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Abstract

This thesis investigates the role of exploratory play in the development of the basic knowl-
edge of actions and objects involved in play with artificial agents. We developed a learning
system, Dev-PSchema, inspired from the sensorimotor stage and schema mechanism of
Piaget’s theory of cognitive development. The learning system enables the artificial agents to
develop their knowledge, in the shape of schemas containing action and perceptions, based
on their existing knowledge and play behaviour. We demonstrate the system embodied in
two agents, a simulator and a real robot, developing their knowledge through exploratory
sensorimotor experiences and extending for novel situations of the environment through
schema generalisation. The schema generalisation mechanism enables the agents to extend
their knowledge for novel situations and predict action outcomes. The agents begin learn-
ing with a set of basic actions, provided to interact with their environment and perform
suitable actions selected through an action selection mechanism, the excitation calculator.
This mechanism is modelled on the habituation paradigm, widely studied in developmental
psychology. We demonstrate how the excitation mechanism can be tuned to demonstrate a
range of behaviour preferences in the artificial agents, similar to the infants observed in the
developmental psychology studies.

We then demonstrate the agents developing complex actions, labelled as schema chains,
from their basic knowledge gained through the exploratory play. The agent demonstrates
performing the schema chains as a singular action following a few repetitions. This skill
is modelled on the chain reflex and motor program behaviours observed in humans while
performing a sequence of actions. This capability enables the agent to develop complex
skills that are used to achieve a state in the environment which is, otherwise, not possible
to achieve with a single action. Furthermore, we demonstrate the capability to scaffold the
learning of the agent through achieving tasks, increasing in complexity.

In conclusion, we demonstrate that the exploratory play helps the agents to develop their
knowledge about actions and the objects involved. The developed knowledge is further used
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to explore the environment, hence demonstrating open-ended learning.
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Chapter 1

Introduction to Modelling a Human

approach to Learning

This thesis is concerned with the development of a mechanism for driving play like behaviour,

inspired by developmental psychology. The mechanism will be implemented for artificial

agents, both in simulation and on a real robot. The agents then demonstrated developing an

understanding of objects through the process of playful exploration grounded in the field

of epigenetic robotics through embodiment and developmental learning in a lab environ-

ment [166].

In this thesis we investigate a schema based learning approach containing underlying

algorithms of action selection, action sequencing and developing contextual understanding

for modelling play behaviour and investigate the behaviours of the artificial agents by varying

different parameters of the system. The learning system used as a play generator in this

thesis is inspired from Piaget’s cognitive theory and play behaviour in early infancy. We

investigate the development of object knowledge through play with an open-ended learning

system driving exploratory behaviours. We also investigate the adaptation and reuse of the

experience it has gained in novel environments.
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The main focus in this thesis to which the schema mechanism is applied is that of building

object understanding through play behaviour. Play evolves over time from practice to sym-

bolic and then later to play with rules [144, 54]. Practice play appears in young infants (at

the age of 1 month) where they enjoy repeating the actions which they have learnt previously.

Infants’ interest in practice play declines and gradually changes into symbolic play where

they become interested in imitating contents of the actions rather than the actions [54]. In

this thesis we are focused on practice play behaviour and cognitive development in early

infancy, therefore, we mainly focused on independent play behaviour in infancy without any

social support from parents or caregivers.

The learning system is able to record perceived sensory information from the environment

along with actions that caused changes to the perceptions, in the form of schemas. Later,

such schemas are used to interact with the environment and objects in it. Developing the

accommodation process described by Piaget, the system evolves different schemas through

continuous explorations and extends learning to novel situations. Furthermore, we demon-

strate the capability of the system to simulate different individuals’ behaviours, as observed

from infants.

The learning system is integrated within artificial agents acting in two different environ-

ments. First is a virtual agent in a simulator and the second in the real world via a humanoid

robot, iCub [122]. Figure 1.1 shows the artificial agents used in this thesis. Both agents are

capable of perceiving the environment with their sensors and acting on the environment with

their end effectors i.e. Hand.

We begin with the agents having knowledge about their motor capabilities and little or no

knowledge about the environment. The agents are left to play in the environment containing

different objects, learning “cause and effect” relationships between objects and the agent’s

motor actions.
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Fig. 1.1 The two artificial agents we used in this thesis. Left: A simple simulator with the
capability to perceive and act. Right: iCub, a humanoid robot with vision and 53 degree of
freedom.

Furthermore, we also want to emphasize the adaptability of the learning system for two

completely different agents, from a simple simulator to a humanoid robot. This enables us to

observe behaviours in different agents depending upon their perceptions of the environment

using their sensors provided.

In the remainder of this chapter, we discuss motivations for developing robotic systems

inspired by developmental psychology and outline the literature on play in early infancy

and learning in order to identify the key characteristics of play behaviour in infants. Finally,

we will outline the main contributions of this thesis and existing related publications by the

author.
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1.1 Motivations: Artificial Intelligence and Developmental

Robotics

The ability to socialize and communicate through verbal and non-verbal languages, to solve

problems and to reason, enables humans to be recognised as an intelligent species. Although

there is not any single scientific definition for Intelligence, it can be considered as a collec-

tion of various attributes such as perception, reasoning, planning, adaptation and learning,

autonomy, communication and creativity [74]. Understanding the human brain has been a

topic of interest for different fields of studies, including medical science, psychology and

artificial intelligence (AI). On the one hand medical science, including neuroscience, is

focused on understanding the structure and functionality of the human brain. On the other

hand, psychologists are trying to understand how human cognition develops and how we

think. AI brings together both aspects, attempting to produce biologically plausible and

biologically inspired models.

The brain is the most complex organ in human body and one of the slowest to de-

velop [177]. When fully developed, the human brain is divided into lobes and each lobe

has its own functions. For example, problem solving, creativity and short term memory are

handled by the frontal lobe, while temporal lobes are responsible for memory and language,

and the parietal lobe processes sensory information [80]. Simply, having a brain is not

sufficient to be an intelligent species. It needs to go through a long process of development

and learning. A complex structure of neuron connections is created in the human brain during

the learning and development process.

Although enormous development can be seen in technology, it is safe to say that we

are still not able to achieve all the characteristic in machines to be intelligent described by

Honavar [74]. AI researchers model psychological and neuroscience studies on computers in

an attempt to reproduce human-like behaviours in machines. Nilsson [133] relates AI with

intelligent behaviours, such as learning, reasoning, communicating and perception. In the



1.1 Motivations: Artificial Intelligence and Developmental Robotics 5

broad sense, the goal of AI is to develop machines that can think and/or act as humans do.

Despite this, a wide range of devices and machines, from cell phones through to fridges, are

claimed to be intelligent or smart. However, for a machine to be considered as intelligent, it

has to be automatic and autonomous. Such machines are commonly referred to as robots.

Capek [32] used the word “Robot” in his science fiction play, premiered in 1921, “Ro-

sumovi universal robots” translated in English as Rossum’s Universal Robots. In the play,

humans acted as human-like machines. In 2010 a humanoid robot, Geminoid F, performed

in a play in Tokyo, although still remotely operated from off stage [71]. Increasingly, real

robots are being used in films, such as BB-8 in Star Wars: The Force Awakens. These two

plays show different aspects of the development of Robotics and AI. In the former [32], an

idea was presented to have a human-like machine, in shape and intelligence. More recently,

the later play demonstrates the advancement in the field of robotics, particularly humanoid

robotics. However, the robot in “Sayonara” [71] was operated by a human, therefore, it does

not yet fit the definition for an “Intelligent Robot” as described above.

In general, robots are useful for working in environments where it is difficult or unsafe

for humans to be. Moreover, robots do not tire from repetition of tasks and are typically very

precise between repetitions. In science fiction, Asimov [11] defined three rules of robotics,

where intelligent robots are working alongside humans. The first and most important one

says “A robot may not injure a human being, or, through inaction, allow a human being to

come to harm”. While this rule is currently not applied, as it highlights that intelligent robots

should be capable of perceiving, learning and reasoning about others, either human or robot,

actions. They should be capable of predicting effects of actions/changes in environment

and understanding what harm that might cause to humans. We, as humans, possess such

capabilities. However, such capabilities are developed through years of experiences in the

environment. We propose that, for a robot to have such capabilities as humans do, it must

undergo a process of learning to gain experience as humans do.
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Meeden and Blank [120] explain three traditional approaches for developing intelligent

robots; i) Direct programming, ii) Supervised learning, iii) Evolutionary adaptation. Al-

though none of these methods shows capability on a par with humans, they are motivations

towards new methods, such as developmental learning. This idea seems to be very much

supporting the idea proposed by Turing [188]; A child-like brain is easier to simulate than

an adult-like brain and then proper learning allow it to develop to adulthood. This idea is

the foundation of the field of “Developmental Robotics”. Asada et al. [10] further propose

Cognitive developmental robotics for humanoid robots.

In humans, changes in the central nervous system (CNS) due to the interaction with the

environment are said to be the result of development, with innate behaviours or reflexes

helping in this process [191]. As already discussed, replicating a child’s brain should be

simpler than an adult’s. Turing [188] refers to infant’s brain as a blank slate and assumes it

can be easily written or programmed. Hence he proposes that in order to make a machine

intelligent, it should begin with an empty brain and be allowed it to develop in the same way

as humans do.

Developmental robotics also describes the importance of gaining experience through in-

teraction with the environment, requiring embodiment and therefore also learning about itself.

This approach is inspired by psychological studies of human development. Developmental

robotics is a prominent interdisciplinary research field. Lungarella et al. [109] identifies

developmental robotics as the intersection of two branches of science, robotics and develop-

mental sciences such as developmental psychology. In a broad sense, this discipline supports

the human-like development of robots, recognising that the learning must be embodied in a

robotic platform, enabling it to interact with the world [28].

Vernon [191] reports that the human body and brain evolve together and therefore cannot

be considered as separate. Embodiment has a great importance in the field of robotics and

artificial intelligence. Making use of a robotic platform modelled on a humanoid form,
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incorporating dexterity and perception enables more natural social interaction with humans

and also provides similar affordances for interacting with the environment [27]. If robots are

to help humans in any environment containing objects and instruments designed for humans,

then robots should be embodied like humans. Asada et al. [9] also support the prominence of

humanoid robots in cognitive developmental research. They believe, embodiment specifies

the physical constraints and provides meaningful interactions in the environment.

In order to build a computational model which possesses the capability to develop over a

period of time with experiences as humans do, detailed studies of human, particularly infant,

development are of great importance. This means “Developmental psychology” plays an

important role in the development of models based on human learning, especially for models

of infant development. In section 1.2, we discuss the development and learning during

infancy, followed by characteristics of play we aim to model as part of this contribution to

the field.

1.2 Learning in Early Infancy

Vernon [192] describes development as the result of interactions between an agent and its

environment, and agent’s interactions with itself. Human development and learning are

spread over a long period of time starting from within the mother’s womb [64]. Born with

different physical and cognitive constraints, infants during infancy develop physically and

cognitively over the period of time. The gradual change in the physical and mental constraints

at different ages help to shape the path for the subsequent important growth and reduce the

complexity of learning [100]. This can also be considered as a reason for slow physical and

cognitive development over a long period of time. This staged development in infants is seen

as sequential and predictable [146, 60] and proximal to distal i.e., head to toe [177, 23].
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There are different types of theories by psychologists on developmental learning. A

long debate of “Nature-Nurture” or “Nativism-Empiricism” theories, continuous and dis-

continuous and active-passive learning, is still going on. Theories supporting nature or

nativism consider development is mostly influenced by the nature of the genes or the or-

ganism itself and only a little by the environment. It has also been observed that prenatal

development is mostly gene directed but the environment can have an effect as well, such as

consumption of alcoholic drinks and malnutrition during pregnancy cause malformation and

impairments [177]. The idea of core knowledge systems given by Spelke [179, 178] is one

of the recent studies supporting the nature side of the Nature-Nurture debate. According to

this theory, humans possess some innate systems of knowledge such as numbers, space and

geometry. She believes that human cognition is based on such systems of knowledge which

develops further to higher levels over the course of the development [178]. On the other side,

researchers supporting the nurture or empiricism theories consider the environment as more

influential than the organism itself in the learning and developmental process. Empiricism

claims the learning and knowledge develops over a period of time based on the active experi-

ences in the environment. Although infants show some capabilities of knowledge in early

infancy, it has been found that infants show some limitations for different cognitive tasks

at the different ages, for example, spatial orientation and frame of references [128], and the

relationship between numerosity and displacement [58].

There is a long list of researchers supporting either side of the nature-nurture theories.

Theories given by Piaget and Vygotsky are still considered as relevant and applied to date.

Although both of them see the infant as an active participant in the development and learning

process, they differ in their views about the involvement of the environment in this process.

Vygotsky [197] supports social interaction, rather than individual, in the learning process,

where infants need certain social support to achieve developmental milestones. He also

considers the learning and developmental process as continuous and varying from culture

to culture. Conversely, Piaget [147] places emphasis more on the agent. He considers

the learning process as universal among all cultures and discontinuous, involving various
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stages. Where Piaget seems to be supporting the interactional approach of learning. He em-

phasises more on the organism rather than the environment in the developmental process [52].

Piaget sees learning as a development process for schemas using assimilation and ac-

commodation processes to achieve (mental) equilibrium [147]. He proposes a theory of

hierarchical development of knowledge, from ego-centric learning to the theory of mind.

According to Piaget, development begins with reflexive behaviours, such as those often seen

as play in infants [147].

1.3 Characteristics of Play

Humans are curious by nature. They tend to explore the surrounding environment and tend to

solve problems out of curiosity, even if there is no material reward available for that, except

the internal satisfaction [108]. This curiosity can be seen in young children as well. They

tend to explore the surrounding environment, wherever possible [147, 106]. This behaviour

in infants and children is seen as play behaviour.

Play behaviour is recognised as a very important step in mammals for motor and cognitive

development [150, 198, 139, 200]. Play is often seen as a natural activity of infants and

children [153]. The widely accepted definition for Play is a behaviour that gives pleasure.

However, there are some other activities which provide pleasure such as feeding, which are

not considered as play [198]. Hughes [76] defines five important characteristics for describing

an activity as play, it must be; intrinsically motivated, freely chosen, pleasurable, non-literal

(contortion of reality i.e., symbolic) and actively engaging. Under such characteristics, play

is a physical behaviour without any constraints, except physical, which provides the internal

satisfaction and pleasure. As the child develops, both physically and mentally, so does the

style and complexity of the play behaviour. Play behaviour begins with free exploratory

activity, then later becomes symbolic or pretend play, gradually incorporating increasingly
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complex rules in early childhood. Play typically generates knowledge about the components

of the environment in which the player/agent interacts and this is not considered as a goal-

directed activity. However, an activity without a goal could be considered meaningless and

aimless. Lee [105] considers play as a goal-finding rather than goal-following activity. Thus

play behaviour could be seen as a goal creating rather than goal following activity that helps

in the learning process.

The question arises, what makes infants play? This is a very complicated question. Play

behaviours begin with exploration, where infants try to explore their immediate environ-

ment [139]. According to the Piaget [147], new situations arising in the environment intrigues

existing knowledge and this imbalance causes certain behaviour. In this process, infants not

only learn the actions and their effects but also learn properties of objects and the environ-

ment [191, 195]. Researchers believe that play begins with exploration in the environment

to answer questions such as “What can it do?” or “What does it do?”. With experiences

and development, the question changes to “What can I do with it?” [139]. The curiosity of

exploring sensorimotor capabilities and action that can be performed on the objects makes

an infant motivated to play and most sensorimotor capabilities can be considered as such

exploratory play behaviours.

Human or animal behaviours are driven by a certain necessity or desire of reward or to

avoid punishment. In early infancy, infants are seen with reflexive behaviours and motor

babbling. Motor babbling, by chance, helps to discover something new such as touching

the nearby objects. Through repetitions, such behaviours become more controlled and co-

ordinated with the sensory feedback. Piaget [147] considers reflexes as hereditary organic

reactions and contact with external objects transforms these reflexes into play behaviours.

Simply, he considers reflexes are the response to certain stimulus but still there are arguments

over this definition. Most reflexes, such as sucking, swallowing etc., seem to be for biological

needs. However, there are certain behaviours without a fixed goal [162]. Berlyne [20]

considers “‘Drive”, a variable depending upon some internal and external factors causing
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such behaviours.

In psychology, motivations are seen as either intrinsic or extrinsic. Extrinsic motivations

trigger some behaviours for external reward or any biological need. Arousal and drive can

be replaced with motivations [80]. It has been observed in infants that sometimes their

behaviours are not just for a fixed need or reward and can be instead observed acting just

for pleasure. Such behaviours are described as being intrinsically motivated. Oudeyer et

al. [135] distinguishes between the two and considers that the extrinsic motivation results

in learning actions that are needed for the body to be in a state of equilibrium, such as an

infant suckling to fulfil its body’s need, and intrinsic motivations generate actions depending

upon their own success and give pleasure. For example, an infant sucking their hand or

fingers even though he/she was recently provided a meal. This act cannot be considered as

the reaction of a need but intrinsically motivated and just for comfort.

Including infants, adults are also seen intrinsically motivated for certain activities, for

example solving crossword puzzles. Thus Intrinsic motivations can be considered as a

cause for learning and building knowledge about the objects, actions and the behaviours.

Now the question arises what causes such intrinsic motivations in infants? According to

Berlyne [20] an increased random activity and restlessness can be observed in infants when

they face new, strange or surprising stimuli and refers to this condition as “Perceptual” cu-

riosity. He believes that curiosity derives certain behaviours in order to get any response

from the stimuli. This refers to the novelty and change in the environment that seem to be

the cause for intrinsic motivation. Stojanov [183] also favours the curiosity as the ability to

learn without explicit reward, while McCall [117] believes novelty, change and ambiguity

can generate such motivations that cause exploratory behaviours.

We summarise that the intrinsic motivations are driven by curiosity that is caused by

novelty, ambiguity or change in the environment. Intrinsic motivations are responsible for the

exploratory behaviours and such exploratory behaviours are seen as important characteristics
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of the play in infancy, that trigger certain actions such as throw, squeeze, bite and grasp etc.,

on objects and help to learn new skills and affordances. The strength of curiosity, hence

exploration, depends upon the response from the stimuli [19]. Novel response or change in

response will drive the exploration further, whereas no change will reduce the curiosity drive.

Intrinsic motivations have significant importance in developmental robotics for driving

the open-ended learning of robots. Appropriate algorithms for intrinsic motivations in com-

putational modelling can enhance the learning approach in robots [12]. If robots have to work

in unconstrained environments, they must have skills to face changes in the environment.

Such skills can be learnt via intrinsically motivated activities [14], as humans do. Thus, a

learning system, modelled on infant development, should contain a behaviour generating

system driven by intrinsic motivations for exploratory and play behaviour. Intrinsic motiva-

tions in robotics can also be modelled and triggered by novelty and change in the environment.

1.4 Developmental Stages and Schema Mechanism

In the 19th century, new techniques of testing enabled researchers to investigate infant

development more deeply. Different researchers investigated the possible involvement of

the environment and brain in acquiring motor skills. Piaget was one of those researchers

who saw this relation and considered knowledge building as an interactional approach [149].

He developed the first known “Theory of cognitive development”. His theory criticized the

views at the time of a maturational approach starting with preprogrammed innate motor skills.

Instead, he observed that as the human body undergoes physical changes starting from the

fetus going through to adulthood, there should be different programs for each of the physical

stages. The key points of this theory are as follows:

• Reflexes play an important role in motor and cognitive development.

• The development process involves motor actions and perceptions, and is a closed loop

system.
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• Development is staged. Breaking down development into a set of coarse stages, which

are further broken down.

