldwide crisis

    Reducing Barriers

    Get PDF
    The Linfield community is fighting the underrepresentation of women in STEM in K-12, college and beyon

    Odontogenic Cysts of upper jaw an analysis

    Get PDF
    This article attempts to analyze all cases of odontogenic cysts involving upper jaw who presented at Stanley Medical college during 2007 – 2012. This article analyzes the incidence of these cystsduring the above said period, age of occurence, sex prediliction if any, clinical presentations and optimal treatment modality. Common complaints with which patients presented to our Institutionwas swelling over jaw, next was loosening of dentition, paresthesia. 30 patients had presented with cysts involving upper jaw out of which 29 were females and one was male. All these patientsunderwent surgical removal of the cystic lesion.

    Phosphatidylinositol (4,5)-bisphosphate turnover by INP51 regulates the cell wall integrity pathway in "Saccharomyces cerevisiae"

    Get PDF
    Signal transduction pathways are important for the cell to transduce external or internal stimuli where second messengers play an important role as mediators of the stimuli. One important group of second messengers are the phosphoinositide family present in organisms ranging from yeast to mammals. The dephosphorylation and phosphorylation cycle of the phosphatidylinositol species are thought to be important in signaling for recruitment or activation of proteins involved in vesicular transport and/or to control the organization of the actin cytoskeleton. In mammals, phosphatidylinositol (4,5)bisphosphate (PI(4,5)P2) signaling is essential and regulated by various kinases and phosphatases. In the model organism Saccharomyces cerevisiae PI(4,5)P2 signaling is also essential but the regulation remains unclear. My dissertation focuses on the regulation of PI(4,5)P2 signaling in Saccharomyces cerevisiae. The organization of the actin cytoskeleton in Saccharomyces cerevisiae is regulated by different proteins such as calmodulin, CMD1, and here I present data that CMD1 plays a role in the regulation of the only phosphatidylinositol 4-phosphate 5-kinase, MSS4, in Saccharomyces cerevisiae. CMD1 regulates MSS4 activity through an unknown mechanism and thereby controls the organization of the actin cytoskeleton. MSS4 and CMD1 do not physically interact but MSS4 seems to be part of a large molecular weight complex as shown by gel filtration chromatography. This complex could contain regulators of the MSS4 activity. The complex is not caused by dimerization of MSS4 since MSS4 does not interact with itself. Two pathways, the cell wall integrity pathway and TORC2 (target of rapamycin complex 2) signaling cascade are important for the organization of the actin cytoskeleton. Loss of TOR2 function results in a growth defect that can be suppressed by MSS4 overexpression. To further characterize the link between MSS4 and the TORC2 signaling pathway and the cell wall integrity pathway we looked for targets of PI(4,5)P2. The TORC2 pathway and the cell wall integrity pathway signal to the GEF ROM2, an activator of the small GTPase RHO1. In our study we identified ROM2 as a target of PI(4,5)P2 signaling. We observed that the ROM2 localization changes in an mss4 conditional mutant. This suggests that the proper localization needs PI(4,5)P2. This could be mediated by the putative PI(4,5)P2 binding pleckstrin homology (PH) domain of ROM2. To better understand the regulation of PI(4,5)P2 levels in Saccharomyces cerevisiae we focused on one of the PI(4,5)P2 5-phosphatases, INP51. Here we present evidence that INP51 is a new negative regulator of the cell wall integrity pathway as well as the TORC2 pathway. INP51 probably regulates these two pathways by the turnover of PI(4,5)P2 thereby inactivating the effector/s. The deletion of INP51 does not result in any phenotype, but when combined with mutations of the cell wall integrity pathway we observe synthetic interaction. INP51 together with the GTPase activating protein (GAP) SAC7, responsible for the negative regulation of RHO1, negatively regulates the cell wall integrity pathway during vegetative growth. One of the targets of cell wall integrity pathway, the cell wall component chitin, which is normally deposited at the bud end, bud neck and forms bud scars, is delocalized in the mother cell in the sac7 inp51 double deletion mutant. In addition, another downstream component of the cell wall integrity pathway, the MAP kinase MPK1, has increased phosphorylation and protein level in the sac7 inp51 double deletion mutant. This suggests that INP51 is important for the negative regulation of the cell wall integrity pathway. Furthermore, we show evidence that INP51 forms a complex with TAX4 or IRS4, with two EH-domain containing proteins, that positively regulates the activity of INP51 and in this manner negatively regulate the cell wall integrity pathway. The EH-domain is known to bind the NPF-motif. This motif is present in INP51 and is important for INP51 interaction with TAX4 or IRS4. The EH-NPF interaction is a conserved mechanism to build up protein networks. The interaction between an EH-domain containing protein and a PI(4,5)P2 5-phosphatase is conserved. This is demonstrated by the epidermal growth factor substrate EPS15 (EH) interaction with the PI(4,5)P2 5-phosphatase synaptojanin the mammalian orthologue of the Saccharomyces cerevisiae INP proteins. In summary, INP51 together with TAX4 and IRS4, forms complexes important for regulation of PI(4,5)P2 levels. The complexes are linked to the TORC2 signaling pathway and the cell wall integrity pathway, specifically regulating MPK1 activation and chitin biosynthesis. The work presented in this dissertation facilitates the development of a model of the complex regulation of PI(4,5)P2 signaling in Saccharomyces cerevisiae

    Soil Fertility Protocol

    Get PDF
    The purpose of this resource is to measure the amounts of nitrogen, phosphorous and potassium in each horizon in a soil profile. Using a NPK test kit, students mix a dry, sieved soil sample into a solution and chemically extract the N, P, and K as nitrate, phosphate, and potassium. The N, P, and K amounts in the sample are determined by comparing the solution to a color chart. Students describe the N, P, K amounts as high, medium, low, or none. These measurements are conducted three times for each horizon. Educational levels: Middle school, High school

    Health promoting prisons: an overview and critique of the concept

    Get PDF
    The notion that prisons should become more ‘health promoting’ is a policy agenda that is gaining increasing momentum, particularly in England and Wales1 , Scotland2 and across other European nations. The political strides made in this regard have been recognised globally, especially in the United States, where penal health reformers are attempting to replicate successful policy initiatives in Europe3 . Despite the favourable rhetoric, the extent to which the concept of a ‘health promoting prison’ is fully understood and implemented ‘on the ground’ by prison staff and managers in England varies4 . The primary aim of this article, therefore, is to open up and stimulate discussion on the World Health Organisation’s (WHO) concept of a health promoting prison, as the extent to which this idea has been critically considered and debated is minimal. To encourage this wider discussion, the paper has three primary aims. It will first seek to introduce the origins and principles underpinning the health promoting prison; it will then set the health promoting prison within a political context. The paper will go on to explore some drawbacks to the approach, including the underlying conceptual and practical challenges

    Hidden covariation detection produces faster, not slower, social judgments

    Get PDF
    In Lewicki’s (1986a) demonstration of Hidden Co-variation Detection (HCD), responses were slower to faces that corresponded with a co-variation encountered previously than to faces with novel co-variations. This slowing contrasts with the typical finding that priming leads to faster responding, and might suggest that HCD is a unique type of implicit process. We extended Lewicki’s (1986a) methodology and showed that participants exposed to nonsalient co-variations between hair length and personality were subsequently faster to respond to faces with those co-variations than to faces without, despite lack of awareness of the critical co-variations. This result confirms that people can detect subtle relationships between features of stimuli and that, as with other types of implicit cognition, this detection facilitates responding.</p
    corecore