5 research outputs found

    Contribution à la planification de mouvement pour robots humanoïdes

    Get PDF
    cette thèse porte sur des algorithmes de contrôle et de planification de mouvements pour les robots humanoïdes. Le grand nombre de paramètres caractérisant ces systèmes a conduit au développement de méthodes numériques, d'abord appliquées aux bras manipulateurs et récemment adaptées pour les structures plus complexes. On relève particulièrement les formalismes de commande cinématique et dynamique par priorité qui permettent de produire un mouvement selon une hiérarchie préétablie des tâches. Au cours de ce travail, nous avons identifié le besoin d'étendre ce formalisme afin de tenir compte de contraintes unilatérales. Nous nous sommes par ailleurs intéressés à la planification de la locomotion en fonction des tâches. Nous proposons une modélisation jointe du robot et de sa trajectoire de marche comme une structure articulée unique saisissant à la fois les degrés de liberté actionnés (articulations motorisées du robot) et non actionnés (positionnement absolu dans l'espace). L'ensemble de ces algorithmes, qui seront longuement illustrés, ont été implémentés au sein du projet HPP (Humanoid Path Planner) et validés sur le robot humanoïde HRP-2.this thesis is related to motion control and planning algorithms for humanoid robots. For such highly-parameterized systems, numerical methods are well adapted and have thus been the enter of increasing attention in the recent years. Among the prominent numerical schemes, we recognized the prioritized inverse kinematics and dynamics frameworks to hold key features to plan motion for humanoid robots, such as the possibility to control the motion while enforcing a strict priority order among tasks. We have, however, identified a lack of support of strict priority enforcement when inequality constraints are to be accounted for in the numerical schemes and we were successful in proposing a solution to this shortcoming. We also considered the problem of planning bipedal locomotion according to any given tasks. We proposed to model this problem as an inverse kinematics problem, by considering the kinematic structure of the robot and its walk path as a single unified structure that captures both the degrees of freedom of the robot which are actuated (motorized joints) and those which are not (position and orientation in space). The presented algorithms, which will be abundantly illustrated, have been implemented within the HPP (Humanoid Path Planner) project and validated on the humanoid robot HRP-2

    Transfert de Mouvement Humain vers Robot Humanoïde

    Get PDF
    Le but de cette thèse est le transfert du mouvement humain vers un robot humanoïde en ligne. Dans une première partie, le mouvement humain, enregistré par un système de capture de mouvement, est analysé pour extraire des caractéristiques qui doivent être transférées vers le robot humanoïde. Dans un deuxième temps, le mouvement du robot qui comprend ces caractéristiques est calculé en utilisant la cinématique inverse avec priorité. L'ensemble des tâches avec leurs priorités est ainsi transféré. La méthode permet une reproduction du mouvement la plus fidèle possible, en ligne et pour le haut du corps. Finalement, nous étudions le problème du transfert mouvement des pieds. Pour cette étude, le mouvement des pieds est analysé pour extraire les trajectoires euclidiennes qui sont adaptées au robot. Les trajectoires du centre du masse qui garantit que le robot ne tombe pas sont calculées `a partir de la position des pieds et du modèle du pendule inverse. Il est ainsi possible réaliser une imitation complète incluant les mouvements du haut du corps ainsi que les mouvements des pieds. ABSTRACT : The aim of this thesis is to transfer human motion to a humanoid robot online. In the first part of this work, the human motion recorded by a motion capture system is analyzed to extract salient features that are to be transferred on the humanoid robot. We introduce the humanoid normalized model as the set of motion properties. In the second part of this work, the robot motion that includes the human motion features is computed using the inverse kinematics with priority. In order to transfer the motion properties a stack of tasks is predefined. Each motion property in the humanoid normalized model corresponds to one target in the stack of tasks. We propose a framework to transfer human motion online as close as possible to a human motion performance for the upper body. Finally, we study the problem of transfering feet motion. In this study, the motion of feet is analyzed to extract the Euclidean trajectories adapted to the robot. Moreover, the trajectory of the center of mass which ensures that the robot does not fall is calculated from the feet positions and the inverse pendulum model of the robot. Using this result, it is possible to achieve complete imitation of upper body movements and including feet motio