Piaget considers that individuals build knowledge about actions or objects through inter-

action and exploration in early infancy. Piaget describes a schema as a unit of knowledge,

which develops in context and function over a period of time. The development of schemas

begin with simpler schemas learnt from reflexive behaviours that are then used in different

contexts within the environment [69]. The complexity of the schemas increases through the

assimilation and accommodation process [147]. Contents of the schema, for any concept,

may differ from agent to agent, depending upon the exposure, but the basic architecture

remains the same [1]. Piaget’s theory proposes hierarchical development of knowledge in

schemas.

Schema based knowledge is developed over the course of time and from simple to com-

plex knowledge. According to Piaget’s theory when a human faces any situation successfully

using their existing knowledge, the learning process is referred to as assimilation. During

the assimilation new information is added into existing schema but previous content of the

schemas remain unchanged. In the case of an expected outcome(s), an imbalance or disequi-

librium occurs causing the agent to undergo the process of accommodation. Disequilibrium

causes either new knowledge to be gained in the form of adding a new schema or updates the

existing knowledge according to the information obtained [148]. During the accommodation

process, either the context referred to as preconditions (a state of the environment for which

the schema is applicable), the results referred to as postconditions or both components

will be changed. Drescher [45], however, argues that during accommodation old schemas

are not changed but new schemas are generated by adding new information within the old one.

Piaget divided cognitive development in humans into the different stages, each covering

set age ranges. According to Piaget’s studies, the human cognitive learning process is divided

into four main stages; Sensorimotor, Pre-Operational, Concrete Operational and Formal

Operational. These stages are briefly described as follows;
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• Sensorimotor Stage (Birth-2 years)

At the sensorimotor stage, infants develop knowledge about objects and the environ-

ment through physical activities. The knowledge extends to the mental representation

of objects and building object affordances. At this stage learning is egocentric and

the main achievement is to develop object permanence. During this stage, exploratory

play behaviour is seen in infants. The model in the thesis is based on this stage of the

development, hence we will discuss this stage in details in Section 1.4.1.

• Pre-Operational Stage (2-7 years)

The Learning at this stage is still ego-centric, however, young children develop the

ability to represent objects symbolically. During this stage children are still not able

to use logic and only able to focus on a single aspect of the environment. Non-literal,

symbolic or pretend, play is developed during this stage. For example, children use

different objects like a cell phone.

• Concrete Operational Stage (7-11 years)

During this stage children start thinking logically. They are able to mentally process

actions, however, this capability is limited to physical objects only. During this stage,

children also learn to conservation of physical quantities even if appearance changes.

• Formal Operational Stage (11 years and over)

During this stage, the ability to think about concepts and build relationships between

the objects and events. Children at this stage are able to think and reason about the

events and processes which they never actually experienced.

Piaget considers these stages as universal, in-term of sequence and irrespective of the

culture in which the child is raised [119]. Applying this staged and discontinuous learning

process he believes one cannot change stage until he/she has obtained expertise in the current

stage, however, there are the examples where learning and knowledge in infants have been

found overlapping within the stages [68]. Development in different sensory and motor

capabilities is considered due to learning and maturation of different systems (e.g., vision,

cortical) supported by certain primitive capabilities [179]. The limitations in the sensory
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and motor capabilities at an early age help to shape learning about the environment and

their own capabilities in a hierarchical process, reducing the ambiguity and noise [100].

Thus maturation in biological and cortical systems over a period of time results in staged

development. As the learning model developed in this work is based on the sensorimotor

stage, hence we discuss this stage in details.

1.4.1 Sensorimotor Stage of the Development

The Sensorimotor stage of Piaget’s theory extends from birth to 2 years of life and is further

divided into six sub-stages; Reflex acts (0-1 months), Primary circular reactions (1-4 months),

Secondary circular reactions (4-8 months), Coordinating secondary schemes (8-12 months),

Tertiary circular reaction (12-18 months) and Symbolic Thoughts (18-24 months). In the first

sub-stage infants show reflexive responses to external stimuli such as the “Palmer grasp”, in-

fants closing hand when something touches their palm. In this stage, infants learn behaviours

using primitive actions and learn effects with own body parts i.e., arms, legs and hands. Such

behaviours are repeatedly used in the second sub-stage of the sensorimotor stage. Sucking

hand/fingers and fixating surrounding objects repeatedly during wake-time are examples

of primary circular reactions. Infants’ interactions are extended to objects present in the

environment at the third sub-stage, secondary circular reactions. Infants at this stage repeat

the actions on the objects to obtain interesting effects, for example shaking a rattle to produce

sound, which are discovered and learnt by chance. At this stage play behaviour is seen to

serve the purpose of answering the question “What does it do?” as discussed in the section 1.3.

Infants at the fourth sub-stage are able to create immediate goals and develop an ability to

form simple plans. At this sub-stage, coordinating secondary schemes, infants seem to build

concepts about objects and develop immediate goals. For example, retrieving an object by

displacing or avoiding the obstacle placed between the hand and the object. Thus planning

and small action sequences can be seen at this stage. Infants also extend their knowledge,

learnt schemas, to new situations in this stage and demonstrate an ability for generalisation.
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Piaget believes that behaviours observed at this stage are more likely due to interest in

the object developed following previous experiences with objects [147]. At this stage play

behaviour is seen to serve the purpose for the question “What can I do with it?” as discussed

in Section 1.3 using existing schemas. With such behaviours performed on new objects, the

effect either meet expectations or contradict with the schema that was applied. If the schema

expectations are met, the used schema may be adapted, if additional details to be added. In

the case of repetitions of similar conditions in the environment and using similar schemas

then generalisation can be initiated. Generalised schemas help to extend the knowledge to

novel situations and objects, without needing to learn different schemas for each environment

and object [13, 201, 67, 111]. For example, if an infant pushes a ball accidentally and

makes it move away. After a few repetitions with different objects, this action schema can

be generalised as “pushing an object will cause the object to move away”. Infants often

generalise very quickly, however this can lead to schemas that are over-generalised. Baldwin

et al. [13] found that 9-16 months old infant extend their behaviours towards novel objects

to obtain non-obvious property, e.g., sound, based on their shape similarity. Welder and

Graham [201] also found that 16-21 months old infants generalised their behaviour over the

shape of the objects. They also found that infants used common labels as a cue to generalise

behaviour and expectation for the novel objects, even though they had a different shape.

The over-generalised schemas go through an accommodation process and new generalised

schemas are created with deductive reasoning, a top-down approach of reasoning beginning

with very generalised concepts, and moving towards specific examples. Thus, if the schema

expectations are not met, the learning process undergoes the accommodation process and

creates a new schema.

At the fifth stage, infants show a higher level of intelligence, as compared to previ-

ous stages. Infants at this stage demonstrate patterns of behaviours by using sequences of

schemas [147]. Also, at this sub-stage infants find solutions to new problems by adapting

their existing knowledge. Practice play, from secondary circular reactions and coordinating

secondary schemes, is extended into sequences of play behaviours, e.g., joining and dis-
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joining interconnecting play blocks. At the sixth sub-stage, infants show imitating behaviours.

Infants at this stage are now able to form mental representations of objects, enabling pretend

and symbolic play which can seen at this stage. This demonstrates the development of “object

permanence”, which is the milestone of Piaget’s first sensorimotor stage [119].

In conclusion, during the sensorimotor stage, infants build egocentric knowledge about

the environment through play behaviour, driving interactions with objects in the environment.

The style of play observed during this stage develops from free exploratory play at the

start, then on to practice play and finally reaching pretend play at the end of the stage.

Sensorimotor knowledge, i.e. schemas, generated at this stage is hierarchical and developed

from the infants’ previous experiences.

1.5 Research Question and Objectives

To mimic a cognitive system i.e., humans, a robot should also be capable of learning and

building knowledge as humans do. Humans learning starts with exploration, as discussed

in Section 1.4. To mimic this capability in robots, their learning system1 should be set-up

with a learning and knowledge building mechanism inspired from human development. Dev-

PSchema, the learning tool used in this work enables robots of learning through exploratory

play. The specific research objective we address in this thesis is focused on developing

knowledge using experiences gained through exploratory Play.

Develop Dev-PSchema as an open-ended learning system to generate exploratory play

behaviour that enables the discovery of novel experiences to extend the knowledge in

novel situations. Furthermore, we extend the system for the structural development of

skills and knowledge using experiences gained through play behaviour.

This objective leads to develop a learning model with the following questions:

i. Can a schema based model offer open-ended learning through exploratory play and be

able to incorporate new information without any predefined template?
1We will use the terms system, model and agent interchangeably.
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ii. Can a schema system develop generalisation structures, as observed in infants, through

play behaviours and find a functional relationship in the generalisation?

iii. Can a schema system simulate infants with different preferences for actions in a given

situation of the environment as infants do?

iv. Can a schema based system develop action sequences using basic schemas, through

exploratory play, and utilise the sequences as high-level actions, as observed in humans?

v. Can an external user help to scaffold and shape the schema knowledge developed through

play?

Based on the objective and research questions, we have extended PSchema to developed

PSchema (Dev-PSchema) to achieve the contributions, introduced below in Section 1.6. We

then conducted six different experiments to evaluate the performance of Dev-PSchema for

each of the contributions.

1.6 Contributions

The aim of this thesis is to investigate developmental learning in artificial agents with play

behaviour using an intrinsically motivated open-ended learning algorithm inspired by devel-

opmental psychology. The model will be evaluated in an agent embodied in two platforms,

embodied in different environments. Initially a simple agent in a Sandbox simulation and

later as part of a more complex agent on an iCub humanoid robot. Experiments provide

a demonstration of acquired adaptive skills and behaviours through interactions with the

environment, driven by novelty and curiosity. From here on the term “agent” will be used

for the general learner, simulator or iCub, equipped with the learning system, unless specified.

This study is mainly concerned with the sensorimotor stage of development, as defined by

Piaget, as the aim of this research is to generate a mechanism for modelling infant learning
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through play and knowledge representation. At this stage infants are egocentric and their

intelligence is developed by building knowledge about themselves and their environment

using sensorimotor experience. In short, motor or physical activity and its effect on the

environment is perceived in order to build knowledge blocks [110]. Drescher [45] supports

Piaget’s theory expanding on the details to form “Schema mechanism”. According to this

knowledge in the brain is developed in the shape of a Schema, that consists of context(s),

action(s) and results(s). The actions are like moving, sweeping, grasping, seeing etc., while

the context and results are the information obtained from the senses before and after the

action respectively. Thus these schemas contain knowledge about the situations, objects and

actions. For any situation in the environment, either a new schema is generated or an existing

schema is applied.

Through a process of schema generalisation, it is possible to reduce computation and

memory costs, thereby increasing performance. Furthermore, higher level schemas are

created building on experiences gained whilst interacting with the environment. These higher

level schemas (chains) combine the effects of different actions represented by lower level

schemas to form more complex actions. Over time and through play, these higher order

schemas are no longer considered as chains of low level actions, and instead become atomic

actions.

The learning system introduced in this thesis, Dev-PSchema, is an enhanced version of

“PSchema”, see Chapter 3 for details. This thesis presents the mechanisms proposed, and

experiments performed to investigate the development of the different attributes of learning

during play behaviour in the artificial agents. The key contributions achieved in this research

are outlined below. Each contribution is then discussed in the detail in Chapters 3 to 7.
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1.6.1 Open-ended Learning and Adaptability

This capability is inspired by learning in humans. Humans are open-ended learners and learn

through experience, adapting their understanding according to observed sensory feedback.

For example, newborn babies have poor vision which develops over a period of time [177].

As the vision develops, infants incorporate and use the visual information in their learning.

Adults have been observed to learn how to navigate using artificial vision systems after years

of blindness [44]. Whilst there are some recognised limitations relating to sensitive periods in

development [33, 130], where possible, humans are able to incorporate and adapt, to varying

degrees, to new sensory information [44, 24]. Similarly, infants also learn different actions

over a period of time, e.g., grasping and manipulating, pointing, feeding, walking, climbing

etc. Such actions are discovered and learnt through exploratory behaviours, enabling the

discovery of more capabilities and learning [177]. In short, humans are able to incorporate

and use motor commands and sensory information whenever it is possible.

Artificial learning systems modelled on developmental psychology are expected to

demonstrate open-ended learning, similar to that of humans. The model should be able

to incorporate sensory information, perceived through sensors, in learning like humans do.

Furthermore, the model should be able to discover and learn behaviours through exploration,

which in turn enable the model to explore more capabilities.

PSchema [172], on which Dev-PSchema is built, used a specific format for specifying

a fixed set of sensory perceptions and actions to interface containing predefined properties

with the artificial agents. As such the system was unable to add any new sensory information

which was not predefined. Nor it could learn or construct new actions. Due to this, PSchema

system needed significant adaptations to enable it to be interfaced with different robotic

platforms.

A key contribution to Dev-PSchema is the ability to use an abstract form for sensory

perception and actions, enabling open-ended learning, hence addresses the research question
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(i) of this thesis given in Section 1.5. This feature of Dev-PSchema expands its capabilities

beyond what other relevant learning models have demonstrated, see Table 2.1. Furthermore,

Dev-PSchema is able to interface with any agent with little or no change in the system. As

an example of this, we interfaced the Dev-PSchema with the “SandBox”, a simple simulator,

and a humanoid robot, “iCub”. All the sensory information in the system is represented as

“Observations” e.g., colour observations, shape observations etc. Dev-PSchema is developed

with abstract observation, which enables any sensory information received, to be represented

and considered. Using the abstract observations, Dev-PSchema is able to receive and pro-

cess sensory information of any format from the sensory system of the agents or robotic

platforms. Moreover, abstract actions enable the agent to learn new actions on the fly, rather

than be limited to pre-defined actions. For example, if the system generates a higher level

action by combining low level actions, that new action can be incorporated and used on the fly.

1.6.2 Generalising from Experiences

This contribution is modelled on infants’ behaviours, where they have been found to gen-

eralise their behaviours over different properties of the objects [67, 86, 180, 16, 203, 187].

Infants developed generalised understanding about objects and events using their knowl-

edge and experiences, having some similar characteristics. This enables infants to predict

behaviour outcomes in similar environments and situations. Infants are often seen over-

generalising [13, 67], however, they are able to learn exceptions [91, 112].

This capability will enable artificial agents to learn from a few examples and extend

the learning for novel situations and objects, thus reducing consumption in computation

power and memory. The agent, equipped with the learning system, Dev-PSchema, is able

to generalise specific aspects of sensory properties of the environment following multiple

similar experiences. We start the artificial agent with little knowledge about itself and being

free to explore using its capabilities i.e., available actions. It learns different action-object

pairs along with the change in the sensory feedback before and after the action, recorded
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as schemas. The agent is able to generalise its experiences as it plays in the environment

and explores the novel situations or objects using generalised experiences. The generalised

schemas, help to predict outcome in similar situations in the environment.

The key contribution here is for the agent to be able to partially generalise experiences,

enabling the agent to learn exceptions in the generalised schemas. The agent is also able to

find linear functional relationships between the different properties by identifying additive

relationships between the numerical value of the properties in the sensory information. This

capability enables the agent to predict the numerical values of the properties as an effect of an

action. This contribution of Dev-PSchema addresses the research question (ii) of this thesis,

see Section 1.5. Although different learning models demonstrate generalisation capability

[6, 172, 141, 140], the functional generalisation has not been demonstrated in other related

learning systems, see Table 2.1.

The research here has been presented in two papers, [95, 94], that have been published

as the part of this study related to the generalisation mechanism. One paper focuses on the

use of partial generalisation during play and the other on the functional generalisation.

1.6.3 Simulating Individual Variations

In developmental psychology experiments results often focus on the average of behaviours

observed in infants [77, 57]. However, each individual shows variation in behaviour in part

due to individual preferences. Developmental psychology inspired robotic learning system

should also be able to demonstrate some such variations in the behaviours, due to individual

preferences. This capability can be used to test hypotheses from developmental psychology.

Roboticists, generally, focus on developing a learning system with specific behaviour and

knowledge. Which, in short, is try to reproduce a behaviour averaged from several individuals.

Dev-PSchema is able to simulate different individual infants by tuning different excitation



1.6 Contributions 23

parameters. It acts as an intrinsically motivated play generator with internal preferences. The

excitation mechanism calculates the excitation of each action in its memory, based on its

experiences, the perceived environment and its internal preference.

Behaviours of the agent used in this work are based on three parameters related to famil-

iarity and similarity of the perceived environment, and previous experiences, see Chapter

5. Each of these parameters is weighted with user defined weights. Changes in the weights

enable agents to simulate different individual behaviours and show different preferences

for actions in a given environment. For example, providing higher weight to the similarity

factor will enable the agent to interact more with the objects similar to that which have been

interacted with previously, see Section 5.2.1. Similarly, less weight to familiarity, hence

more to the novelty factor will encourage the agent to interact with less familiar objects

or those which have not been interacted with for a while. Thus this feature enables the

system to demonstrate the possibility of simulating different individuals, rather than an

average individual, hence addresses the research question (iii) of this work, see Section 1.5.

This capability in Dev-PSchema goes beyond the capabilities demonstrated by other related

learning models, discussed in Chapter 2, as they tend to model an average behaviour.

1.6.4 Forming Higher Level Actions

Most actions performed by humans on a day to day basis can be defined by high-level actions

and objectives. These actions/objectives are typically achieved by a series of low level motor

actions or a sequence of actions, referred to as primitive actions. For example, drinking water

is a high-level objective, which can be achieved by a sequence of actions such as; reaching

for the glass, grasping it, filling it with water, opening of mouth while transporting the glass

to the mouth, and adjusting the angle of the glass in the mouth to enable comfortable drinking.

In this example, a sequence of lower level or primitive actions are executed to achieve the

overall objective. These primitive actions are continuous and often inseparable from each

other whilst predominately maintaining the sequential ordering, with some occasional overlap
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between actions. Simple action planning is observed in infants as young as 8-12 months old,

as discussed in the Section 1.4. Thus infants are able to plan higher level gaols at an early

age. For example, reaching for an object and displacing or avoiding any obstacle in the path.

Action sequences, in developmental psychology, are seen either as reflexive chains or

motor programs [160, 98]. During a reflexive chain, a pause between actions, in action

sequences, occurs to obtain feedback from the environment before proceeding to the next

action in the sequence. After a few repetitions successful action sequences become motor

programs, where they are executed without any pause between actions for sensory feedback.

Robots may also need to achieve objectives involving a sequence of primitive actions

in a given environment. To achieve such an objective, the robot will need to form a plan

by identifying the necessary steps before execution. The objective may be defined by an

instructor, for example a human, or set by the robot itself, based on observations and experi-

ences. An added contribution to Dev-PSchema is an extension to its chaining mechanism,

enabling it to create a sequence of schemas containing related sensory information. This

mechanism enables the agent to build higher level, complex, actions by sequencing low

level actions and learning hierarchical structures of schemas. Although some other learning

models have demonstrated the capability to develop high-level actions (see Table 2.1) through

action sequencing. Dev-PSchema develops high-level actions as reflexive chains and motor

programs, attempting to model the development of complex behaviours in humans [98],

where sequences of primitive actions are transformed into a single high-level action, see

Chapter 6 for details. This contribution serves the research question (iv) of this thesis, see

Section 1.5.

Furthermore, this can be seen as opportunity for an external agent to shape the agent’s

knowledge through providing an objective state to achieve. For example, “Reach” and

“Grasp” actions can be combined to form the higher level-level action “Reach and Grasp”

through staged development. This capability will help to address the research question (v) of
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this thesis, given in Section 1.5. The chaining system also serves the purpose of achieving a

higher-level target sensory state2 by performing a sequence of actions in a given environment

to bring about that state. Multiple actions can be combined and executed in sequence to

achieve a target in the environment which is, otherwise, not possible to achieve with a single

action.

