220 research outputs found

    Toward quantification of strain-related mosaicity in shocked lunar and terrestrial plagioclase by in situ micro-X-ray diffraction

    Get PDF
    Studies of shock metamorphism of feldspar typically rely on qualitative petrographic observations, which, while providing invaluable information, can be difficult to interpret. Shocked feldspars, therefore, are now being studied in greater detail by various groups using a variety of modern techniques. We apply in situ micro-X-ray diffraction (μXRD) to shocked lunar and terrestrial plagioclase feldspar to contribute to the development of a quantitative scale of shock deformation for the feldspar group. Andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada, and anorthite from Earth's Moon, returned during the Apollo program, were examined using optical petrography and assigned to subgroups of the optical shock level classification system of Stöffler (1971). Two-dimensional μXRD patterns from the same samples revealed increased peak broadening in the chi dimension (χ), due to strain-related mosaicity, with increased optical signs of deformation. Measurement of the full width at half maximum along χ (FWHMχ) of these peaks provides a quantitative way to measure strain-related mosaicity in plagioclase feldspar as a proxy for shock level

    Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides La2−x_{2-x}Srx_xCoO4_4

    Get PDF
    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.Comment: Nature Communications 5, 5731 (2014

    Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada

    Get PDF
    Shock metamorphism, caused by hypervelocity impact, is a poorly understood process in feldspar due to the complexity of the crystal structure, the relative ease of weathering, and chemical variations, making optical studies of shocked feldspars challenging. Understanding shock metamorphism in feldspars, and plagioclase in particular, is vital for understanding the history of Earth's moon, Mars, and many other planetary bodies. We present here a comprehensive study of shock effects in andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada. Samples from a range of different settings were studied, from in situ central uplift materials to clasts from various breccias and impact melt rocks. Evidence of shock metamorphism includes undulose extinction, offset twins, kinked twins, alternate twin deformation, and partial to complete transformation to diaplectic plagioclase glass. In some cases, isotropization of alternating twin lamellae was observed. Planar deformation features (PDFs) are notably absent in the plagioclase, even when present in neighboring quartz grains. It is notable that various microlites, twin planes, and compositionally different lamellae could easily be mistaken for PDFs and so care must be taken. A pseudomorphous zeolite phase (levyne-Ca) was identified as a replacement mineral of diaplectic feldspar glass in some samples, which could, in some instances, also be potentially mistaken for PDFs. We suggest that the lack of PDFs in plagioclase could be due to a combination of structural controls relating to the crystal structure of different feldspars and/or the presence of existing planes of weakness in the form of twin and cleavage planes

    Breaking Preconceptions: Thin Section Petrography For Ceramic Glaze Microstructures

    Get PDF
    During the last thirty years, microstructural and technological studies on ceramic glazes have been essentially carried out through the use of Scanning Electron Microscopy (SEM) combined with energy dispersive X-ray analysis (EDX). On the contrary, optical microscopy (OM) has been considered of limited use in solving the very complex and fine-scale microstructures associated with ceramic glazes. As the crystallites formed inside glazes are sub- and micrometric, a common misconception is that it is not possible to study them by OM. This is probably one of the reasons why there are no available articles and textbooks and even no visual resources for describing and characterizing the micro-crystallites formed in glaze matrices. A thin section petrography (TSP) for ceramic glaze microstructures does not exist yet, neither as a field of study nor conceptually. In the present contribution, we intend to show new developments in the field of ceramic glaze petrography, highlighting the potential of OM in the microstructural studies of ceramic glazes using petrographic thin sections. The outcomes not only stress the pivotal role of thin section petrography for the study of glaze microstructures but also show that this step should not be bypassed to achieve reliable readings of the glaze microstructures and sound interpretations of the technological procedures. We suggest the adoption by the scientific community of an alternative vision on glaze microstructures to turn thin section petrography for glaze microstructures into a new specialized petrographic discipline. Such an approach, if intensively developed, has the potential to reduce the time and costs of scientific investigations in this specific domain. In fact, it can provide key reference data for the identification of the crystallites in ceramic glazes, avoiding the repetition of exhaustive protocols of expensive integrated analyses