    Computational Methods for Cognitive and Cooperative Robotics

    Get PDF
    In the last decades design methods in control engineering made substantial progress in the areas of robotics and computer animation. Nowadays these methods incorporate the newest developments in machine learning and artificial intelligence. But the problems of flexible and online-adaptive combinations of motor behaviors remain challenging for human-like animations and for humanoid robotics. In this context, biologically-motivated methods for the analysis and re-synthesis of human motor programs provide new insights in and models for the anticipatory motion synthesis. This thesis presents the author’s achievements in the areas of cognitive and developmental robotics, cooperative and humanoid robotics and intelligent and machine learning methods in computer graphics. The first part of the thesis in the chapter “Goal-directed Imitation for Robots” considers imitation learning in cognitive and developmental robotics. The work presented here details the author’s progress in the development of hierarchical motion recognition and planning inspired by recent discoveries of the functions of mirror-neuron cortical circuits in primates. The overall architecture is capable of ‘learning for imitation’ and ‘learning by imitation’. The complete system includes a low-level real-time capable path planning subsystem for obstacle avoidance during arm reaching. The learning-based path planning subsystem is universal for all types of anthropomorphic robot arms, and is capable of knowledge transfer at the level of individual motor acts. Next, the problems of learning and synthesis of motor synergies, the spatial and spatio-temporal combinations of motor features in sequential multi-action behavior, and the problems of task-related action transitions are considered in the second part of the thesis “Kinematic Motion Synthesis for Computer Graphics and Robotics”. In this part, a new approach of modeling complex full-body human actions by mixtures of time-shift invariant motor primitives in presented. The online-capable full-body motion generation architecture based on dynamic movement primitives driving the time-shift invariant motor synergies was implemented as an online-reactive adaptive motion synthesis for computer graphics and robotics applications. The last chapter of the thesis entitled “Contraction Theory and Self-organized Scenarios in Computer Graphics and Robotics” is dedicated to optimal control strategies in multi-agent scenarios of large crowds of agents expressing highly nonlinear behaviors. This last part presents new mathematical tools for stability analysis and synthesis of multi-agent cooperative scenarios.In den letzten Jahrzehnten hat die Forschung in den Bereichen der Steuerung und Regelung komplexer Systeme erhebliche Fortschritte gemacht, insbesondere in den Bereichen Robotik und Computeranimation. Die Entwicklung solcher Systeme verwendet heutzutage neueste Methoden und Entwicklungen im Bereich des maschinellen Lernens und der künstlichen Intelligenz. Die flexible und echtzeitfähige Kombination von motorischen Verhaltensweisen ist eine wesentliche Herausforderung für die Generierung menschenähnlicher Animationen und in der humanoiden Robotik. In diesem Zusammenhang liefern biologisch motivierte Methoden zur Analyse und Resynthese menschlicher motorischer Programme neue Erkenntnisse und Modelle für die antizipatorische Bewegungssynthese. Diese Dissertation präsentiert die Ergebnisse der Arbeiten des Autors im Gebiet der kognitiven und Entwicklungsrobotik, kooperativer und humanoider Robotersysteme sowie intelligenter und maschineller Lernmethoden in der Computergrafik. Der erste Teil der Dissertation im Kapitel “Zielgerichtete Nachahmung für Roboter” behandelt das Imitationslernen in der kognitiven und Entwicklungsrobotik. Die vorgestellten Arbeiten beschreiben neue Methoden für die hierarchische Bewegungserkennung und -planung, die durch Erkenntnisse zur Funktion der kortikalen Spiegelneuronen-Schaltkreise bei Primaten inspiriert wurden. Die entwickelte Architektur ist in der Lage, ‘durch Imitation zu lernen’ und ‘zu lernen zu imitieren’. Das komplette entwickelte System enthält ein echtzeitfähiges Pfadplanungssubsystem zur Hindernisvermeidung während der Durchführung von Armbewegungen. Das lernbasierte Pfadplanungssubsystem ist universell und für alle Arten von anthropomorphen Roboterarmen in der Lage, Wissen auf der Ebene einzelner motorischer Handlungen zu übertragen. Im zweiten Teil der Arbeit “Kinematische Bewegungssynthese für Computergrafik und Robotik” werden die Probleme des Lernens und der Synthese motorischer Synergien, d.h. von räumlichen und räumlich-zeitlichen Kombinationen motorischer Bewegungselemente bei Bewegungssequenzen und bei aufgabenbezogenen Handlungs übergängen behandelt. Es wird ein neuer Ansatz zur Modellierung komplexer menschlicher Ganzkörperaktionen durch Mischungen von zeitverschiebungsinvarianten Motorprimitiven vorgestellt. Zudem wurde ein online-fähiger Synthesealgorithmus für Ganzköperbewegungen entwickelt, der auf dynamischen Bewegungsprimitiven basiert, die wiederum auf der Basis der gelernten verschiebungsinvarianten Primitive konstruiert werden. Dieser Algorithmus wurde für verschiedene Probleme der Bewegungssynthese für die Computergrafik- und Roboteranwendungen implementiert. Das letzte Kapitel der Dissertation mit dem Titel “Kontraktionstheorie und selbstorganisierte Szenarien in der Computergrafik und Robotik” widmet sich optimalen Kontrollstrategien in Multi-Agenten-Szenarien, wobei die Agenten durch eine hochgradig nichtlineare Kinematik gekennzeichnet sind. Dieser letzte Teil präsentiert neue mathematische Werkzeuge für die Stabilitätsanalyse und Synthese von kooperativen Multi-Agenten-Szenarien