Following all the updates in PSchema, Dev-PSchema acts as a play generator for an

artificial agent acting as a simulated infant. During continuous play, the agent demonstrates

the capability of exploration, utilisation and exploitation, of existing knowledge. The agent

explores the surrounding environment and finds the object-action relationships by playing

in the environment. Furthermore, the agent re-uses the experiences while utilising existing

knowledge on perceived objects. To demonstrate the exploration and exploitation capabilities

of the agent we performed experiments on a simple simulator SandBox and a real robot

iCub. Both agents demonstrated the capability of exploration and exploitation during the

experiments in a given environment.

1.7 Thesis Structure

An overview of each of the following chapters in this thesis is given below:

Chapter 2: Developmental and Cognitive Robotics

In Chapter 2 we present literature review on developmental psychology inspired learning

models for artificial agents. We begin with artificial neural networks (ANN) and brain simu-

lations inspired from neuroscience. Later we introduce developmental psychology inspired

learning models and finally narrow down our literature review schema based learning systems.

The main focus of this chapter will be learning models inspired from Piaget’s cognitive theory

2We will use the terms sensory state, environmental state and the state interchangeably throughout this
thesis.
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and its sensorimotor stage.

Chapter 3: Play Generator: Dev-PSchema

In Chapter 3 we introduce the learning model used in this work. We discuss different aspect

of developmental learning in infants and related modelling used in the system in parallel. We

begin with a little introduction of PSchema, a learning system on which the system used in

this work is built upon. Then we discuss components of this learning framework in details

including schema representation and creation, excitation mechanism, chaining mechanism

and generalisation mechanism.

Chapter 4: Generalising from Experiences

In Chapter 4 we demonstrate the generalisation capability of the system with experimental

results. We performed two experiments, each for partial and functional generalisation. In

the first experiment we demonstrate that the agent partially generalises its experiences as it

interacts with the environment. In this experiment objects are introduced in the environment

and the agent is free to interact with them using primitive actions. The agent generalises its

experiences using the outcomes of the interactions. The second experiment is to demonstrate

the functional generalisation in agent’s experiences. The agent interacts with the environment

using visual activity and generalises its experiences.

This chapter is related to the contributions discussed in the Section 1.6.2.

Chapter 5: Simulated Infants and Play Behaviour

In Chapter 5 we demonstrate the capability of the system as simulating individual infants

using two experiments with a simulator, SandBox. The first experiment demonstrates the

variations in preference for object interactions by tuning different parameters of the excitation
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mechanism in Dev-PSchema.

The second experiment demonstrates the variations in preference for actions to play in

a given environment by tuning the parameters of the excitation system. These experiments

demonstrate play behaviour in simulated infants. This chapter is related to the contribution

discussed in the Section 1.6.3.

Chapter 6: Forming Higher Level Actions

In Chapter 6 we present two experiments to demonstrate learning of high-level actions

through schema chaining/actions sequencing. We used a simulator and real robot to demon-

strate the chaining capability of the system. In the first experiment we let the agent play

and demonstrates the capability of the system to explore the environment using intrinsic

motivations. The agent discovers the higher level actions thorough play and utilises to achieve

the objective set by the agent itself.

The second experiment demonstrates the learning of motor programs, as introduced in

Section 1.6.4. The agent learns an interesting effect with a sequence of actions and tries to

achieve the effect repetitively. With repetitions, the sequence becomes a motor program,

which can be executed without any pause for sensory feedback. We test the motor program in

three test conditions, to demonstrate the successful use of a motor program and adaptability

in case of failure.

Chapter 7: Shaping Learning

In Chapter 7 we demonstrate scaffolding and shaping of the knowledge in Dev-PSchema.

We conducted two experiments to demonstrate these capabilities of the system. In the first

experiment, we let the agent play in its environment to gain specific skills with the objects

through exploration. The complexity of the skills increases throughout the experiment. Once
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the agent gains the relevant experience, which takes more than one action to achieve, we ask

the agent to achieve the learnt experience with another object. The agent responds with all

possible solutions for the given problem and executes the user selected solution.

In the second experiment we let the agent explore and learn associations of an action with

an objects as tool use. Moving the object to a defined location causes a novel object, a toy, to

appear. Once the agent learns this association, the agent is provided an objective to bring

the toy back in the environment through the learnt association. The agent responds with the

possible solutions for this problem.

Chapter 8: Conclusion and Future Developments

In Chapter 8 we evaluate the contributions made in the thesis based on the experimental

results and the literature from developmental psychology. We discuss about the adaptability

within the system and further development of the learning system used in this work.
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Chapter 2

Developmental and Cognitive Robotics

If an unsupervised robot needs to act in a natural environment, it needs to learn and build

knowledge about the environment it is working in. This knowledge should not be restricted

to the agent’s behaviours only but also needs to understand the effect of its actions on the

objects. There should be a mechanism that processes information to learn and build knowl-

edge and make it useful systemically. There are different theories regarding the learning and

information processing in humans. Similarly, different methods have been introduced and

used by various researchers in the field of robotics for learning in artificial agents. We begin

our discussion with neuroscience and learning systems inspired from it. Later we discuss

different learning methods for robots followed by a detailed discussion on developmental

robotics and schema based learning systems. Finally, we provide a summary of characteristics

for a learning model inspired from developmental psychology.

2.1 Neuroscience & Modelling

Initial approaches to make machines intelligent involves replicating human-like information

processing in machines. The very fundamental part of the human brain is neurons, which per-

forms information processing. Artificial Neural Networks (ANN), in artificial brains, are part

of the efforts to replicate human brain processing. It is assumed that ANN, a computational
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system, will replicate the characteristics possessed by the biological neurons. Learning in

ANN is adapted by changing network architecture and weights of the network connections.

Moreover, in ANN learning is based on a predefined set of examples of the specific task that

need to be learned. In ANNs learning is referred to as training. ANNs are trained with a set

of examples before application. There are three main learning paradigms in ANN; supervised

or reinforced, unsupervised and hybrid. In supervised learning, an ANN is trained with

input values and error between the expected outcome and the obtained outcome. Weights of

the network are adjusted according to the error during the training process and the process

is continued until the error disappears or decreases to a threshold level. In unsupervised

learning process ANNs are trained without predefined results. This method is suitable for

clustering data using statistical properties. In hybrid learning, which is a combination of

supervised and unsupervised approaches, some of the output labels are provided by the

user. Deep learning algorithms, ANN with many layers and specialized computational units,

are able to extract features from the inputs autonomously rather than requiring them to be

provided by the user. Thus deep learning algorithms are able to learn high-level concepts

(classes) from simpler ones (features) [65].

There are certain limitations in the ANNs and ANN based Deep learning, some of them are

listed below:

• Power, data and time

For an ANN to be precise and provide accurate solutions it needs to be trained with

a large set of examples [15]. Thus an ANN can take a large number of examples to

learn. To train with a large number of examples, ANNs need more time and more

computational power as well to be trained. Even greater computational power and

significantly more time are required for training deep learning algorithms [205].

• Context sensitivity

ANNs, including deep learning networks, lack the capability to expand their knowledge,

where learning in one context or situation cannot be utilised properly in a different
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context/situation. Deep learning networks, in particular, are over-sensitive to training

context for planning, acting and reasoning [205]. Deep networks misidentify the

objects if they are in a different context than they were observed during the training.

• Black-box model

ANNs are black box models, hence it is not possible to analyse the relationship between

inputs and outputs. Although, in some cases, an ANN may provide perfect solutions

for a problem, it is not possible to represent the relationship between inputs and outputs.

In some cases it may be required to check the relationships between input and output,

in which case it is not possible to make use of ANNs. Thus, ANNs are still unable to

develop internal models for the physical world in the same humans do, so are therefore

unable to reason and develop logic about the world [104, 97].

• Structural methods

ANNs have no structured methods to find optimum network configuration and param-

eters [15, 169]. For the same problem, two or more ANNs with different structures

can be used with different weights and each ANN may lead to different approaches to

reach the solution for a given problem.

• Separate learning

ANN, mostly, learns each problem separately and a single network can solve one

problem only. There are some recent approaches introduced in the literature that help

to solve multiple objective/problems using a single network. To develop human-like in-

telligence, an artificial intelligent system should be able to learn new concepts through

utilising existing knowledge, rather than re-learn from scratch each time [97].

Even though ANNs have certain limitations, they are still suitable for prediction and

pattern recognition problems [206, 78]. However, our focus here is on learning models

related to general artificial intelligence rather than task specific knowledge, whereas ANNs

are more suitable for task specific learning. Building on some of the underlying principles

of ANNs, there are various projects aimed at developing simulations of neural networks on
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the scale of the human brain. These are biologically inspired artificial brain architectures,

some of which are starting to produce interesting results in the research field. Below is the

summary of some of the major projects:

• Blue Brain project is a biologically inspired research project to simulate the neural

processing of the human brain [40], to study the emergence of intelligence [114]. The

project officially started in July 2005 and was aimed at achieving the goal by 2018.

This project, as assumed, aims to be able to simulate the processing of any part of the

human brain if specific information is provided. The main focus of the project is to

develop simulation of the cerebral cortex, a part of the human brain responsible for

a person’s ability to remember, think, reflect, empathize, communicate, adapt to new

situations, and plan for the future [40]. Blue Gene, a System on a Chip (SoC) is one

of the outcomes of the project. The SoC can simulate 10,000 neurons that make up a

neo-cortical column in the human brain. Although, the brain model of the project may

help to understand the functioning and diseases of the human brain, and help to build

supercomputers, the development of an intelligent agent with human-like learning is a

completely different task, irrelevant to the project. Furthermore, Blue Gene is more

power consuming system as compared to other similar architectures [40].

• Human Brain Project (HBP) is a project similar to Blue Brain project was launched by

the European Commission’s Future and Emerging Technologies (FET) scheme in 2013.

The main aim of this project was to simulate human brain and develop brain inspired

computing [115]. The researchers believe that the project will help to understand brain

functions, from a single neurons to a whole brain, and help to understand and develop

drugs for different brain diseases. SpiNNaker chips are the result of such computer

architecture [56]. It is a multi-layer (core) parallel SoC, where each core is designed to

simulate a network of up to 1,000 simple spiking neurons, each with 1,000 synaptic

inputs [21]. SpiNNaker used predefined lookup table functions loaded into each core’s
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local memory. Also, the network dynamics are specified by the user [124]. Despite

these limitations, that cause the chip to be limited in its functions, it can still be used

for various applications including robot control, vision processing and modelling of

biological circuits [55].

• IBM, with a group of academic researchers, also developed a brain inspired com-

puter chip, TrueNorth, a very dense, energy-efficient platform capable of supporting

a range of cognitive applications [55]. The chip is a result of Neuromorphic Adap-

tive Plastic Scalable Electronics (SyNAPSE) project launched in 2008 by Defence

Advanced Research Projects Agency (DARPA). The chip contains one million pro-

grammable neurons, and 256 million programmable connections (synapse) between the

neurons [42, 7]. The chip is programmed by specifying the behaviours of the neuron

in the architecture and the connectivity between them [7]. TrueNorth has been demon-

strated in a real-time object recognition application running at very low power [121].

Although TrueNorth offers the capability to simulate a large number of neurons with

very small power consumption, it is limited in real time neural plasticity [55].

• Neurogrid, a project by researchers at Stanford, is another approach to simulate neural

activity [17]. Neurogrid is a piece of computer hardware that simulates human brain

activity. It contains millions of neurons and billions of connections between them.

The research project claimed to simulate multiple cortical areas in real time [88].

Although the system offers extremely low power neural network simulation in real

time, the architecture only allows the simulation of a limited number of cortical areas,

rather than the entire brain and does not offer real time plasticity of neurons in their

functions [55, 17].

Projects discussed above represent large scale brain simulation and are of great impor-

tance in the research field of artificial intelligence. Advancements in the neuroscience are
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helping to understand how different parts of the human brain work and nanotechnology has

enabled researchers to develop microchips that contain a large number of processing units in

a single chip. Even though, these projects produced some interesting results, they still lacked

human-like learning [63]. These brain simulators can begin with any arbitrary age, rather

than beginning with no intelligence as humans do. Although, these chips and computers

contain billions of transistors and can simulate millions of neurons, they are still a long way

from the human brain which contains billions of neurons. As of yet, it is not possible to

develop to this scale with manageable size and power consumption.

Apart from the limitations in size and power consumption, brain simulations demonstrate

abstract intelligence rather than embodied architectures to enable behaviours as humans

do. Embodiment is emphasised in artificial intelligence in order to develop human-like

intelligence [28, 26, 143, 8]. Furthermore, the use of humanoid robots is encouraged in

learning paradigms for developing intelligent robots [10, 27, 164]. The humanoid shape in

robots helps to provide a similar level of constraints in the environment as humans experience.

2.2 Programming Machines and Robots

To develop an intelligent robot beginning with no or little intelligence, it should contain

a programmable memory. This memory stores solutions for different problems and pos-

sible outcomes of the behaviours in the environment. Traditionally, there are three main

programming methods for a robot’s behaviours and developing an intelligent robot; direct

programming, evolutionary learning and supervised learning [120].

2.2.1 Direct Programming

In direct programming the robot simply executes the pre-programmed behaviours and com-

mands. Human(s) implement the solutions, in a program, for a given problem that a robot
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need to solve and equip the robot [120]. Any learning in the program, if required, is performed

off-line, before the robot is equipped with the program [126]. There are several examples

of direct programming in robotics applications [75, 152]. Huang et al. [75] demonstrated

biped walking in a robot through direct programming the walking cycle, and foot and hip

trajectories. Similarly, Pounds et al. [152] demonstrated flight of a quad-rotor. The authors

demonstrated the stable flight of the machine with a payload of 1 kg through designing the

control mechanism to stabilise the altitude, pitch and roll. In both examples here, the envi-

ronment dynamics has been assumed through selecting and modelling suitable parameters

of the environment. A directly programmed robot demonstrates good performance in an

environment for which it is designed, however it is brittle to changes in the environment and

situations.

2.2.2 Supervised Learning

In supervised learning, robots are trained to respond with using a set of training data, provided

as sensory input. The robot is trained with a limited set of problem representations and the

associated output is provided for each set of the input training set. With this approach, robots

are able to solve similar problems to those they are trained on and demonstrate some level of

generalisation [113]. However, robots can only be trained on a small set of tasks, hence will

not be able to learn general-purpose strategies for a variety of problems. Apart from that,

the robots only learn during training, hence do not demonstrate continuous learning. Several

supervised learning techniques including shaping, local reinforcement signals, imitation etc.,

have been used in artificial intelligence and robotics problems [82], such as [151, 99]. Pinto

et al. [151] demonstrated learning a visual representation of objects through interactions

with deep learning network. The robot was trained by interacting with the objects through

grasp, push and poke actions. The experiments performed provided interesting results in

recognising objects similar to those experienced previously. Although the network shows

interesting classification ability, 72%, it was trained with a large number of examples, over

130K. Similarly, Laud and DeJong [99] demonstrated a flight control network for a quad-
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copter through supervisory learning. The network was trained with 512 initial and 1024

branching trajectories with approximately a million steps per iteration.

In both examples discussed above, the learning systems are trained with a large number

of problem examples before the operation. During the operations, the learning system just

acts as a control system, without further learning while solving a problem similar to those it

was trained with.

2.2.3 Evolutionary Learning

Following an evolutionary approach, performance of a population of randomly generated

robotic controllers is evaluated on a fitness function, developed by humans. The highest

performing controllers are allowed to reproduce with another to create a next generation of

robotic controllers. This process is repeated until a better robotic controller is obtained. Due

to the use of abstract fitness functions, evolutionary algorithms can provide task independent

learning as compared to traditional supervised learning approaches. However, the level of

generality is very limited. Furthermore, evolutionary algorithms require a large number of

trials, like ANNs, to find a set of controllers that fit best with the fitness function. Selecting a

suitable evolutionary algorithm and its fitness function for a robotic application also limits

the capability of the evolutionary approach [123]. A few examples of evolutionary learning

are given in [189, 36, 184].

Chernova and Veloso [36] demonstrated autonomously optimizing fast forward gaits in

quadruped robots through evolutionary algorithms. The approach resulted in a 20% increase

in the speed of their robot’s walking motion as compared to previous walking motion. Sim-

ilarly Sugihara and Smith [184] demonstrated path and trajectory planning in a simulated

mobile robot through Genetic Algorithms (GAs). The robot is tasked to find the optimum path

to the goal position, avoiding solid obstacles that block the motion and hazardous obstacles

that cause an increase in path length. The robot performed the task with an optimum path,
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however, the accuracy in finding the optimum path decreases with the number of obstacles

in the environment. In both examples here, the learning systems were trained over a large

number of iterations to achieve the generation with the highest fitness function.

Although the direct programming approach is suitable and can show higher performance for

task oriented problems, this approach lacks the key aspect of human-like learning, Open-

ended and Developmental. These capabilities enable humans to learn throughout their life.

Thus this approach is excluded when modelling human-like learning in robots. The remaining

two approaches demonstrate certain level of task independence and generality, however these

approaches can only learn a few small steps from the starting point [120]. For example in

supervisory learning knowledge produced in one set of example may be used in other similar

situations. However, transferring knowledge from one task to another is not achievable [90].

Similarly, evolutionary algorithms show a level of generality in performing task in differ-

ent situations, however they can still only perform a limited number of tasks, depending

upon the fitness function [127]. This motivated researchers to explore in different directions

and resulted in another community in the field of artificial cognition, Developmental Robotics.

2.3 Introduction to Developmental Robotics

Under developmental robotics, robots develop their knowledge in an independent devel-

opmental process. In a developmental system, the aim is to build a robot to continuously

develops its knowledge, on top of its existing knowledge, by putting itself into novel situations.

Developmental robotics is an interdisciplinary field, combines developmental psychology

and robotics, emphasising on developing learning in robots inspired by human development

starting from little or no intelligence, like infants. The systems modelled on human-like

learning and reasoning are often described as Cognitive systems.
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In cognitive systems, learning is based on the interaction with the environment. Humans,

as a cognitive system, learn by interaction with in the surroundings [192, 147]. To build a

human-like intelligence in a machine, it is needed to develop, learn and adapt like humans do.

Although, the idea of such a research field as cognitive developmental robotics was proposed

some time back [188], it only formally emerged in 2000 [31]. Developmental or cognitive

robotics is a branch of robotics in which an agent learns its capabilities and their effects

on the environment rather than having them hard-wired within it. Thus learning is neither

task-oriented not domain specific, unlike ANNs. Learning in developmental robotics is seen

as constructive, increasing the knowledge by building on existing understanding.

2.3.1 Developmental Learning Paradigms

As discussed, the aim of a developmental system is that the agent extends its knowledge by

building on the existing knowledge. The learning is open-ended, independent of other agents

and task independent. An agent, with an effective developmental system discovers new be-

haviours and knowledge, which in turn help to explore further thereby extending its learning.

There are two main learning paradigms used in developmental systems; Goal-directed and

Autonomous.

2.3.1.1 Goal-Directed Learning

In goal-directed developmental learning, a series of increasingly complex goals are set by

the human developer to make agent learn a specific behaviour and task. The agent is initially

also provided with a limited set of behaviours and knowledge to learn a specific task. The

agent may be provided with same task specific capabilities and the environment and tasks

structured to support learning, however the agent still learns by itself making decisions,

without further human interference. Should the agent need to learn new different skills in the

future, a similar process is followed, guiding the agent through a series of tasks to build on
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its existing knowledge.