    Resistive contribution in electrical switching experiments with antiferromagnets

    Get PDF
    Recent research demonstrated the electrical switching of antiferromagnets via intrinsic spin-orbit torque or the spin Hall effect of an adjacent heavy metal layer. The electrical readout is typically realized by measuring the transverse anisotropic magnetoresistance at planar cross- or star-shaped devices with four or eight arms, respectively. Depending on the material, the current density necessary to switch the magnetic state can be large, often close to the destruction threshold of the device. We demonstrate that the resulting electrical stress changes the film resistivity locally and thereby breaks the fourfold rotational symmetry of the conductor. This symmetry breaking due to film inhomogeneity produces signals, that resemble the anisotropic magnetoresistance and is experimentally seen as a "saw-tooth"-shaped transverse resistivity. This artifact can persist over many repeats of the switching experiment and is not easily separable from the magnetic contribution. We discuss the origin of the artifact, elucidate the role of the film crystallinity, and propose approaches how to separate the resistive contribution from the magnetic contribution.Comment: 9 pages, 7 figure

    Resistive contribution in electrical switching experiments with antiferromagnets

    Full text link
    Recent research demonstrated the electrical switching of antiferromagnets via intrinsic spin-orbit torque or the spin Hall effect of an adjacent heavy metal layer. The electrical readout is typically realized by measuring the transverse anisotropic magnetoresistance at planar cross- or star-shaped devices with four or eight arms, respectively. Depending on the material, the current density necessary to switch the magnetic state can be large, often close to the destruction threshold of the device. We demonstrate that the resulting electrical stress changes the film resistivity locally and thereby breaks the fourfold rotational symmetry of the conductor. This symmetry breaking due to film inhomogeneity produces signals, that resemble the anisotropic magnetoresistance and is experimentally seen as a "saw-tooth"-shaped transverse resistivity. This artifact can persist over many repeats of the switching experiment and is not easily separable from the magnetic contribution. We discuss the origin of the artifact, elucidate the role of the film crystallinity, and propose approaches how to separate the resistive contribution from the magnetic contribution.Comment: 9 pages, 7 figure

    Shock Metamorphic Effects in Lunar and Terrestrial Plagioclase Feldspar Investigated by Optical Petrography and Micro-X-Ray Diffraction

    Get PDF
    Shock metamorphism, caused by hypervelocity impact, is a poorly understood process in feldspar. This thesis addresses: a) developing a quantitative scale of shock deformation in plagioclase feldspar; b) expanding the utility of plagioclase feldspar for determining shock level; and c) micro-X-ray diffraction as a technique with which to study shock in feldspar. Andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada, and anorthite from Earth’s moon, returned during the Apollo program, show shock effects such as diaplectic glass. Planar deformation features are absent in plagioclase, but abundant in terrestrial quartz. A pseudomorphous zeolite phase (levyne-Ca) was identified as a replacement mineral of diaplectic feldspar glass in some terrestrial samples. Micro-X-ray diffraction patterns revealed increased peak broadening in the chi direction (χ) (due to strain-related mosaicity) with increased optical signs of deformation. Measuring the full-width-at-half-maximum (FWHMχ) of these peaks provides a quantitative way to measure strain in shocked samples

    Developing a Bytownite Calibration Curve as a Lunar Analogue

    Get PDF
    Planetary analogue materials are useful to help interpret and predict planetary processes on other planetary bodies that we cannot observe directly. Lunar analogue materials include terrestrial rocks and minerals with compositions and textures like those on the moon. This project investigates the lunar analogue mineral bytownite to quantify shock effects on the moon using strain related mosaicity determined through micro x-ray diffraction (µXRD). Calibrating strain information as a function of shock pressure for these minerals will enable us to extract peak shock pressures (in GPa) from naturally shocked materials, such as lunar meteorites and Apollo samples, using µXR
    • …
    corecore