1,723 research outputs found

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express Knowledge About the World and the Self

    Get PDF
    This paper introduces a cognitive architecture for a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the initiative can originate from both the human and the robot. The framework, based on a biologically-grounded theory of the brain and mind, integrates a reactive interaction engine, a number of state-of-the art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The architecture as a whole drives the robot behavior to solve the symbol grounding problem, acquire language capabilities, execute goal-oriented behavior, and express a verbal narrative of its own experience in the world. We validate our approach in human-robot interaction experiments with the iCub humanoid robot, showing that the proposed cognitive architecture can be applied in real time within a realistic scenario and that it can be used with naive users

    A Biosymtic (Biosymbiotic Robotic) Approach to Human Development and Evolution. The Echo of the Universe.

    Get PDF
    In the present work we demonstrate that the current Child-Computer Interaction paradigm is not potentiating human development to its fullest – it is associated with several physical and mental health problems and appears not to be maximizing children’s cognitive performance and cognitive development. In order to potentiate children’s physical and mental health (including cognitive performance and cognitive development) we have developed a new approach to human development and evolution. This approach proposes a particular synergy between the developing human body, computing machines and natural environments. It emphasizes that children should be encouraged to interact with challenging physical environments offering multiple possibilities for sensory stimulation and increasing physical and mental stress to the organism. We created and tested a new set of computing devices in order to operationalize our approach – Biosymtic (Biosymbiotic Robotic) devices: “Albert” and “Cratus”. In two initial studies we were able to observe that the main goal of our approach is being achieved. We observed that, interaction with the Biosymtic device “Albert”, in a natural environment, managed to trigger a different neurophysiological response (increases in sustained attention levels) and tended to optimize episodic memory performance in children, compared to interaction with a sedentary screen-based computing device, in an artificially controlled environment (indoors) - thus a promising solution to promote cognitive performance/development; and that interaction with the Biosymtic device “Cratus”, in a natural environment, instilled vigorous physical activity levels in children - thus a promising solution to promote physical and mental health

    Developmental Bootstrapping of AIs

    Full text link
    Although some current AIs surpass human abilities in closed artificial worlds such as board games, their abilities in the real world are limited. They make strange mistakes and do not notice them. They cannot be instructed easily, fail to use common sense, and lack curiosity. They do not make good collaborators. Mainstream approaches for creating AIs are the traditional manually-constructed symbolic AI approach and generative and deep learning AI approaches including large language models (LLMs). These systems are not well suited for creating robust and trustworthy AIs. Although it is outside of the mainstream, the developmental bootstrapping approach has more potential. In developmental bootstrapping, AIs develop competences like human children do. They start with innate competences. They interact with the environment and learn from their interactions. They incrementally extend their innate competences with self-developed competences. They interact and learn from people and establish perceptual, cognitive, and common grounding. They acquire the competences they need through bootstrapping. However, developmental robotics has not yet produced AIs with robust adult-level competences. Projects have typically stopped at the Toddler Barrier corresponding to human infant development at about two years of age, before their speech is fluent. They also do not bridge the Reading Barrier, to skillfully and skeptically draw on the socially developed information resources that power current LLMs. The next competences in human cognitive development involve intrinsic motivation, imitation learning, imagination, coordination, and communication. This position paper lays out the logic, prospects, gaps, and challenges for extending the practice of developmental bootstrapping to acquire further competences and create robust, resilient, and human-compatible AIs.Comment: 102 pages, 29 figure
    • …
    corecore