A Human operator or instructor, as an external agent, helps the robot to achieve and

learn a goal in the environment. This help is provided either by giving feedback to the agent

at the end of each trial during the task learning (supervisory learning) or by directing or

demonstrating the task (social learning). Different learning strategies can be used for imple-

menting goal-directed learning including social learning (i.e., social interaction, imitation

etc.) [141, 125] and supervisory learning [204, 83], depending upon the structure of the

learning model.

2.3.1.2 Autonomous Development-Open-Ended Learning

In the autonomous learning paradigm, an agent is equipped with a system aiming to enable

independent learning before being placed in an environment to act and learn. The starting

point may be seen as the “birth” stage of the developmental learning robot [202]. The

environmental may be altered by humans to help the agent learn a specific task, however, the

learning path is chosen by the agent itself.

Autonomous learning aims to allow for open-ended learning, where behaviours, learn-

ing objectives and learning strategies are set by the agent itself, rather than the exter-

nal user. Depending upon the learning model, different learning methods can be imple-

mented for autonomous developmental learning such as intrinsically motivated exploratory

play [173, 46, 6, 136] and randomly generated behaviours [165, 48]. In an intrinsically

motived learning system, the agent decides the behaviour based on the perceived sensory

information and internal model of the system. Whereas in randomly generated behaviours,

the agent performs the actions at random and learns from obtained results.
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2.3.2 Intrinsically Motivated Learning Systems

Many researchers are working in the field of developmental robotics using different simulated

and physical robotic platforms such as iCub, NAO, ASIMO, COG, CASPER etc. Several

learning systems have proposed to learn and adapt from active and passive experiences,

either by exploration, direction or demonstration, including Planning Domain Definition

Language (PDDL) framework [141], Object-Action-Complexes (OACs) [204, 92], Schema

networks [83], PSchema [172, 173], Developmental Engagement-Reflection(Dev-ER) [6, 5],

Intelligent Adaptive Curiosity (IAC) [136, 84, 134], Constructivist Anticipatory Learn-

ing Mechanism (CALM) [140], Constructive Learning Architecture Schema Mechanism

(CLASM) [35] and Intrinsic Curiosity Module (ICM) [137]. This subset in developmental

learning systems based on schema-like representation for knowledge containing perceptual

state before an action, the action and either perceptual state after the action or changes

in the perception as in [172, 141, 204, 83, 6, 136, 140, 70]. However, ICM uses a deep

learning network to learn the feature module from the training set and learn predictions

[137]. The term schema is referred to as a unit of knowledge, introduced by Piaget in

cognitive developmental theory [147]. According to this theory infants learn through active

experiences during play triggered by intrinsic motivations. Novelty in the environment is one

of the key factors responsible for intrinsic motivations, as discussed in Chapter 1. Repetitive

environments/outcomes/objects make infants habituated, hence they get less interested in

further interaction. The habituation paradigm is widely used in developmental psychology

to investigate infants’ interests in the environment and understanding about relationships

between different characteristics in the perceived environment. The habituation paradigm is

further discussed in Chapter 5.

As our main goal, in this thesis, is developing a learning system that builds knowledge

through intrinsically motivated active exploratory play, we keep our focus on schema and

schema-like leaning systems which develop through play behaviours. In Chapter 1 we dis-

cussed characteristics of play and learning, including intrinsic motivations, open-ended and

independent behaviours, generalisations, predictions and developing complex skills. Here
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we discuss various intrinsically motivated learning systems by considering the characteristics

of the systems in turn.

2.3.2.1 Knowledge Representation

Learning models use different mechanisms to represent knowledge containing sensory per-

ceptions and actions. Oudeyer et al. [136] introduced an intrinsically motivated learning

model called “Intelligent Adaptive Curiosity” (IAC). The system represents the knowledge

in experts, with a structure similar to the schemas in [172, 6, 140]. However, schemas can be

either generalised or concrete instances, rather than just concrete experts [136, 84, 134]. An

intermediary system in IAC transforms the low-level sensory information into the high-level

binary visual and proprioceptive perceptions i.e., object presence, oscillation and biting.

Whereas PSchema and Dev-ER models use high-level sensory perceptions having prede-

fined attributes with different values rather than binary as in IAC. The visual perceptions in

PSchema and Dev-ER are developed through experiences separately. Furthermore, As com-

pared to PSchema and Dev-ER which use high-level action representation e.g. reach, look

up etc., IAC is capable of using intermediary level motor commands e.g. pan and tilt control,

bash strength and angle etc. Through explorations, the robot develops its knowledge which

is further used to explore the environment. The exploration, action selection, mechanism is

further discussed in 2.3.2.2.

PSchema, Dev-ER, CALM and CLASM, begin development through basic schemas,

action Self Organising Modules (SMO) for CLASM, containing either preconditions [6] or

postconditions [172] or just an action [140, 35]. Whereas the IAC model begins development

with motor commands, rather than the expert templates. Experts in IAC are represented in a

tree structure combining several instances in a single expert. A new instance of an expert is de-

veloped if it failed to predict its action effects. An expert is divided into two when it reaches a

threshold of its instances, i.e., 250 [136]. Whereas in PSchema, Dev-ER and CALM, each ex-

perience instance, schema, is recorded separately in the memory. A new schema is added into
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the memory if any of the existing schemas in the memory failed to match the state, on which

an action is performed, with schema preconditions or postconditions with the obtained results.

Some other learning models, including [141, 125, 83, 92, 137, 35], have demonstrated

learning with either schemas or schema-like knowledge representation. These learning

systems have been demonstrated to solve problems using the knowledge developed through

active and passive experiences. However these learning models initially develop knowledge

through either supervised experiences [141, 92] or performing random actions [125, 83, 35],

unlike learning models in [172, 6, 136, 140] which develop knowledge through intrinsically

motivated exploratory actions. Thus limiting the learning resources for the model. The

developed knowledge is used further to solve a problem following a demonstration through

imitation [141, 125, 92] or planning actions to maximise the reward for the goal state which

is explicitly defined in the system [83, 137].

The learning models in [141, 125, 83, 92] develop the knowledge through repetitive

experiences triggered by the experimenters. The models develop knowledge through a large

number of examples and represent the learning, containing a state, actions and its effects on

the state, including Markov Decision Process (MDP) based schema networks [83], Bayesian

Networks (BN) [125], Episodic-Like memory (ELM) [141] or any of the reinforced learning

methods and BN [204, 92].

2.3.2.2 Action Selection

Action selection selects a suitable action to act in its environment from a pool of actions.

The mechanism is an important attribute of learning models inspired from developmental

psychology. Intrinsic motivations are seen a basic driver for exploratory behaviours in infants,

as discussed in Chapter 1. Performing the selected action in the environment may cause

changes that will lead the learning model to develop new knowledge in its representation.
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The learning models, PSchema, Dev-ER and IAC, use internal function(s) as motivation

for action selection in their models, hence can be referred to as intrinsically motived systems.

Drescher’s proposed schema mechanism contains a schema, hence action, selection algorithm

based on intrinsic motivations, rather than any goal status. The action selection mechanism

is based on the goal pursuit and exploration. The goal pursuit is based on the predictions

of the schema and enable the model to achieve higher goal, whereas the exploration factor

helps to explore the environment [46]. Sheldon’s PSchema model [172], an implementation

of Drescher’s schema mechanism, contains action selection mechanism based on the schema

excitation calculation. The excitation based on the schema predictions through postconditions

and the schema statistics to trigger exploration in a given environment. Thus the model

demonstrates a balanced action selection between exploration and predictive behaviours.

Similar to PSchema, in Dev-ER intrinsic motivations are simulated through an internal

attention mechanism [6]. However, the mechanism uses a list of variables for the attention

mechanism rather than just a single excitation calculation as in PSchema. The mechanism

uses variables representing pleasure and displeasure, emotional states of interest, surprise

and boredom and cognitive curiosity. The pleasure emotion is simulated through visual

preferences. The agent’s pleasure shifts from level 1 to 2 when a luminous object is moved

from peripheral to centre of its vision. It gets displeasure when the object of interest is

lost. Similarly, emotional states of the agent, represented through three boolean variables;

interest, surprise and boredom, which depend upon the object of interest and its presence

it the visual field. The interest state for an object is set True if the agent tends to focus on

the object. Similarly, surprise and boredom states are set True if the object of interest is

recovered visually or stays in the vision for longer respectively. The surprise state causes the

agent to develop new schemas with changing its state from displeasure to surprise between

preconditions and postconditions. Thus the new schema predicts that the action in the schema

will bring the object of interest into the visual field. However, if the action fails, the curiosity

state triggers adaptation in the executed schema.
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As compared to PSchema and Dev-ER models which use action selection balanced be-

tween predictive behaviours and explorations, IAC model tends to perform more exploratory

behaviours. In IAC model [136], initially, actions are selected randomly to develop some

representations through observing the action effects. It uses Learning Process (LP) as a cue

for the action selection. LP is calculated through commutative errors in predictions for each

action. Large error represents lack on ability by the expert to predict the outcome, hence

leading the agent to explore with the actions that produce unpredictable results. Thus the ac-

tion selection mechanism of the model depends upon the unpredictability of the environment,

hence it is more likely to explore the environment through selecting less predictable actions.

In CLASM model [35], the agent selects the actions randomly to interact with its en-

vironment. Whereas, CALM model [140] action selection is based on the internal state of

the agent, hence can be referred to as an intrinsically motivated model. Whereas, in ICM

model action selection is based on the predictions of the model. The more unpredictable the

environment is, the higher curiosity hence intrinsic motivation are.

In Dev-PSchema action selection is depends upon the perceived environment and previ-

ous experiences of the agent. The action selection is tunable through changing the weights

for excitation parameters. This enables the Dev-PSchema to demonstrate different action se-

lection in the same perceived environment. None of the above discussed studies demonstrate

this capability.

2.3.2.3 Abstraction

A learning model inspired from developmental psychology should be able to process new

perceptions as sensory and motor capabilities are developed. Thus the learning should be able

to develop knowledge through processing new perceptions. To do such, the model should be

using abstract representation of actions perceptions to develop the knowledge.
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The learning models in [172, 6, 136, 140, 35] use a list of attributes for perceived sensory

information as a perceptual representation. Thus to incorporate any new sensory perception,

the models either should be provided with perceptual definitions, as seen in [172], or use

existing attribute representations [6, 136, 140, 35, 137]. Similar to the sensory perceptions,

the above discussed models use predefined actions with fixed attributes. Thus the models will

need a new set of definitions for actions to move from one agent to another with different or

additional motor capabilities. Whereas Dev-PSchema, in contrast to other models discussed

above, uses the abstract format for sensory information and actions, enabling the agent to

incorporate new sensory information and actions without any prior definitions.

2.3.2.4 Open-ended Learning

Learning models inspired from developmental psychology should demonstrate an incre-

mental learning. The model should expand its knowledge through new experiences. The

learning models, in [172, 6, 136, 140, 35], have demonstrated incremental, hence open-

ended, knowledge development through experiences beginning from a basic knowledge set.

PSchema system has demonstrated an ability to learn schemas through active experiences

starting from a set of bootstrap schemas. The bootstrap schemas represent a reflex-like

behaviour in infants, triggered through different stimuli. Bootstrap schemas only contain

postconditions, end effect, of the action without any preconditions. Similarly, Dev-ER model

[6] demonstrated learning new schemas through experiences using basic schemas. The basic

schemas containing context (preconditions) and an action, in contrast to the PSchema system

where basic schemas contain action and postconditions. The context contains generalised

attributes of objects, which can be replaced with currently observed objects. The context also

contains the internal state of pleasure and displeasure for different attributes and actions in

the basic schemas. Thus, unlike the PSchema system [172] which contains basic schemas

with postconditions only, Dev-ER schemas contain generalised preconditions.
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IAC model has also shown the capability for learning developmentally from experiences

[136, 84, 134]. However, unlike PSchema [172] and Dev-ER [6], it begins learning with

motor actions rather than the basic schemas in the memory. The IAC algorithm lets the agent

develop its understanding by performing motor actions and observing their effects. That

is why IAC is able to demonstrate development of sensorimotor knowledge with low-level

motor commands [84]. Whereas PSchema and Dev-ER models require underlying low-level

systems that translate messages between the model and an agent.

Although learning models, including in [141, 83, 92, 137], demonstrate developmental

progress in learning, they tend to rely on external reinforcement. This limits the open-ended

development of the models.

2.3.2.5 Generalisation

Generalisation helps learning systems to extend knowledge gained from a few experiences to

another experience. Generalisation also helps to predict outcomes of different actions in a

given environment, through developing general concepts with experiences.

PSchema model [172] is capable of generalising its experiences through inductive rea-

soning and builds generalised schemas. In inductive reasoning a generalised conclusion is

built from a set of specific instances. PSchema uses a combination of two different schemas

with identical actions to develop a generalised schema. The generalised schema is used to

predict its action effects by instantiating generalised attributes with those from the current

perceived environment. The agent may develop different levels of generalised schemas,

from single to all generalised attributes in pre/post conditions through experiences. Gen-

eralisation in PSchema is further discussed in Chapter 4. On the other hand, Dev-ER [6]

and CALM [140] use deductive reasoning to create generalisation. In deductive reasoning,

generalisation move from a very generalised concept to a specific instance. Using a basic

(generalised) schema the agent build a new generalised schema with generalised attributes
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that are irrelevant to the current experience. Another level generalised schema is developed

if the agent obtains a similar effect with different objects. Thus developing very generalised

schemas to concrete schemas through experiences. This is the opposite of PSchema and

Dev-PSchema where development goes from concrete schemas to the very generalised

schemas (from un-generalised to partial, and partial to complete generalised schemas). In

addition to this, Dev-PSchema is also able to find functional relationship in schema properties.

ICM model has been demonstrated with some level of generalisation, however, this

was made possible through tuning the pre-trained network [137]. Similarly, IAC learning

model is not capable of generalising its experiences, hence limiting its performance in the

particular situations [136, 84, 134]. CLASM model [35], also, has not been demonstrated

with generalisation capability. This limits ICM, IAC and CLASM models to use existing

knowledge in novel situations to predict action effects.

2.3.2.6 Predictions

The learning models, in [172, 6, 136], are capable of predicting the action effects. PSchema

[172] uses schema postconditions for predictions. If a schema predictions matches the

currently perceived state, the schema postconditions are considered to be the results of the

schema action. The agent can predict the outcome with either concrete schemas having

preconditions matching to the perceived state or instantiating pre and postconditions in the

generalised schemas. Similarly, Dev-ER system [6] is also able to predict schema action

effects through instantiating the schemas with perceived states having similar attributes. In

both models, predictions are high-level and without mathematical function. For example,

both models are able to predict that an object can be put into centre of the vision if the robot

turns its head in the direction of the object e.g., left, (gaze_x 0.1, gaze_y -3.2).

IAC model is only able to predict in situations which have been seen previously [136, 84,

134]. It is only able to predict expert action effects having the same context as the perceived
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state. Similarly, CLASM model [35] is only able to predict action outcome in previously

observed contexts. Hence, they are unable to predict the action effects for any situations

which previously have not been experienced, whereas PSchema, CALM and Dev-ER mod-

els are able to predict action effect in novel situations using generalised schemas [172, 140, 6].

2.3.2.7 Complex Actions

Infants develop complex skills through experiences and combining different low-level actions

(see Chapter 1 for details). Learning models inspired from infants’ learning are expected to

demonstrate such developments. Although, PSchema [172] is capable of planning a sequence

of actions from a given state to a distant state as a chain. The planning is only performed

when an external agent sets a target state. Thus the chaining capability in PSchema cannot

be considered as development of complex actions that are re-used in future experiences.

Dev-ER [6] and IAC [136] are unable to develop complex actions.

The learning models, PSchema, IAC, Dev-ER, CALM and CLASM are unable to develop

complex action through exploratory play, [172, 136, 6, 140, 35]. This limits these learning

models to develop complex actions hence complex skills developed from basic actions. Thus,

for solving the tasks that require more than one action, the learning models will go through

re-planning and executing each action independently. Dev-PSchema is able to develop

high-level actions through schema chains. This capability in Dev-PSchema demonstrates

more faithful modelling of human behaviours, in which an action sequence is considered as a

single high-level action after few successful repetitions [160, 199, 118, 79].

In conclusion, the learning models discussed above have been identified with limitations in

abstraction [172, 6, 136, 140, 137, 35], open-ended learning [141, 83, 92, 137], generalisa-

tion [136, 35, 137] and complex actions [172, 6, 136, 140, 35]. However, from these learning

models and learning characteristics in early infancy discussed in Chapter 1 a learning model
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inspired from developmental psychology can be inferred that should include the following

characteristics:

1. Primitive actions

The model should be provided with an initial set of behaviours for interaction with

the environment and learning [109]. This is similar to having reflexive behaviours in

newborns. Thus the system will begin with some basic behaviours on which to develop.

Such behaviours may be learnt separately or mature with learning.

2. Developmental Learning

The model should demonstrate open-ended learning like humans do [31]. The model

should be able to continue learning, even beyond the achievement of tasks specified.

This capability will enable the system to learn from experiences, wherever possible.

3. Independent Learning

The model should be able to learn independently. Learning may begin with exploratory

play behaviour, as seen in infants [147]. According to Piaget initial knowledge in

infants begins with their own experiences. Thus a learning model reflecting infant

development should be able to learn independently from their own actions and be-

haviours. It may also possess the capability to learn from imitation and other social

learning, however exploratory behaviour is a key component [108, 106, 117, 18].

4. Abstraction

The model should be able to accept and associate new sensory information with its

behaviours. This ability will enable the system to accept the new information with no

previous experiences and definitions. This capability will also enable the system to

perform in different environments and context giving different sensory information,

without making any changes to the model itself.
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5. Intrinsic motivations

The model should contain a mechanism for attention and action selection through

intrinsic motivation. This mechanism will be responsible for triggering behaviours. As

discussed in Chapter 1, exploratory play in infants is triggered through directing their

attention towards novelty, ambiguity or change in the environment. Thus the model

should be able to direct attention towards novel objects/situations and also demonstrate

habituation as observed in infants [177, 14, 86].

6. Generalisation

The model should be able to learn from a small number of experiences and use those

experiences to extend its knowledge. The model should also be able to adapt if existing

knowledge does not correlate with the experienced outcome. Infants have been found

to generalise their experiences very quickly and associate certain behaviours with

certain objects or environments [201, 67, 86]. Failing to re-acquire such associations

should cause the system to re-evaluate the generalisation.

7. Predictions

The model should have the ability to predict the outcome of its behaviours. Visual

anticipation has been observed at a very early age in infants [167, 2, 196]. They

seem to predict the results of their or other agents behaviours before execution. This

capability will enable the agent to predict the outcome of actions before actions are

actually performed.

8. Complex Behaviours

The model should be able to learn complex behaviours from primitive or reflexive

behaviours. Although learning complex behaviours is not seen in early infancy, infants

aged 14-16 months have been observed to learn and perform complex behaviours

containing more than one action [29]. Most studies on infants learning complex actions



2.3 Introduction to Developmental Robotics 53

are based on learning through imitation but the results show that infants are able to form

complex actions in other context too. The complex actions may represent means to

achieve a distant goal which is not possible to achieve directly with a single action. The

learning system modelled on infants’ behaviours should be able to develop complex

actions through combining common sequences of actions together. Such higher-level

complex actions through repetitions can be considered as a “single” action. These

complex actions help to develop distant (objective) states in their environment that are

not possible to achieve through one action. The distant objective state may be defined

by the model itself through its internal mechanism or an external agent.

9. Different Behaviours

The model should be able to show different behaviours. In developmental psychology

experimental results are shown as an average of behaviours, however each individual

shows difference in the behaviours [13, 77, 57]. The model should therefore be able to

demonstrate different behaviours in a similar environment, as infants do. This capabil-

ity will enable the model to simulate different individuals with different behaviours.