    Planification de mouvement pour systèmes anthropomorphes

    Get PDF
    L'objet de cette thèse est le développement et l'étude des algorithmes de planification de mouvement pour les systèmes hautement dimensionnés que sont les robots humanoïdes et les acteurs virtuels. Plusieurs adaptations des méthodes génériques de planification de mouvement randomisées sont proposées et discutées. Une première contribution concerne l'utilisation de techniques de réduction de dimension linéaire pour accélérer les algorithmes d'échantillonnage. Cette méthode permet d'identifier en ligne quand un processus de planification passe par un passage étroit de l'espace des configurations et adapte l'exploration en fonction. Cet algorithme convient particulièrement bien aux problèmes difficiles de la planification de mouvement pour l'animation graphique. La deuxième contribution est le développement d'algorithmes randomisés de planification sous contraintes. Il s'agit d'une intégration d'outils de cinématique inverse hiérarchisée aux algorithmes de planification de mouvement randomisés. On illustre cette méthode sur différents problèmes de manipulation pour robots humanoïdes. Cette contribution est généralisée à la planification de mouvements corps-complet nécessitant de la marche. La dernière contribution présentée dans cette thèse est l'utilisation des méthodes précédentes pour résoudre des tâches de manipulation complexes par un robot humanoïde. Nous présentons en particulier un formalisme destiné à représenter les informations propres à l'objet manipulé utilisables par un planificateur de mouvement. Ce formalisme est présenté sous le nom d'« objets documentés ». ABSTRACT : This thesis deals with the development and analysis of motion planning algorithms for high dimensional systems: humanoid robots and digital actors. Several adaptations of generic randomized motion planning methods are proposed and discussed. A first contribution concerns the use of linear dimensionality reduction techniques to speed up sampling algorithms. This method identifies on line when a planning process goes through a narrow passage of some configuration space, and adapts the exploration accordingly. This algorithm is particularly suited to difficult problems of motion planning for computer animation. The second contribution is the development of randomized algorithms for motion planning under constraints. It consists in the integration of prioritized inverse kinematics tools within randomized motion planning. We demonstrate the use of this method on different manipulation planning problems for humanoid robots. This contribution is generalized to whole-body motion planning with locomotion. The last contribution of this thesis is the use of previous methods to solve complex manipulation tasks by humanoid robots. More specifically, we present a formalism that represents information specific to a manipulated object usable by a motion planner. This formalism is presented under the name of "documented object"