The learning systems discussed above, modelled on developmental psychology, have

shown significant results. However, they lack some of the characteristics listed above. Some

models need large data sets to train [166, 83], hence do not show independent learning, lack

in the capability to plan actions [6], do not contain exploratory behaviour or independent

learning [141, 83, 70, 92] and are not able generalise their experiences [141, 6, 92, 96], hence

limiting the performance within novel environments. Moreover, all the models discussed

above tend to model an average individual hence will demonstrate a generic behaviour in

a given environment. In Table 2.1 we provide a comparison of different learning models,

including Dev-PSchema developed as part of this work, based on the points concluded above.

It should be noted that point 1 has been excluded as any artificial learning is always provided
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with initial actions or behaviours to perform in an environment.

In Chapter 3 we introduce the learning model developed here, Dev-PSchema.
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Chapter 3

Play Generator: Dev-PSchema

The aim of this work is to demonstrate an independent and intrinsically motived learning

system that is able to learn from sensorimotor experiences using exploratory play behaviour.

This system will also demonstrate the capability of performing sequential actions as behaviour

planning, generalising experiences and applying knowledge to novel situations. Furthermore

the system is able to demonstrate different behaviours in a similar environment by tuning

different parameters of the system.

This work introduces a play generator, Dev-PSchema that drives exploration, when

interfaced with the agent, for open-ended learning through sensorimotor experiences. This

system is modelled on the sensorimotor stage of Piaget’s cognitive theory. At this stage,

as discussed in Section 1.4.1, infants learn from sensorimotor experiences and learning

is ego-centric. Dev-PSchema, also, demonstrates the egocentric learning through active

sensorimotor experiences. According to Piaget’s theory learning is recorded in the shape of

schemas, connecting behaviours and sensory information. Similarly, Dev-PSchema records

learning in the shape of schemas, containing preconditions (sensory information before

action), action and the postconditions (sensory information after action). Thus Dev-PSchema

incorporates the schema like learning mechanism building through experiences. In this

Chapter, we discuss the working mechanism and basic technical components of the systems

where mechanisms have been inspired by those seen in developmental psychology. The
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contributions of the thesis are discussed in Chapters 4, 5, 6 and 7 along with the technical

mechanisms taking inspirations from mechanisms observed in infants by psychologists.

Dev-PSchema needs to be interfaced with an agent to demonstrate learning through em-

bodiment and behaviours. Here we demonstrate interfacing it with an iCub humanoid robotic

platform and a Sandbox simulator. We extend Sheldon’s work [172], where a demonstration

for effective learning and play behaviour is shown to be applied in two different robotic plat-

forms, an Adept robotic arm with egocentric camera and iCub, with the help of PSchema tool.

We have enhanced the PSchema tool by significantly modifying and adding new underlying

mechanisms. The new version defined here is named as Dev-PSchema (Developed PSchema).

It makes use of high-level sensory information and actions, thus requires an intermediary

system to translate and transfers messages to an agent’s sensors and motors.

The intermediary system is responsible for preparing high-level perceptions from raw

sensory information. It also translates high-level actions into motor commands and transfers

them to the agent to execute. For simplicity, we refer to this intermediary system between

Dev-PSchema and an agent as the sensorimotor control (SMC). The SMC used for the

iCub is divided into several subsystems including reflexive motor command control, vision

and tactile sensory information processing system. The SMC is used as a tool here so not

described in depth, for more details on the system please see [62, 107, 102, 101, 103]. The

Sandbox simulator has its own intermediary controller, similar to the SMC for the iCub,

for motor commands and processing sensory information. Figure 3.1 shows a high-level

connection diagram between the internal systems of the agent and Dev-PSchema.

The SMC prepares perceived sensory information for Dev-PSchema as symbolic repre-

sentation and transfers high-level actions into low level motor command and joint positions.

The interface controller, as shown in Figure 3.1, manages connections between Dev-PSchema

and the SMC. Dev-PSchema is able to process different sensory information as received

through the SMC. However, spatial parameter labels, e.g., x or y, gaze_x or gaze_y etc., are
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Fig. 3.1 An illustration of the interface between Dev-PSchema and the sensors and motors of
an agent.

pre-set. This enables the system to separate spatial properties from the others, in a given sen-

sory information. In Dev-PSchema spatial properties (location) are referred to as Coordinates.

Dev-PSchema works in three different modes; Bootstrap, Play and Problem solving.

Montesano et al. [125] describe three developmental stages of learning for robots; sensori-

motor coordination, world interactions and step towards social learning. In sensorimotor

coordination the robot learns basic motor skills and visual perceptions. In Dev-PSchema, part

of this stage is modelled as the bootstrapping mode. In the bootstrapping mode Dev-PSchema

builds a model of basic actions. Visual perceptions and eye-motor coordination are learnt

through a separate process by SMC, described in [62, 107, 102, 101, 103, 34]. A detailed

architecture of the low-level system is shown in Appendix A. For simplicity, we consider

visual perception and motor coordination as learnt capabilities that are available for use by

Dev-PSchema.

The play mode represents the world interactions stage in developmental learning stages

for robotics [125]. In the world interactions stage, defined by Montesano et al. [125], the

robot is expected to learn about the changes in perception as a result of actions, build object

affordances, and develop prediction and planning skills. In play mode the agent interacts

with the environment and learns the associations between sensory information and performed

actions. Furthermore, Dev-PSchema is capable of planning action sequences to achieve
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higher-level target states which are not possible with a single action. This work here fo-

cuses on independent learning hence the imitation part of the developmental learning stage

is not considered. In the following sections we outline all the underlying mechanisms of

Dev-PSchema and, where appropriate, how they changed from those in PSchema, starting

with the modes of operation.

3.1 Modes of Operation

Dev-PSchema can be operated in three different modes, activated through the interface

controller shown in Figure 3.1. The modes of operations are modelled on infants’ capabilities

at the sensorimotor stage of cognitive theory.

3.1.1 Bootstrapping

Bootstrapping is used to build bootstrap schemas, a set of basic schema with primitive actions

to interact in the environment. Bootstrap schemas are built from motor babbling, in the

absence of object interactions, and getting feedback from the environment1. During the

bootstrap process the agent performs all the available actions and observes the feedback to

create bootstrap schemas. During these behaviours the agent does not interact with objects in

the environment. Figure 3.2 shows a flowchart of bootstrap process in the system.

The bootstrap process is modelled on the motor babbling behaviour observed in new-

borns and infants at an early age. Motor babbling is seen as either reflexive or exploratory

behaviours triggered by distant stimuli [37]. The bootstrap process begins with the cre-

ation of an empty schema from a schema template and the specified action is added into

it. After creating an action schema, the action is executed in the environment. The exe-

cuted schema is updated with the observed changes in the environment as postconditions.

The agent will be able to use the bootstrap schema to interact with the environment and

1A set perceptions of the environment at any time is called World State (WS).
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Fig. 3.2 Flow diagram for bootstrapping mode.

build up its knowledge to the next level, from basic motor skills towards object affordance.

Figure 3.3 shows an example of a bootstrap schema generated after performing a grasp action.

Fig. 3.3 An example of a Bootstrap schema.

The bootstrap schema, in Figure 3.3, contains action and postconditions only, as the

effect were observed when a random action was performed from the bucket of actions in the

absence of objects in the environment. The bootstrap schema is considered to be the result of

the motor action performed at a random location and observing the proprioceptive feedback

e.g., hand position, grip etc.
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Algorithm 1 shows the procedure of creating a schema from a given action, used in

bootstrapping process.

Algorithm 1 Creating a schema from an action
1: procedure create_schema_ f rom_action (Action A)
2: for Each schema S in memory do
3: if Schema action is same as A then
4: return S
5: end if
6: end for
7: S = new_empty_schema
8: Set A as Schema S action
9: Return S

10: end procedure

Algorithm 1 represents a mechanism for creating a schema with an action only, without

any sensory information. The mechanism initially searches its long-term memory2 if any of

the existing schemas contains the same action. If it is unable to find any schema containing

the given action, it creates an empty schema template and adds the provided action as the

schema action. This mechanism is used in several different algorithms, discussed later in this

Chapter. This mechanism is similar to the one used in PSchema, the key difference between

the mechanism used for representation of actions and perceptions is abstract representations.

Dev-PSchema uses the abstract representations whereas the PSchema utilises pre-defined

templates. The difference between the two representations is discussed further in Section

3.2. The newly created schema is added into the long-term memory, which is responsible for

recording all the schemas and chains including their statistics. The short-term memory of

Dev-PSchema keeps a record of the currently perceived world state and it is updated after

every action performed.

3.1.2 Play Mode

Play mode starts with the agent interacting with object through actions in bootstrap schemas.

The agent uses changes caused by the schema action to create higher level schemas from

2The term memory is used to refer to long-term memory here, unless specified.
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the bootstrap schemas, wherever possible. The process of creating the next level schemas

by obtaining changes in the environment using existing schemas corresponds to the ac-

commodation and assimilation in cognitive theory of development. Whereas, this mode of

operation is similar to the active time in infants where they interact with their environment

using basic motor skills, hence named as Play mode. The excitation calculator, an internal

mechanism responsible for calculating excitation of each action in the long term memory,

executes the most excited schema. The newly created schemas also participate in schema

selection mechanism through the excitation calculator as they are included in the memory.

The excitation calculator is further discussed in Chapter 5. Figure 3.4 shows a flowchart of

operation in the play mode.

Fig. 3.4 Flow diagram for the Play mode.

During the play, the system works in a loop between performing an action or a sequence

of actions and getting the feedback from the environment. The agent selects an excited

schema or sequence of schema actions, a chain, through the excitation mechanism to execute

in the environment. The schema execution is followed by updating the short-term memory.

During the update, new schemas are created wherever possible. The new schema may be
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created by adding new information into an existing schema (assimilation) or by creating a

completely new schema that is different to the existing one (accommodation). The agent

builds up the knowledge by learning new schemas using and re-using existing schemas in

different situations. Thus demonstrating a hierarchical development of knowledge, as seen in

infants [147]. Figure 3.5 demonstrates how a new schema is created from a basic bootstrap

schema.

Fig. 3.5 An example of creating a higher level “Grasp” schema from a bootstrap schema,
sensory states before and after the action.

Figure 3.5 shows that the agent receives the bootstrap grasp schema as the most excited

schema for a given sensory state. The execution of the grasp action causes a change in the

sensory state. As the postconditions of the bootstrap schema did not include the new change

i.e., touch observation and grip=80 in proprioceptive observation, hence the outcome is unex-

pected. The unexpected outcome caused the system to create a new schema with the changes

observed and add it to the memory. The new schema is compared to the existing schemas in

the memory during this process to avoid duplicate schemas and to identify opportunities for
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generalisation (See Chapter 4 for more details on generalisation).

3.1.3 Problem Solving

In problem solving mode, Dev-PSchema solves a user defined problem by making use of

what it has learnt while playing. In this mode, the user enters a problem as a sensory state

to be achieved. Dev-PSchema finds all the possible solutions to achieve the target state

starting from the current state. Figure 3.6 shows a flow chart of the problem solving mode in

Dev-PSchema.

Fig. 3.6 Flow chart of problem solving mode in Dev-PSchema.

This mode is part of modelling the capability of developing high-level actions through

action sequencing observed in infants at the fourth stage of cognitive developmental theory.

Infants at this stage have been observed planning in order to solve problems that requires
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more than one action. This capability enables Dev-PSchema to achieve an objective state,

that require more than one action, through the process of action sequencing (see Chapter 6

and 7 for action sequencing in Dev-PSchema).

3.2 Sensory State - Observations and World State

Dev-PSchema is a high-level learning system, dealing with high-level sensory information

and actions. Thus sensory information is prepared for Dev-PSchema by a lower level system.

Sensory information from the agent’s sensors is prepared for Dev-PSchema in the form

of perceptions containing the sensor’s type and the underlying properties. There are two

categories of sensors used in this work, proprioceptive and physical. Proprioceptive sensors

provide sensory information about the agent itself, such as the position of the manipulator or

hand and the size of the grip. Physical sensors provide sensory information about the state

of the environment, from the agent’s perspective, including the visual perceptions. Visual

sensory information may be preprocessed into several features, such as colour, shape etc. In

Dev-PSchema each feature type is treated as individual perception type so a separate obser-

vation is created for each. All the sensory information is recorded as a set of observations in

Dev-PSchema. A set of observations at a particular instance are referred to as a world state

(WS) in the system.

As an example, one of the platforms used in the experiments is the iCub humanoid

robot. The robot is equipped with two cameras as eyes. Using a resolution of 320× 240

the camera images are processed to detect colour patches, bright patches, edges and mo-

tion [171]. The Sensorimotor Control (SMC) system developed by Shaw et al. [170] as part

of IM-CLeVeR project is used to provide interface layer between the iCub and Dev-PSchema.

A series of sensorimotor mappings are learnt developmentally through a process of motor

babbling [103], where maps consisting of overlapping fields are used to represent sensory or
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motor spaces [102, 47].

Alongside the iCub, a Sandbox simulator, is also used in this work, consisting of an

artificial visual system, a hand and objects in a grid based environment. The visual system

consists of two different visual perceptions, colour and shape. Each of the perceptions

contains size, spatial position (coordinates) in the environment and high-level values of the

sensory properties. Several different coloured objects, e.g., red, blue, yellow etc., and shapes

e.g., sphere, cylinder, cube etc., are used in the experiments.

Figure 3.7 shows the perceptions prepared by the SMC for Dev-PSchema from the raw

sensory information perceived through the iCub’s sensors. This sensory information is consist

of proprioceptive perceptions (type 1) and observed visual features (type 0). The interface

controller prepares the received message to construct the current world state containing a set

of observations.

Fig. 3.7 An example of perception sent by SMC to Dev-PSchema, perceived through iCub’s
sensors.

In Figure 3.8 it can be seen that each item of sensory information is represented as

observations with its own coordinates. The gaze coordinates represent the visual egocentric

space of the iCub as used in the SMC, and are formed from the combination of eye and

neck motor configurations to obtain gaze direction. The depth is handled by the SMC when

performing an action, so the gaze space can be considered as 2D (2 dimensional) space in

spherical shape centred on the head. This group of observations is called a world state in

Dev-PSchema. A partial or full world state may be included into pre or post conditions of a

schema depending upon the changes in observations following the performed action.
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Fig. 3.8 A world state (WS) prepared from SMC perception message.

Figure 3.9 shows an instance of a world state through graphical representation with

different types of observations.

Fig. 3.9 An example of world state (WS) structure with its observations.

In PSchema system [172] all the sensory information and resulting observations were

predefined including their properties, as schema templates. If an unexpected sensory in-

formation, having no predefined template, was received, it could not be processed. In

Dev-PSchema, the template schemas are replaced by abstract schemas with the abstract

observations, which enables it to add new sensory information, without predefinition. Thus

novel sensory information can be incorporated into the system without any modification.

Furthermore, the abstraction in Dev-PSchema enables it to interface with different agents

having different sensors without any changes in the system, as demonstrated in this thesis by
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interfacing with a simple Sandbox environment and a real robot.

3.3 Actions

The end effector or hand of the agent can perform several different actions in the environment

resulting in different perceptions. Both the actions and sensory perceptions are specified in a

higher level representation in order to maintain the focus on playful interaction rather than

the low level sensorimotor control. Actions used in this work are defined as follows:

• Reach (hand∗, gaze_x, gaze_y)

Reach action is used to reach the specific position in the environment. Argument “hand”

defines the hand of the iCub. We use integer 3 for left hand and 4 for the right hand.

Arguments gaze_x and gaze_y define position in the visual space. In Sandbox only

one hand is present, hence this argument is not available in sandbox simulator.

• Grasp (hand)

A high-level action that can be used to grasp a ‘graspable’ object in the environment.

SMC/sandbox provides “Grip” feedback with proprioception, indicating between fully

open (0.0) and fully close (100.0) grip, depending upon the object grasped. A “Touch”

sensor is also added in the perception which provides an average intensity of touch.

In iCub’s case average touch value is provided by active touch sensors on the fingers

and palm of the iCub. In the sandbox the touch average is provided between 50∼90,

depending upon the object, when an object is grasped and 100 for grip and touch with

no object in the grip.

• Release (hand)

A high-level action that can be used to open the “Hand”. The “Grip” value in the
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proprioception provides feedback, indicating fully open (0.0) when this action is per-

formed.

• Push (hand, direction)

A push action displaces the object present at the hand position. With this action “Hand”

performs to-and-fro movement, causing displacement in an object’s position only if

present at the Hand position whereas “Hand” remains at the same position. Thus the

action causes small lateral movement in the specified direction then returns to the

starting position. In the iCub, the movement starts from its torso, whereas Sandbox

does not show any visual movement, however the action affects the object’s position if

it lays at the same position as hand. The “direction” defines the direction of the push.

Direction 0 sets the push towards left side and 1 towards the right side.

• Press (hand)

This action may result with different high-level observations in the environment i.e.,

touch, sound, light etc., depending upon the application and the experiment. This

action is used with Sandbox simulator.

• Squeeze (hand)

A squeeze action applies force on the object at the hand position causing an effect

similar to the “Press” action. This action is used in an experiment to demonstrate

variation in action selection having similar effects.

• Fixate (gaze_x, gaze_y)

Fixate action is used to shift the gaze to the specified position in the environment.

Arguments gaze_x and gaze_y define a position in the gaze space. The action is demon-

strated with Sandbox environment only. The fixated position represents the fovea, focal

point of gaze inspired by human vision. However, all features currently visible on
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the retina are returned for inclusion in the current world state. In Sandbox, when this

action is used a new perception, fixate, is added into the sensory information indicating

fixated position.

At this point we assume that joint movements for each of the actions described above have

been learnt by the low-level systems, however their effects on objects in the environment are

learnt by Dev-PSchema in bootstrap mode then extended during play mode. Dev-PSchema

sends commands for an action to the agent along with its arguments. The low-level system

(SMC) translates the action into low level motor commands for the agent. Dev-PSchema,

with the abstraction system, is able to add new actions on the fly. As the low-level system

discovers new actions, for example a push from a failed reach, then they can be added into

Dev-PSchema with a new label. This capability enables Dev-PSchema to interface with

different agents with different motor capabilities and actions, without any modification in

the system. As with observations, in PSchema [172] all the actions were predefined and new

actions could not be added on the fly. Although this capability is available in Dev-PSchema, it

has not been demonstrated in the experiments in this thesis. However the interface controller

can be programmed to dynamically incorporate any new action discovered by the low-level

system.

Algorithm 2 describes the mechanism for execution of a schema action. Once the action

is executed, the system updates the count of activations of the schema and its action. The

schema and action activations are later used to calculate schema statistics for excitation. The

excitation system is discussed in details in Chapter 5.

Algorithm 2 Schema execution algorithm
1: procedure execute(Schema S)
2: Action = S_action
3: execute(Action)
4: Increase Schema S activations by 1
5: Return
6: end procedure
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3.3.1 Schema Generation

A schema represents the sensorimotor experience, containing action and sensory information

from before and after an action. In the original PSchema system, all the observations from the

world state were considered as part of the schema. As some of these may not be relevant to

the action. Dev-PSchema aims to include only the observations directly relevant to the action.

To find the relevant observations, a key detail used is the proprioceptive (hand/manipulator)

coordinates. Initially the observations which contain relevant coordinates before and after

the action are considered. This mechanism can be seen as learning affordances in the envi-

ronment using active experiences. Where an observation changes at a distance, this can be

considered if applicable.

3.3.2 Associated Observations

It is not always obvious if an action is the direct trigger for a change in an observation, for

example an observation changing at a position different to where the action was performed.

Such observations are included as Associated pre/post conditions. This mechanism resembles

the development of tool-use capabilities, where an action with an object causes changes, e.g.

pressing a switch to turn on lights or releasing another object into the workspace. Figure

3.10 shows a schema created following an action, generating associated postconditions.

Figure 3.10 shows that Dev-PSchema incorporated new sensory information acquired

following an action as associated postconditions. This enables the agent to learn some associ-

ations with actions and objects, and develop tool-use like behaviours. As with postconditions,

some observations may be added as preconditions, depending upon the observed changes in

the environment after an action. For example if an action on an object causes another object,

at a different position to disappear this will lead the system to add the disappeared object

related observations as associated schema preconditions.
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Fig. 3.10 An example of association in a Schema.

Although the capability to link associated observations helps to add most relevant informa-

tion in an schema, this can cause the agent to include false associations in a noisy environment.

In a noisy environment, the schema may include associated pre/postconditions that have

no direct association with the schema. To overcome this problem, Dev-PSchema relies on

repetitions of the associations. If the associated pre/post conditions are repeated (at least

once) with the same action, such associated observations are transferred to concrete pre/post

conditions. This will help the agent develop complex associations with repetitive experiences.

3.3.3 Schema Statistics

Dev-PSchema maintains statistics on executions of each schema e.g. activations and suc-

cesses, for excitation calculations. If the perception(s) in the environment following a schema

execution match the schema’s postconditions, the execution is considered to be successful.
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The number of schema executions and successes are further used to calculate schema success

rate. Equation 3.1 gives the calculation for a schema success rate.

schema_success_rate (Sr) =
schema_successes

schema_activations
(3.1)

Equation 3.1 will return the value of 1.0 if a schema is found to be successful every time

it was executed in the environment.

3.4 High Level Actions - Schema Chains

As an agent gains more experiences and skills, some of the skills can be linked together in

order to form higher level skills in a hierarchical structure. For example, individual actions

such as reach and grasp can become linked by a single reach→grasp action. Through playful

exploration, more complex chains can be learnt that combine basic schemas and form more

sophisticated high-level schemas, hence actions.

Chains are seen as sequences of schemas, which the agent discovers by finding the

links between preconditions and postconditions of schemas in memory. Chaining helps in

achieving states of the environment that are not possible when employing a single schema.

For example picking up an object from a reachable position needs two different actions to

be achieved; i) reach to object location and ii) grab object. Figure 3.11 shows an example

of a two schema chain obtained by linking preconditions and postcondition of two different

schemas.

Longer chains are discouraged during the chaining process in order to reduce compu-

tational costs and avoid overly complicated chains that are more likely to be unsuccessful.
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Fig. 3.11 An example of chaining two schemas to create a “2-Schema chain”.

Here, a limit of 5 schemas is set. The chaining mechanism is discussed in detail in Chapter 6.

3.5 Update Memory State

Dev-PSchema uses two types of memories; long-term and short-term. The long-term mem-

ory consists of learning recorded in the shape of schemas. Short-term memory is updated

frequently, in particular before and after the execution of an action. Short-term memory

keeps track of recent sensory states, before and after perception of an action. The excitation

calculator finds a suitable schema/chain, from all the schemas and chains in the long-term

memory, for execution relevant to the state present in the short-term memory. The exe-

cuted schema/chain predicts the outcome at the end of the execution through the relevant

postconditions. A mismatch in the postconditions and the obtained state leads the system

to develop new representations i.e., schemas. Thus, a part of the memory update process

resembles the assimilation and accommodation processes of the schema mechanism for

cognitive developmental theory. Figure 3.12 shows a flow chart of the underlying process for
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updating the memory.

Fig. 3.12 Updating the memory before/after an action. Highlighted processes will be ex-
plained in algorithms.

As can be seen in Figure 3.12 the system updates its memory in two ways (block number

2). Prior to any schema being executed, the perceptions are just recorded in the short-term

memory as the previous memory (block 8). Following a schema execution (ES), the memory

update will follow further processes to identify and perform any necessary updates in long-

term and short-term memories (block 3-8). We discuss each of the underlying processes and

algorithms in Sections 3.5.1 to 3.5.4. Also, during the updating process the system records

statistics for all the perceived perceptions (observations). Observation statistics are used by

the excitation calculator, described in Chapter 5.
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3.5.1 Matching World States

Memory updates following an action trigger several different processes. The first stage is to

confirm the predictions made by the executed schema’s postconditions (block 3). Predictions

are confirmed if the new world state (WS) matches the postconditions of the executed schema.

Algorithm 3 describes the process of matching two sensory states, the current state and the

executed schema postconditions in this case (shown as block 3 in Figure 3.12).

Algorithm 3 Matching World States (WS)
1: procedure states_match (WorldState WS1, WorldState WS2)
2: for each observation O1 in WS1 do
3: set variable Found False
4: for observation O2 of type O1 in WS2 do
5: if each property P1 in O1 is same as P2 in O2 then
6: set variable Found True
7: break; Go to next O1
8: end if
9: end for

10: if variable Found is False then
11: Return False
12: end if
13: end for
14: Return True
15: end procedure

When matching two states, Algorithm 3, initially matches by perception type in both

world states (current state world state and postconditions). For example colour perceptions

will only be compared with other colour perceptions. If the world states do not have the same

perception type, the state are considered not to match. If the same perception type exists

on both sides, the value of each property is compared. The algorithm will also confirm the

match if WS1 is the subset of WS2. This is used especially during the memory update process

where postconditions of the executed schema are compared against the current world state

where current world state may contain more information (observations) than the executed

schema postconditions. A match confirms successful execution of the schema, increasing its

total number of successful executions (block 4 in Figure 3.12).

This algorithm is also used by the process of creating schemas and generalisation. A

mismatch in current world state and the postconditions leads the system to consider the
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algorithm for creating a new schema, resembling to the accommodation in cognitive theory.

A match will lead to creating a temporary schema to compare with existing schemas. As the

algorithm matches the two states even if WS1 is a sub-set of WS2, the temporary schema

may contain additional information as compared to the existing schema postconditions. This

leads the system to go through the assimilation process to incorporate additional information

through the temporary schema. The temporary schema is added into the long-term memory

if none of the existing schemas exactly matches (matching number and types of perceptions).

3.5.2 Schema Creation Algorithm

In the memory update process, the schema creation mechanism is seen as block 3 in Figure

3.12. This algorithm models both accommodation and assimilation processes, depending

upon the changes in the environment after the executed action. Algorithm 4 describes the

process of creating a new schema from an executed action and the sensory states before and

after the action.

Algorithm 4 Creating a Schema with actions & world states
1: procedure create_schema (WolrdState previous_WS, WorldState current_WS, Action A)
2: if states_match (current_WS, previous_WS) then
3: Return ▷ Action did not change anything in the environment
4: end if
5: S = create_schema_from_action (A)
6: if Action A has coordinates then
7: current_coords = get coordinates f rom A
8: else
9: current_coords = get hand coordinates f rom current_WS

10: end if
11: hand_coords = get hand coordinates f rom previous_WS
12: S_preconditions = all observations f rom previous_WS having hand_coords OR current_coords
13: S_postconditions = all observations f rom current_WS having current_coords
14: S_associated_preconditions = complement_WS (current_WS, previous_WS) ▷ see Algo. 5
15: for each observation O in previous_WS with no coordinates do
16: add_observation_in_state( S_associated_preconditions, O) ▷ see Algo. 6
17: end for
18: S_associated_postconditions = complement_WS (previous_WS, current_WS) ▷ see Algo. 5
19: for each observation O in current_WS with no coordinates do
20: add_observation_in_state( S_associated_postconditions, O)
21: end for
22: end procedure
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The schema creation mechanism is referred to in block 5 of Figure 3.12. Algorithm 4 re-

turns without creating any new schema if the executed action did not cause any change in the

environment. If any changes have been observed following the action, the system proceeds

further beginning with creating a new schema with the executed action using Algorithm 1.

In schema creation mechanism PSchema system adds all the observations in a given world

state to a new schema’s preconditions and postconditions. Unlike PSchema, Dev-PSchema

aims to only add directly relevant observations into a new schema. The relevant observa-

tions from the current world state are selected by finding all the observations that have the

same coordinates as the executed action, if the action contains coordinates. If the executed

action does not contain any coordinates then the hand/manipulator coordinates are chosen

for comparing the current world state observations’ coordinates. Relevant observations for

preconditions from the previous world state are selected by finding all the observations that

have the same coordinates as either the hand/manipulator coordinates prior to the action or

the executed action coordinates.

Furthermore, any observations in the previous and current world states without coor-

dinates are added into associated preconditions or postconditions respectively e.g., touch,

sound etc. Any remaining observations that have different coordinates from the directly con-

sidered coordinates that changed after the action are also added into the relevant associated

conditions. Algorithm 5 describes the mechanism for finding any observations in a given

world state (WS2) not present in the other (WS1).

Algorithm 5 compares each property value in an observation of a given world state with

the second. Any mismatch of a property or a totally different observation will lead the algo-

rithm to add it in a list of observations. The list containing all the mismatched observations

is returned at the end.



80 Play Generator: Dev-PSchema

Algorithm 5 Complement World State
1: procedure complement_WS (WolrdState WS1, WorldState WS2)
2: complement = Empty WorldState
3: for each observation O2 in WS2 do
4: match = False
5: for each observation O1 of type O2 in WS1 do
6: if each property P2 of O2 is same as P1 in O1 then
7: match = True
8: break
9: end if

10: end for
11: if match is False then
12: add_observation_in_state(Complement, O2)
13: end if
14: end for
15: Return Complement
16: end procedure

Algorithm 6 describes the process to add an observation in a given state.

Algorithm 6 Complement World State
1: procedure add_observation_in_state(WolrdState State, Observation Onew)
2: match = False
3: for each observation O in State do
4: if each property P of O is same as Pn in Onew then
5: match = True
6: break
7: end if
8: end for
9: if match is False then

10: add Onew to the list State
11: end if
12: end procedure

The algorithm compares all the existing observations in the state with the new observation.

Any match leads the algorithm to ignore the observation and return without adding it into the

state. In case of a mismatch the algorithm adds the observation into the list of observations,

the state.

3.5.3 Adding a Schema

A newly created schema may match an existing schema exactly, may contain different/additional

information, may contain subset of information or may be totally new. Adding a schema into

the (long-term) memory is referred to in block 6 of Figure 3.12. Algorithm 7 describes the
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mechanism for adding a schema to the memory.

Algorithm 7 Adding Schema to memory
1: procedure add_schema_to_memory (Schema S)
2: for each Schema S’ in Memory do
3: if Schemas_match (S, S’) then
4: Return
5: end if
6: end for
7: Add Schema S in the Memory
8: Return
9: end procedure

Before adding the schema to the memory, the algorithm checks if the new schema matches

any of the existing schemas in the memory. The newly created schema will be discarded if it

matches any of the existing schemas and the system move onto the next stage. Algorithm 8

describes the underlying mechanism in schema matching.

Algorithm 8 Matching two schemas
1: procedure schemas_match (Schema S1, Schema S2)
2: if S2 is generalised then
3: instantiate schema (S2, S1_preconditions) ▷ See Algo. 16
4: end if
5: if NOT states_match(S2_postconditions, S1_postconditions) then
6: Return False
7: end if
8: if NOT states_match(S2_preconditions, S1_preconditions) then
9: Return False

10: end if
11: if NOT actions_match(S2_action, S1_action) then
12: Return False
13: end if
14: Return True
15: end procedure

If the existing schema is generalised then any generalised properties are instantiated

with the newly created schema preconditions. The instantiation algorithm identifies the

generalised properties in the schema and replaces their values with concrete values in the

observations of the given world state. The instantiation algorithm initially instantiates the

preconditions. The generalised variables in postconditions are instantiated with same con-

crete value as the generalised variables in preconditions that have matching generalised value

e.g. $a. The instantiation algorithm is further discussed in Chapter 4. State matching uses
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the same algorithm as world state matching described in Algorithm 3. Algorithm 9 describes

the mechanism for matching two actions.

Algorithm 9 Matching Actions
1: procedure actions_match (Action A1, Action A2)
2: for each property P2 in Action A2 do
3: for each property P1 in Action A1 do
4: if P2 NOT same as P1 then
5: Return False
6: end if
7: end for
8: end for
9: Return True

10: end procedure

Algorithm 9 compares all the properties (if any) of two actions and returns false if any of

the properties do not match, otherwise returns true.

3.5.4 Generalisation

Dev-PSchema is also capable of generalising learning outcomes, i.e. schemas, using induc-

tive inference, which is based on evidences/samples. The system goes under generalisation

every time it creates a new schema, shown as block 7 in Figure 3.12. A generalised schema

is developed from a set of schemas having similar actions e.g., reach x 2.20, y -0.25 and

reach x -1.20, y -0.05. The generalisation for a given property is said to be true universally if

it is true for a whole set of samples. Observation properties in preconditions and postcon-

ditions which have different values, in all the sample schemas selected for generalisation,

are generalised. We have extended the generalisation mechanism in Dev-PSchema. Where

the properties of pre and postconditions are numeric, the generalising mechanism can deter-

mine the some linear mathematical relationship between the variables used in preconditions,

postconditions and actions. Previously in PSchema [173], the generalisation was limited

to recognising change in these values, but not identifying relationships in terms of how the

values may have changed. The generalisation mechanism is shown as block 7 in Figure
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3.12 of play mode. Figure 3.13 illustrates an example of generalising with two reach schemas.

Fig. 3.13 Generalised schema obtained from 2 concrete schemas having similar action.

Furthermore, Dev-PSchema generalises properties by the relevant perception types. For

example if a property of a colour perception is found to be suitable for generalisation then

a common generalised variable will be used to replace the property in all of the colour

perceptions that have matching value. For example if a sample schema contains two colour

perceptions and they both have matching values for a property, then their values will be

replaced by a generalised variable, e.g. $a, if the property is found to be eligible for gen-

eralisation. In PSchema a generalisation was based on the property rather than type of the

perceptions. Thus if a property in a perception is found to be suitable for generalisation then

it will generalise all the property in all perceptions in the sample schema, irrespective of

the perception type. If any properties have the same value in all the sample schemas then it

remains un-generalised. A generalised schema with at least a single un-generalised property

is referred here as a partially generalised schema. Generalisation is further discussed in

Chapter 4, along with the relevant algorithms and experiments.





Chapter 4

Generalising from Experiences

Generalisation helps to extend learnt behaviours and knowledge toward new situations based

on similarities with previous experiences. Thus, generalisation is not about finding no dif-

ference between the situations but developing an understanding of the situations that have

similarity in consequences [174]. The ability to generalise enables infants to learn and

develop knowledge from a few experiences then use it to understand and predict outcomes in

novel situations. If the generalised concepts fail, infants adapt and adjust their learning [146].

Thus, generalisation not only helps to reuse knowledge with novel objects and environments

but also helps to predict or anticipate the outcome of actions in a situation based on previous

experiences with similar situations.

Possessing a complex cognitive system, humans are able to anticipate events and their

outcomes. This capability is developed from experiences and has been observed in infants,

as young as 3 months old [30]. Anticipation in infants plays an important role in extending

understanding of the effects caused by actions on different objects through repeated experi-

ences and generalisation. This capability plays a very important role in an infant’s learning

process [142]. There is evidence in developmental psychology supporting anticipation of

outcomes observed using visual attention in young children and infants.
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In developmental psychology, infants are understood to look longer at new or unexpected

events or situations after achieving habituation. However, infants have been observed to show

a preference for familiar objects rather than the novel, depending upon the time spent with

the familiar object [159]. Habituation in infants is achieved through presenting the same

object, event or situation to them until they lose interest. Following habituation, infants gaze

at new objects, events or situations longer than the habituated [177]. Schlesinger and Casey

[167] found that 6 months old infants look longer at impossible events than possible events.

The longer looking time provides evidence that the infants anticipated the event results i.e.,

possible event, however, the outcome of the event i.e., impossible event, is novel and did

not meet the expectations. In a similar experiment, Adler and Haith [2] found that 3 month

old babies can also predict visual events. During the experiments, infants were habituated

to set visual events. After habituation, they were presented with a selection of novel events

varying in visual similarity to the habituated events. Authors found that infants anticipation

were higher when the novel event had a higher level of similarity to the habituated event.

The greater the visual variation in the novel event, as compared to the habituated event, the

less predictable the outcomes were. This provides evidence that the anticipation of events

and action outcomes depend upon the similarity between the novel situation and previous

experiences. Thus infants anticipated event outcomes for new events based on generalisation

developed from previous experiences.

The world is full of static and dynamic objects. If one wants to catch a moving object,

(s)he needs to predict the object’s motion in spatio-temporal space and move the hand to an

anticipated position to catch the object. For static objects, (s)he will expect that the object will

remain at the same position while in a dynamic situation the object position is predicted over

time using previous experiences in similar situations. This behaviour is developed at an early

age in humans. von Hofsten et al. [196] found that at 6 months old infants can predict the po-

sition of a moving object and use that information to reach for the object. Similarly, Canfield

and Haith [30] found that 3.5 month old infants are able to anticipate dynamic symmetric and

asymmetric visual events based on their understanding developed based on their experiences.
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These studies demonstrate that infants not only possess visual event anticipation but also

perform actions based on the anticipation [138]. Thus infants develop generalisation for

objects, events and situations and use this knowledge in planning and performing their actions.

This concludes that generalisation is not just used to help anticipate events, it is also very

important in developing understanding and knowledge to perform actions in static as well

as dynamic situations. Anticipation consists of two main sequential steps; i) observing and

predicting the outcome of an event within a static or dynamic scenario, and ii) planning and

executing the behaviour based on the prediction. The generalisation capability, in this situa-

tion, helps to anticipate the outcome of actions and events based on their level of similarity

to previous experiences in similar situations.

A robotic learning model inspired from developmental psychology should also be able

to generalise object related actions to efficiently make use of its learning from one object

to another, based on similarity in object features. In a real environment, a robot may need

to interact with several objects using different actions. The objects in the environment may

be similar to each other and the actions may be repetitive. If the robots need to learn each

object-action relation then its learning model can be seen as inefficient. Thus for an efficient

learning model, the model should be able to generalise learning from a few examples and

apply them to anticipate the outcomes for various objects and situations based on similar

features to the generalised experiences. The ability to recognise similar objects and features

is an important cognitive development. However, in this work, we focus on the high-level

decision making process rather than the underlying mechanism for object recognition.

Dev-PSchema is capable of creating generalised schemas based on experiences in a given

environment. The system generalises through inference using previously learnt schemas that

performed the same action. We evaluate the generalising mechanism of Dev-PSchema by

performing two experiments based on generalisations developed through performed actions.

Such generalisations are developed through receiving visual perceptions related to the per-
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formed actions in a given situation. In the first experiment the agent makes inferences for

generalisation based on visual perception and non-visual (e.g. squeezable, making (percep-

tual) sounds) perception obtained through actions. It should be noted that these experiments

are performed on the Sandbox simulator and all the sensory perceptions, including auditory,

are simulated representations. In this experiment, we demonstrate that Dev-PSchema is able

to extend learning to anticipate action outcomes about objects that are defined by their obvi-

ous and non-obvious properties. In the second experiment, we demonstrate the capability of

the agent learning visual movements of objects following an action and develop generalised

schemas. The generalised schemas will later be used to anticipate action outcomes in the

similar environments. The agent makes initial predictions about the changes by applying

mathematical functions to the variables of properties used in the sensory state and the action.

In Section 4.1 we provide a detailed discussion on generalisation mechanism and al-

gorithms used for creating a generalised schema. In this section, we also provide the

instantiation algorithm used to instantiate perceived features in a generalised schema to

predict its outcome. We discuss experiments with the results in Section 4.2, followed by the

discussions of this chapter in Section 4.3.