    Modeling of human movement for the generation of humanoid robot motion

    Get PDF
    La robotique humanoïde arrive a maturité avec des robots plus rapides et plus précis. Pour faire face à la complexité mécanique, la recherche a commencé à regarder au-delà du cadre habituel de la robotique, vers les sciences de la vie, afin de mieux organiser le contrôle du mouvement. Cette thèse explore le lien entre mouvement humain et le contrôle des systèmes anthropomorphes tels que les robots humanoïdes. Tout d’abord, en utilisant des méthodes classiques de la robotique, telles que l’optimisation, nous étudions les principes qui sont à la base de mouvements répétitifs humains, tels que ceux effectués lorsqu’on joue au yoyo. Nous nous concentrons ensuite sur la locomotion en nous inspirant de résultats en neurosciences qui mettent en évidence le rôle de la tête dans la marche humaine. En développant une interface permettant à un utilisateur de commander la tête du robot, nous proposons une méthode de contrôle du mouvement corps-complet d’un robot humanoïde, incluant la production de pas et permettant au corps de suivre le mouvement de la tête. Cette idée est poursuivie dans l’étude finale dans laquelle nous analysons la locomotion de sujets humains, dirigée vers une cible, afin d’extraire des caractéristiques du mouvement sous forme invariants. En faisant le lien entre la notion “d’invariant” en neurosciences et celle de “tâche cinématique” en robotique humanoïde, nous développons une méthode pour produire une locomotion réaliste pour d’autres systèmes anthropomorphes. Dans ce cas, les résultats sont illustrés sur le robot humanoïde HRP2 du LAAS-CNRS. La contribution générale de cette thèse est de montrer que, bien que la planification de mouvement pour les robots humanoïdes peut être traitée par des méthodes classiques de robotique, la production de mouvements réalistes nécessite de combiner ces méthodes à l’observation systématique et formelle du comportement humain. ABSTRACT : Humanoid robotics is coming of age with faster and more agile robots. To compliment the physical complexity of humanoid robots, the robotics algorithms being developed to derive their motion have also become progressively complex. The work in this thesis spans across two research fields, human neuroscience and humanoid robotics, and brings some ideas from the former to aid the latter. By exploring the anthropological link between the structure of a human and that of a humanoid robot we aim to guide conventional robotics methods like local optimization and task-based inverse kinematics towards more realistic human-like solutions. First, we look at dynamic manipulation of human hand trajectories while playing with a yoyo. By recording human yoyo playing, we identify the control scheme used as well as a detailed dynamic model of the hand-yoyo system. Using optimization this model is then used to implement stable yoyo-playing within the kinematic and dynamic limits of the humanoid HRP-2. The thesis then extends its focus to human and humanoid locomotion. We take inspiration from human neuroscience research on the role of the head in human walking and implement a humanoid robotics analogy to this. By allowing a user to steer the head of a humanoid, we develop a control method to generate deliberative whole-body humanoid motion including stepping, purely as a consequence of the head movement. This idea of understanding locomotion as a consequence of reaching a goal is extended in the final study where we look at human motion in more detail. Here, we aim to draw to a link between “invariants” in neuroscience and “kinematic tasks” in humanoid robotics. We record and extract stereotypical characteristics of human movements during a walking and grasping task. These results are then normalized and generalized such that they can be regenerated for other anthropomorphic figures with different kinematic limits than that of humans. The final experiments show a generalized stack of tasks that can generate realistic walking and grasping motion for the humanoid HRP-2. The general contribution of this thesis is in showing that while motion planning for humanoid robots can be tackled by classical methods of robotics, the production of realistic movements necessitate the combination of these methods with the systematic and formal observation of human behavior
    corecore