It should be noted that this Chapter includes parts of two peer reviewed published papers,

given below:

• Kumar, S., Shaw, P., Lewkowicz, D., Giagkos, A., Shen, Q., Lee, M. (2016, September).

Developing object understanding through schema generalisation. In Developmental

and Learning and Epigenetic Robotics (ICDL-EpiRob), 2016 Joint IEEE International

Conference on (pp. 33-38). IEEE.

• Kumar, S., Shaw, P., Lewkowicz, D., Giagkos, A., Lee, M., Shen, Q. 2016. Generalis-

ing Predictable Object Movements Through Experience Using Schemas. In E. Tuci.,

A. Giagkos., M. Wilson., J. Hallam. (eds) From Animals to Animats 14: 14th Inter-

national Conference on Simulation of Adaptive Behaviour, SAB 2016, Aberystwyth,
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UK, August 23-26, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9825

14th International Conference on Simulation of Adaptive Behaviour. Springer Nature

pp. 329-339.

4.1 Generalisation

Dev-PSchema uses similar schemas, especially having a similar action, to create a generalised

schema. Figure 3.13 shows an example of generalised schema from two schemas having a

similar action. Dev-PSchema generalises two different levels of schemas based on sensory

perceptions present in previous similar experiences. If any of the observation properties in

the generalised schema remain un-generalised, such a schema is described as a “partially”

generalised schema. Whereas a generalised schema with all properties generalised in it is

described as a “completely” generalised schema.

Furthermore, Dev-PSchema is also able to infer a linear functional relation between

numerical values of the properties in the schemas used for generalisation. The generalisation

mechanism checks for linear additive i.e., +/−, relationships between the properties in

preconditions and postconditions of a schema. This capability helps to anticipate numerical

values of postconditions for a perceived environment using a generalised schema. This

feature can be enabled/disabled using a flag when starting Dev-PSchema.

Dev-PSchema performs generalisation process every time a new schema is added. The

newly created schema is considered as a sample schema to find any similar schemas in the

memory for generalisation. Algorithm 10 describes the underlying mechanism of creating a

generalised schema.

Algorithm 10 begins by finding the schemas that use a similar action to the sample

schema. If functional generalisation is set as false then the action similarity is calculated just

by comparing types of actions i.e., reach, grasp, release etc., irrespective of coordinate values
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Algorithm 10 Generalising Schema algorithm
1: procedure generalise (Schema S′, Boolean Functional )
2: Similar_schemas = list o f similar_schemas(S′, Functional) ▷ See Alg. 11
3: if length(Similar_schemas) ≥ generalising_threshold then
4: S = Copy o f S′
5: for each property P of each Observation O in Schema S do
6: p_ f ound = False
7: for each property P2 in type(O) Observation in Schema Si from Similar_schemas do
8: if type (P) = type (P2) && Value(P1) ̸= Value(P2) then
9: if Functional is True then

10: β = P(Value)S_preconditions − P(Value)S_postconditions
11: replace P(Value) in S_preconditions with “$α ′′ ▷ α is an unique character
12: replace P(Value) in S_postconditions with “$α + β ′′

13: break; Go to line 5
14: else
15: replace P(Value) in S_preconditions & S_postconditions with “$α ′′ ▷ α is an

unique character
16: break; Go to line 5
17: end if
18: end if
19: end for
20: end for
21: Sim = 0 ▷ To verify generalisation for adding into the Memory
22: for each Schema Si in Similar_schemas do
23: instantiate_schema from_WS (Schema S, WS Si_preconditions) ▷ See Section 4.1.1
24: Add schema_similarity (Si, S) to Sim ▷ See Algorithm 12
25: end for
26: Sim = Schema_Similarity/length(Similar_schemas)
27: if Sim > similarity_threshold then ▷ similarity_threshold = 0.75
28: S = sort_associations (generalised_schema S, similiar_schemas Similar_schemas)
29: Add generalised schema S in the Memory
30: end if
31: end if
32: end procedure

and other properties. If functional generalisation is set as true, the algorithm undergoes

through a different mechanism to find similar schemas that depends upon the functional rela-

tionship between the observation properties in the schema preconditions and postconditions.

Algorithm 11 describes the underlying mechanism of finding similar schemas schema.

For functional generalisation, Algorithm 11 finds all relationships present between pre-

conditions and postconditions of the sample schema. A relationship is the difference between

the values of a property, of same observation type, present both in preconditions and post-

conditions of the schema. For example, the size of the colour observation changes from 25

to 20 between preconditions and postconditions of a schema, respectively. The functional

relationship between the two is represented as −5 units. The algorithm considers a schema

from the memory similar to the sample schema if all the functional relationships in the
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Algorithm 11 Finding similar Schemas in the memory
1: procedure similar_schemas(Schema S′, Boolean Functional)
2: Similar_schemas = empty list
3: f unctions_sample = find_function (S′) ▷ See Equation 4.1
4: for each Schema S in the Memory do
5: if Functional is False then
6: if Schema S_action type same as Schema S′_action then ▷ e.g., a reach action in both schema
7: Add Schema S to the list Similar_schemas
8: Go to line 4
9: end if

10: else
11: f unctions_S = find_function (S) ▷ See Equation 4.1
12: for each function F1 in f unctions_sample do
13: similar_ f ound = False
14: for each function F2 in f unctions_S do
15: if F1 is same as F2 then
16: similar_ f ound = True
17: break; Go to line 12
18: end if
19: end for
20: if similar_ f ound is False then
21: Go to line 4
22: end if
23: end for
24: if similar_ f ound is True then
25: Add Schema S to the list Similar_schemas
26: Go to line 4
27: end if
28: end if
29: end for
30: Return list Similar_schemas
31: end procedure

sample schemas are also present in the schema from the memory. Equation 4.1 describes the

mechanism to calculate a relationship for a property P of an observation On.

Func(On, P)m = δPreconditions − δPostconditions (4.1)

where Func(On, P) represents a function calculated for the value δ of the property P in ob-

servation O of type n given in preconditions and postconditions. A list of functions is created

for total m properties, having numerical values, in observations present in preconditions of

the sample schema S′, given in Algorithm 10.
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Following finding similar schemas, the generalisation mechanism proceeds further if the

number of similar schemas is greater than or equal to the threshold. In this work we set

a threshold of two schemas to create a generalised schema. The threshold can be varied,

depending upon the application and experiments, through the interface controller shown in

Chapter 3, Figure 3.1.

The algorithm then takes each of the property values present in the preconditions, post-

conditions and action of the sample schema and then compares them with the value of the

same property type in similar schemas. A difference of value is considered as non-essential

for the specific action hence is generalised. However, a match suggests the property is

more relevant in the actions and its effect, hence remains un-generalised leaving the schema

partially generalised. If a property is found to be suitable for generalisation, Algorithm

10 generalises the property. In the case of functional generalisation, the algorithm finds

the property relationship between the values of the property given in preconditions and

postconditions of the schema. Equation 4.1 is used to find the relationship for the properties

in the sample schema. A property is generalised by replacing its value with a unique alpha-

betic character in preconditions and with a unique character and the functional relational

relationship found for that property in postconditions of the sample schema, see line 12 in

Algorithm 10. It should be noted that the properties are only generalised with the +/− ad-

ditive relationship between their values given preconditions and postconditions of the schema.

In the case of non-functional generalisation, Algorithm 10 generalises properties by

replacing their values by a unique alphabetic character, alongside the $ symbol, in both

preconditions and postconditions of the sample schema, see line 15 in the algorithm. The

$ indicates that the generalised property is either irrelevant for the schema outcomes or its

variations do not cause an impact on the outcome of the generalised schema.

Once all the properties present in the sample schema have been considered in the gen-

eralisation process, the algorithm calculates the similarity between the newly developed
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generalised schema and similar schemas to verify the generalisation. Before calculating the

similarity between two schemas, the generalised schema is instantiated with the schema

preconditions each of the schema in turn in the similar schemas list. The instantiation

mechanism puts the concrete values i.e., an instance value, in the generalised schema with

the schema preconditions, with which similarity is being calculated. The generalised post-

conditions are instantiated with either the same value as the preconditions or the same value

with -/+ the functional relation, depending upon if the functional generalisation has been

used in the schema. For example, if a property named size of an observation is used as “$a”

in the preconditions and “$a+5” in the postconditions, then a concrete value of 20 from

similar schemas will replace the generalised values with 20 and 25 in the preconditions

and postconditions respectively. Section 4.1.1, describes in more details the mechanism for

instantiating a generalised schema from a given world state. The similarity check provides a

test of how much the newly generalised schema matches each schema in the list of similar

schemas. Higher similarity confirms the generalised schema being developed is a generalised

concept using individual instances in the list of similar schemas. Algorithm 12 describes

the mechanism for calculating the similarity between two given schemas. A generalised

schema helps to re-use and predict the outcomes through instantiating the generalised schema

with the perceived state of the environment. Through instantiation, a generalised schema

will provide higher excitation as it provides higher similarity with a perceived state for the

excitation calculator. The excitation calculator is an internal mechanism of Dev-PSchema

that finds a suitable action to perform in a perceived situation of its environment, see Section

5.1 for details.

Algorithm 12 Schemas Similarity
1: procedure schemas_similarity (Schema S1, Schema S2)
2: Sim = 0
3: Add states_similarity(S2_postconditions, S1_postconditions) to Sim ▷ See Algorithm 13
4: Add states_similarity(S2_preconditions, S1_preconditions) to Sim
5: Sim = Sim/(Sum o f Number o f observations in preconditions and Postconditions in S2)
6: Return Sim
7: end procedure
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Algorithm 12 calculates the similarity between the preconditions world state (WS) and

postconditions WS separately. The average similarity is returned for further process. Algo-

rithm 13 describes the mechanism for calculating the similarity between the two given world

states.

Algorithm 13 States’ Similarity
1: procedure states_similarity (WolrdState WS1, WorldState WS2)
2: Sim = 0
3: for each observation O2 in WS2 do
4: Max_sim = 0.0
5: for each observation O1 in WS1 do
6: O_sim = sbservation_similarity (O1, O2) ▷ See Algo. 14
7: if O_sim > Max_sim then
8: Max_sim = O_sim
9: end if

10: end for
11: Add Max_sim to the Sim
12: end for
13: Sim = Sim/Number o f Observations in WS2
14: Return Sim
15: end procedure

Algorithm 13 returns maximum similarity between the value of each property in observa-

tions of a given WS by comparing it with the property value present in similar observation

type. For example, colour observation in one WS will only be compared with a colour

observation in the other WS. The algorithm will return with maximum similarity (1.0) if the

an observation is present in both world states. Algorithm 14 describes the mechanism for the

observation similarity calculation.

Algorithm 14 returns maximum similarity i.e., 1.0, if two observation are the same.

Minimum value i.e., 0, is returned if two observation of different type and their properties do

not match at all. A small tolerance (10%) has been introduced to handle noise in the iCub’s

perceptions. At this tolerance value, two values of a property are considered equal if the

difference between them is within ±10% of the (P2) value.

The newly created generalised schema in Algorithm 12 is instantiated and compared

with each of the schema present in the list of similar schemas. An average of the similarities
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Algorithm 14 Observation Similarity
1: procedure observation_similarity (Observation O1, Observation O2)
2: Sim = 0
3: for each property P2 in O2 do
4: for each property P1 in O1 do
5: if type(P1) is same as type(P2) then ▷ Types include colour, shape etc.
6: if P1(value) = P2(value) then ▷ ±10% o f P2(value) in case of iCub
7: Sim += 0.5
8: end if
9: Sim += 0.5

10: end if
11: end for
12: end for
13: Sim = Sim/Number o f properties in O2
14: Return Sim
15: end procedure

calculated for all schemas in the list of similar schemas is used further in the algorithm. If

the average similarity is more then the threshold than the new generalised schema is added

into the memory. In this work, we used similarity of threshold 0.75, however it can be varied

by the user. A higher similarity threshold will result in a generalised schema with the higher

tendency of inference representing all the schemas used for generalisation i.e., list of similar

schemas. If the generalised schema fails to meet the similarity threshold that means the

generalised schema does not represent a general inference for all the schemas in the list

of similar schemas. In that case, each schema in the list of similar schemas represents an

individual inference for a specific example.

Following the similarity calculations, Algorithm 10 sorts associated observations in the

generalised schema. Algorithm 15 describes the mechanism to find associated observations

in the generalised schema.

Algorithm 15 begins by creating a new empty schema to copy information from the

generalised schema. In the start, it copies the generalised schema action to the newly created

schema. The mechanism then takes each observation in the generalised schema preconditions

and checks if this type of observation exists in the each of similar schema preconditions.

If the observation is present in all schemas then it is added to the preconditions of the new

schema. If in the observation is not present in any of the similar schemas then it is added
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Algorithm 15 Sorting associated observations in a generalised schema
1: procedure sort_associations(generalised_schema S, similiar_schemas Similars)
2: Ss = New schema
3: Ss_action = Copy(S_action)
4: for each observation O1 in schema S_pre/post_conditions do
5: f ound = False
6: for each schema S′ in Similars do
7: for each observation O2 in schema S′_pre/post_conditions do
8: if type(O1) = type(O2) then
9: f ound = True; break

10: end if
11: end for
12: if f ound = False then
13: break
14: end if
15: end for
16: if f ound = False then
17: Add O1 to schema Ss_associated_pre/post_conditions
18: else
19: Add O1 to schema Ss_pre/post_conditions
20: end if
21: end for
22: Return Ss
23: end procedure

to the associated preconditions. The same process is repeated for the generalised schema

postconditions to find the concrete and associated postconditions for the new schema. The

mechanism returns the new schema at the end of the process.

4.1.1 Instantiation

In PSchema, the instantiation was performed by putting concrete values (un-generalised

values) from a provided WS into the generalised properties. The PSchema instantiation

mechanism replaces each generalised property in the generalised schema with the concrete

value of the same property from the given WS, irrespective of their observation type. Dev-

PSchema instantiation mechanism instantiates the properties by finding concrete values in

a similar observation type of the given state. Property values, in the observations, with $

signs are replaced with specific values from the concrete state, resulting in a prediction

of the outcomes for the action in the generalised schema. Algorithm 16 describes details

mechanism of instantiation.
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Algorithm 16 Instantiating generalised schema from a WS
1: procedure instantiate_schema_ f rom_WS (Schema S, WorldState WS)
2: h_WS = Observations f rom WS with coordinates same as hand coords in WS
3: h_WS = Observations f rom WS with coordinates di f f erent f rom hand coords in WS
4: sort observations in excitation order (h_WS) ▷ See Algo. 17
5: S_WS = Observations f rom S_preconditions with coordinates same as hand coords in S
6: S_WS = Observations f rom S_preconditions with coordinates di f f erent f rom hand coords in S
7: instantiation_values = Empty map
8: for each observation Os property Ps in S_WS do
9: for each observation Os property Pws in h_WS do

10: if Ps same as Pws then
11: replace the generalised value v o f Ps with Pws value u
12: add Ps as key instantiation_values with Pair (index v, value u)
13: end if
14: end for
15: end for
16: for each observation Os property Ps in S_WS do
17: for each observation Os property Pws in h_WS do
18: if Ps same as Pws then
19: replace the generalised value v o f Ps with Pws value u
20: add Ps as key instantiation_values with Pair (index v, value u)
21: end if
22: end for
23: end for
24: for each observation property Ps in S_postconditions do
25: if instantiation_values has key Ps then
26: Pair P = Pair in instantiation_values with key Ps
27: if Pair P index is same as Ps value v then ▷ Any other property will remain generalised
28: replace value v in schema with Pair P value
29: end if
30: end if
31: end for
32: Return
33: end procedure

Dev-PSchema instantiation algorithm takes hand/manipulator coordinates as a refer-

ence for instantiation. Initially, it instantiates all observations of the generalised schema

preconditions and postconditions that have the same coordinates as the hand/manipulator

with the observations from the given WS. If a generalised property contains any functional

relationship, its value is replaced accordingly. For example, a property in an observation

to be instantiated containing “$a” and “$a+5” in the preconditions and postconditions of a

generalised schema respectively. Let’s say the instantiation mechanism finds 10 units as the

value for the property, which leads to property values of 10 and 15 units (i.e., 10+5 replac-

ing $a+5) in the preconditions and postconditions respectively. Later, all the observations in

the preconditions and postconditions of the generalised schemas at a position other than the

hand are instantiated with observations from the given WS that are not at the hand position.

Figure 4.1 shows an example of an instantiation for a generalised schema in PSchema and
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Dev-PSchema systems.

Fig. 4.1 Instantiating a generalised schema from a given state (WS)

Figure 4.1 shows an example instantiation for a generalised schema from a given WS in

Dev-PSchema systems. In Dev-PSchema each observation is instantiated with a value match-

ing the observation type. Hence, colour and shape observations are instantiated individually

with colour and shape observations from the given WS respectively.

Furthermore, Dev-PSchema also makes use of coordinates during the instantiation pro-

cess. Taking hand/manipulator coordinates as reference, it instantiates all observations at

the hand position. The observations having coordinates different to the hand coordinates

are sorted according to their excitation, see Section 5.1 for the observation excitation. The

observations with the highest excitation are used first for instantiating the generalised schema.

Algorithm to calculate observation excitation is described in Chapter 5, Algorithm 15.
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4.2 Generalisation: Experiment and Results

To demonstrate and evaluate the generalisation mechanism in Dev-PSchema we performed

two experiments related to types of generalisation and anticipation with instantiation using

function generalisation. To demonstrate generalisations, partial and complete, we used a lim-

ited set of the perceptions, where the perception of self is provided with a colour perception

for the agent’s hand, without the grip, and its positions. The touch perception, obtained while

touching or grasping, only appears when an object is touched, without the average touch

value, see Section 3.3 for details. A new perception, “holding” replaces the touch perception

when an object is grasped. Both, touch and holding perceptions are binary and without any

properties. These changes will demonstrate the generalisation based on the visual perceptions

only. In these experiments, a Dev-PSchema enabled agent uses an excitation system to

select a suitable action to perform in the environment. The excitation system calculates

excitation for all the schemas/actions present in the memory to interact with the environment.

When an object is introduced in the simulator, the excitation system activates the action

schema relevant to the current sensory state. For example, an object at position (1, 1) will

trigger the system to fixate/reach at that position, due to recalling the schema where it pre-

viously fixated/reached that position. The excitation system is discussed in detail in Chapter 5.

4.2.1 Experiment 1: Object Understanding through Generalisation

This experiment demonstrates the generalising capability of Dev-PSchema for developing a

basic concept of affordance through exploratory play. The experiment consists of five stages

performed in a simulated environment Sandbox. The first two stages of the experiment,

bootstrapping and object familiarisation, provide the foundation for the schema knowledge at

the beginning of the experiment, see Section 3.1.1. During the bootstrapping stage, schemas

for basic actions (saccade, reach and grasp) are created through motor babbling. In the

object familiarisation stage, an object is presented in the environment for interaction. The

agent uses basic action schemas to explore the object. This stage ends at the point where
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the agent grasps the object. The last three stages are described here as three parts of the

experiment. In the first part, a new/second object is introduced enabling the system to build

some generalisation based on the experiences with both objects. The 2nd and 3rd parts are

designed to evaluate the failure and success of the generalised schemas, as well as the agent’s

capability to re-learn and adapt. The flow of this experiment is shown in Figure 4.2.

Fig. 4.2 Experiment flow diagram

The environment for this experiment is set in the Sandbox simulator and organised as

a 5× 5 grid of discrete cells. An object is contained in a single cell, with no overlap. A

simulated hand (manipulator) is used as an end effector to interact with the objects in the

environments. It is capable of reaching towards 9 reach positions (defined by a 3×3 area),

which are a subset of the total positions in the world. Visual information is observed and

grouped in two different ways, namely by colour and shape along with a 2D position in

the space, x and y dimensions respectively. Dev-PSchema receives a “touch” observation

(perception) from the Sandbox when the hand performs a grasp action or touches an object

placed in the same position as the hand. Each object in the simulator is represented by a

colour, shape, position and stimulus response when it is grasped. We divided the objects
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in the environment into two categories. The first category consists of spheres and cubes,

irrespective of their colour, which responds with a “sound” observation when grasped. In

the second category, objects consist of just cylinders with various colours and respond with

a “light” observation when grasped. Sandbox prepares all sensory information, represented

as high-level perceptions and shares with Dev-PSchema. Similarly, actions are defined in

high-level language i.e., reach, grasp etc. In this experiment, we used “Reach”, “Grasp” and

“Saccade” actions, see Section 3.3 for details.

4.2.1.1 Bootstrapping

As mentioned before, the system is initially bootstrapped to enable it to saccade and reach

towards positions in the space provided by the simulator. Notice that the reach space is a

subset of the overall space, as is the case with infants at non-locomotion stage. Each of

the positions in the space is observed through saccades and fixations, and visited by the

hand. Moreover, when the hand moves followed by the eye movement, the system stores

schemas for both the reach and saccade actions. In the end, the grasp action is performed and

a schema is recorded for it. It should be noted that no preconditions of performed actions are

recorded during bootstrapping, as behaviours are considered to be (reflexive) motor babbling

actions rather than stimulated through some perceptions. Thus this stage provides a basic

set of action schemas enabling the agent to start to interact with the objects in the environment.

4.2.1.2 Object Familiarisation

The object familiarisation stage follows the bootstrapping stage, in which a red sphere from

category 1 is introduced. The Sandbox sends the colour and shape perceptions of this object

to the agent (Dev-PSchema). Using the recently learnt schemas, from bootstrapping, the

excitation calculator finds the saccade action towards the object position to be most excited

followed by a reach action to the same position. Once the eye and hand are at the position

of the object, the grasp action is found to be most the excited. The hand position in the
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bootstrap grasp schema (x=3, y=3 in Figure 4.3) is different from the current position of

the object (x=1, y=1). However, schemas that do not specify coordinates as part of their

action, e.g., grasp, push, etc., can be applied in any position of the environment, taking the

position of the hand instead. Therefore, based on the similarities between the observations

and postconditions, ignoring coordinates, along with schema statistics related to previous

executions, the bootstrap grasp schema receives the overall highest excitation of all the

schemas currently in the memory. Schema statistics are discussed in detail in Section 3.3.3.

Figure 4.3 shows the new schema learnt, following the grasp action providing additional

observations that were not anticipated by the existing bootstrap grasp schema.

Fig. 4.3 Grasping the first object in the environment during the object familiarisation

A new grasp schema is created using and extending the basic bootstrap schema, coupled

with new observations acquired after the action. It should be noted that the new schema also

contains the sound observation, a high-level representation of a sound resulting from the

grasp action. The system stores this schema in the memory and ignores the generalisation

process as there is only one grasp schema in the memory, excluding bootstrap schemas. Once

this process is completed the object is removed from the environment in order to prepare for

the next stage of the experiment.
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4.2.1.3 First Part: Building Generalisation

The agent builds generalised schemas based on the object interactions performed previously

and at this stage. Another object from the same category is introduced in the environment

varying in shape and/or colour as compared to the initially experienced object. Thus from

this stage and onwards four different branches are generated as shown in Figure 4.2. We

introduce different objects varying in either shape or colour or both to demonstrate the

variation in generalisation based on the experiences. This may be seen as a way to expose

different individual infants to different objects after having a similar experience with the

first object. Figure 4.4 shows the process of building schemas when a second, new object

(2A or 2C as they are tagged) of the same shape and similar or different colour are introduced.

Fig. 4.4 Second object, same shape

Introducing the second object with a different or matching shape at a different position,

excites the agent to reach and grasp, and create new schemas. The new grasp schema is

un-generalised. However, creation of the two similar grasp schemas, when the first and

the second objects are being presented, triggers the generalisation mechanism based on the

information the agent has managed to collect. In the case of 2A, only the position of the
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object is different, and in 2C the colour is different. As the other properties are the same,

they are not generalised so only a partially generalised schema is produced for both cases.

In the case of 2C, the change in the object colour triggers the generalisation mechanism

to generalise the colour property. However, in the case of 2A, the previously perceived

hand colour causes the mechanism to generalise the colour property. Similarly, in the case

of 2B and 2D, shape and position of the object varies from the previous schema, causing

the agent to generalise the shape and position. The change in the colour of the object at

2D also causes the agent to generalise the colour property. Therefore, the agent creates a

complete generalised schema, generalising colour, shape and position of the object, in both

cases i.e., 2B and 2D. The agent undergoes the same schema building process as to that of

Figure 4.3 and the grasp schema created with the first object becomes the excited schema.

Figure 4.5 shows the schema built when a second object (2B or 2D as tagged) of differ-

ent shape and of a same or different colour from the initially experienced object, is introduced.

Fig. 4.5 Schema generated for the second object having a different shape

At this point in the experiment, the agent develops both, complete and partial, generalised

schemas as the threshold for the generalisation process i.e., two similar schemas, has been

achieved. Figure 4.6 illustrates the generalised schemas developed through the second object

experience.

Figure 4.7 visualises the partial and complete generalised schema building in object shape

versus colour dimensions.

Figure 4.7 shows that Dev-PSchema created partially generalised schemas when it ex-

perienced a second object with the same shape as the first object. However, it created a

completely generalised schema when the second object is a different shape to those previously
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Fig. 4.6 Partial (top) & complete (bottom) generalised schemas corresponding to generalisa-
tion from 2A & 2C and 2B & 2D respectively

Fig. 4.7 Generalisation over shape versus colour

experienced.

4.2.1.4 Second Part: Adapting Generalisation

In the second part of the experiment, a third object from category 2 is introduced. This object,

a blue cylinder, differs in both, shape and colour, and provides a different perceptual response,

i.e., light, when grasped to the previously experienced objects. As the new object provides

new perceptual information, the anticipated observation i.e., sound, from the generalised

grasp schema, based on previous experiences, no longer matches. The mismatch, along with

the inability of the system to observe matching schemas in terms of postconditions, causes

the system to adapt the changes and build a new generalised schema. Figure 4.8 shows the

new concrete schema created, after both the, partial and complete, generalised schemas fail

to match.
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Fig. 4.8 Third object, different non-visual observation

This new schema also demonstrates the over-generalisation from the previous round.

Although this new object was not previously experienced, the system is found to use a

generalised grasp schema for it, in an attempt to obtain similar consequences related to

its grasping. However, the outcome of the grasping led to different consequence to those

predicted which indicates that the particular schema is overgeneralised, and a new schema is

necessary. This resembles the accommodation process expressed by Piaget [147] and new

knowledge is created when existing knowledge fails to solve the problem, as discussed in

Chapter 1.

4.2.1.5 Third Part: Testing Generalisation

In this part, a blue sphere (object of category 1), and a red cylinder (object of category 2),

are introduced at branches (C, D) and (A, B), respectively, according to the experiment’s

flow as depicted in Figure 4.2). Both objects are introduced after achieving complete or

partial generalised schemas for category 1 and un-generalised schema for category 2 objects.

While interacting with the new objects, the agent creates a partial generalised schema for

the red cylinder. This is because the shape of this object allows the system to distinguish

preconditions and postconditions from previously failed generalisations. It is found that no

additional schemas are created for the blue sphere, as the agent is able to deal with the object

using the partial or generalised schemas already acquired using previous experiences. At this

stage, the agent undergoes accommodation and creates a new schema for the red cylinder

and remains in equilibrium for the blue sphere, and thus creates no new schema.
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4.2.2 Discussion on Experiment 1

This experiment demonstrates the ability to generalise experiences with the objects given in

an environment using visual features of the objects and non-obvious properties obtained from

interactions with them. The effectiveness of the proposed generalising tool, Dev-PSchema,

is evaluated by analysing the generalised schemas, obtained during the experiment. In this

experiment, a high-level of perceptual representation of objects, with a clear distinction

between colour and shape, is used. In developmental psychology it is observed that infants

are very sensitive and do respond to visual features of objects such as shape, colour, size

and pattern [67, 86, 180, 16, 203, 187, 131, 22]. However, it is also observed that infants

rely more on an object’s shape than on its colour as far as recognition and generalisation

are concerned. Bomba and Siqueland [22] report that infants at the age of 3–4 months, are

capable of categorising objects by shape. Similarly, Tremoulet et al. [187] observed that 12

months old infants rely only on object shape for recognition, but consider colour as well

for object individuation. These studies provide an evidence that infants rely more on object

shape than their colour for object recognition, individuation and categorisation.

Infants have also been observed to rely on visual features of the object in generalising.

Graham and Poulin-Dubois [67] found that 4-10 years old children rely on object shape to

generalise verbal labelling for them. Reliance on shape for generalisation has also been

observed in young infants. Baldwin et al. [13] found that 9 and 16 months old infants use the

shape as a visual cue to generalise non-obvious properties associated with the objects. During

the experiment, infants were provided objects that produced some sound when squeezed.

After a 30 second experience, the infants were provided with a novel object having similar

and non-similar shape and colour to the experienced object. Experimenters found that the

infants performed similar behaviours with the novel objects that were similar in shape in order

to obtain the previously experienced non-obvious property, irrespective of colour similarity.

These results demonstrate infants reliance on shape over the colour of the objects for manual

experiences to obtain non-obvious properties.
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“Why is shape so important for such reasoning?”. Graham and Poulin-Dubois [67]

believe that shape is a perceivable and integral part of the object representation, which does

not require extensive experience in terms of verbal representation to be gained. Wilcox

[203] argues that infants consider shape features of an object relevant when attempting to

predict the outcome of acting on them. Similarly, Nicholson and Humphrey [131] believe

that although linked, both colour and shape information are encoded in the human brain,

independently of each other, rather than as part of a single representation. Colour-based

representations speed up the recognition process but shape-based have a stronger influence

on it. These findings suggest that infants rely more on the shape-related features than the

surface-related ones (e.g. colour and texture) for object recognition or differentiation and

categorisation. The findings also suggest that two perceptions (shape-and surface-related)

are processed separately. Differentiation and recognition also help infants to generalise about

objects. Thus, designing a system with separate representations for object shapes and colours

is supported by developmental psychology.

The generalised schemas obtained in this experiment demonstrate the increased reliance

on shape of the object rather than the colour for generalisation. Although tags for shape

and colour are provided by the low-level system (Sandbox here), the agent utilised this

information to create partially and complete generalised schemas to identify which property

of the objects is more important than the others to produce the particular outcome in the envi-

ronment. The agent created partially generalised schemas when it experienced objects that

had similarity in shape and completely generalised schemas when it experienced objects that

differed in shape irrespective of colour. Thus this experiment demonstrates the capability of

the system to develop different levels of generalisation (un-generalised, partial and complete

generalised) through experiences. The generalised schemas also help to predict the outcome

of the action by instantiating it with the perceived sensory state.
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4.2.3 Experiment 2: Predicting Object Movements through Generali-

sation

To evaluate the functional generalisation in Dev-PSchema we performed an experiment with

visual activity in a simulated environment. We used the same 5×5 Sandbox environment

discussed in Section 4.2.1, and limited the available actions to just the “Saccade” action to

fixate on any of these positions. The experiment begins with bootstrapping to build saccade

schemas to each of the visual positions of the environment.

To investigate the anticipation for visual events in the system, we introduce an object

in the environment which moves one position to the right when fixated. Following the

bootstrapping, the object is introduced that triggers, through the excitation mechanism, the

agent to fixate at that position. The excitation mechanism finds the bootstrap schema to fixate

at the object position by getting higher similarity between the perceived state and the schema,

see Section 5.1 for details. Once the object is fixated and the agent learns a new schema, the

environment is reset by removing the object.

This process is repeated with another object having different visual representations

i.e., colour and shape, to obtain a generalised schema. The schemas with specific object

representations (concrete schemas) and generalised schemas will be used to evaluate the

performance of Dev-PSchema in terms of finding the functions between the variables. To test

the predictions from the generalised schema we introduced a novel object in the environment

to instantiate the generalised schema.

4.2.4 Results

The first object, referred to as object 1, at a particular position in space reminds the sys-

tem about previously fixating at that position during the bootstrap process, resulting in the

bootstrap schema to fixate on that position being highly excited. The system executes the
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most excited schema i.e., saccade to the object position which results in a new schema being

added to the memory describing the differences in pre and post conditions from the executed

bootstrap schema. Figure 4.9 shows the process of obtaining a new saccade schema following

the fixation on the first object.

Fig. 4.9 Schema created while fixating on the first object

After fixating the object and developing a schema with the obtained perceptions the first

object was removed from the environment and a second object, object 2, which possessed

the same movement property, but was of a different shape and colour, was introduced at a

different position. Following the same process, as shown in Figure 4.9, a new schema is

created for fixating on object 2 with the concrete details associated with this experience. Two

concrete examples of the saccade schemas trigger the generalisation process, resulting in a

new generalised schema. Figure 4.10 shows the generalised schema and schemas used to
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create it.

Fig. 4.10 Schema for object 1 (top), object 2 (middle) and generalised schema (bottom)

Variables in both schemas for object 1 and 2 have the same action i.e., fixate to object

position, but have different values for the visual features. In the obtained schemas the visual

position in the environment is represented by numerical values hence considered for func-

tional generalisation. With the activated functional generalisation flag, given in Algorithm

10, the generalisation mechanism recognises the matching change in the values and is able to

apply this as a function on the positional values in the new generalised schema. Figure 4.10

shows that concrete schemas created through visual interaction with the objects contain a

change in the position of the object when it is fixated. These changes are the same in both

examples hence the generalisation process finds a matching relationship between the values

of the preconditions and the postconditions of the given property i.e., the visual position here.

The generalised schema shows the postcondition value of x coordinate is a transition “$b+1”

as compared to original coordinate in the preconditions “$b”.

To evaluate the functional generalisation, a novel object was introduced in the environ-

ment. The novel object excites the new generalised schema, which is instantiated from

the perceived sensory state. Following the instantiation process, the generalised schema

predicts the outcomes of the schema. Figure 4.11 shows the perceived sensory state (left)

and instantiated generalised schema from that state (right).
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Fig. 4.11 State for the 3rd (left) object and instantiated generalised schema (right)

Figure 4.11 shows that the post-condition of the instantiated generalised schema predict

that the object will move across one position from its current position following a fixation on

it. Thus, the system shows the capability of anticipating the future state by making inferences

from the current state using previous experiences. This prediction may fail during further

exploration, which will result in failure of the generalised schema. This failure will affect the

excitation of the generalised schema making it less excited, and therefore less likely to be

selected again in the future.

4.2.5 Discussion on Experiment 2

This experiment demonstrates the ability of Dev-PSchema to anticipate the outcome of

actions through generalisation, based on previous experiences. Dev-PSchema uses gener-

alised schemas to apply the learning in novel situations, the third object introduced in the

environment in this experiment. This result is consistent with the behaviours in infants. Adler

and Haith [2] found that 3 months old infants are able to anticipate visual content and the

visual position of an object after experiencing a similar event.

Dev-PSchema is also able to find the linear mathematical relationship between the nu-

merical property variables represented in a generalised schema. This capability may be

considered as the “causal anticipation” as the system finds the causal relationship between the

action and its outcome through changes in numerical values. Infants have also been observed

to build an understanding of causal relationships between their actions and changes in the

environment. Haith et al. [72] found that 3.5 months old infants can develop anticipation for
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visual events after very short experiences and develop expectations rapidly even though they

have no control over the event.

In conclusion, this experiment demonstrates the capability of the system to develop

functional relationships between numerical properties common to the precondition and post-

condition. The functional relationship helps to anticipate the outcome of a visual event

having similar visual contents to those previously experienced in a given environment.

4.3 Discussions and Conclusions

Visual anticipation is seen as a very important step in developing knowledge about objects

and events in a given environment. To interact with a static or dynamic environment we

predict the movement of the environment and changes caused in it by any action performed

on it. In a dynamic environment we adjust our movement to achieve an anticipated target

goal and in a static environment the action effect is predicted before performing it [199, 118].

Anticipation has been observed in young infants as well, developed through experiences and

generalising those experiences. Generalisation helps to develop a set of general concepts

from experiences and use those general concepts to anticipate the outcome of an action in a

similar situation/environment [181].

In these experiments, Dev-PSchema created new schemas when none of the previous

schema matched the associated action’s outcome, in terms of postconditions. Schemas

with similar actions are processed further to build generalised schemas, as object-action

concept, leading to similar outcomes in similar situations. This behaviour is seen in humans

as well [67, 203, 131]. The process of building schemas and generalising in this work draws

inspiration from Piaget’s theory, see Section 1.4.1. The system builds new schemas once the

outcome of an action differs from the anticipated outcome, similar to the accommodation

process in Cognitive developmental theory [145]. This expected outcome leads the agent
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to develop a new schema, hence providing opportunities to explore further. Shepard [174]

believes that generalisation is the result of experiencing situations that have similar conse-

quences in an environment. Coupled with this, it is reported that differences in situations

help infants to build new knowledge. Stahl and Feigenson [181] believe that learning is

associated with the unexpected outcomes, leading to further explorations. In experiment 1

of this Chapter we observed that Dev-PSchema created a new schema when the outcome

of the executed generalised schema fails to meet the actual outcome in part 2 of the exper-

iment. The new schema associates the new outcome with the action. Although the failed

generalised schema represents a concept true for a few examples used to build it, it failed

to build a representation, in the generalised schema, true for a broader range of situations.

Such generalisation is called over-generalisation and can be seen in infants. Infants have

been observed to overgeneralise lexical information [67, 61] as well as visual information

[203, 154]. The infants, in these studies, have been observed to use previously learnt words

and actions for the new objects/situations that are not suitable. These examples show that

the infants over-generalise their experiences and apply the same knowledge on irrelevant

objects/situations. This leads to the construction of new knowledge, through either building

a new level of generalisation or developing the exceptions for the generalised concepts.

The results show that Dev-PSchema is able to construct knowledge using perceptual

information that is obtained while acting on the objects. The knowledge, initially reflecting a

particular task, is further developed to demonstrate a general concept (e.g., concrete grasps

to a generalised grasp). The experiments demonstrated the use of Dev-PSchema for schema

generalisation, based on perceptions obtained while acting on the objects and observing

repeated perceptual information i.e., sensory state, associated with them. This ability to

generalise helps the system to further utilise learnt skills for new situations that happen

to share similar perceptual features with those previously experienced. Also, the system

demonstrated a way to tackle the issue of over-generalisation, as it is able to create new

variations of knowledge and deal with specific types of objects with distinguishing features.



4.3 Discussions and Conclusions 115

With the addition of functional generalisation in the system, it is also capable of finding

linear relationships between the numerical values of the sensory perceptions. This helps

to anticipate the visual features of the environment following an applied action. Finn and

Levine [51] and Agrawal et al. [4] have demonstrated similar visual anticipating systems,

where the agents predict object position following an action applied to it. In contrast to

Dev-PSchema, where anticipation is obtained by generalised schemas developed through

active experiences, the systems [51, 4] are trained through neural networks. Thus they need

large data sets or a large number of experiences.

Although the current system (in Dev-PSchema) is only able to find the additive translation

(+/-) between the properties present in the action and states i.e., pre-conditions and post-

conditions, it demonstrates the capability of Dev-PSchema for building such relationships

which can be extended further in the future.

In conclusion, the experiments demonstrated the capability of generalisation to represent

basic object-action concepts in Dev-PSchema. The generalised schemas not only help to

extend the behaviour for use in new situations but also helps to anticipate changes caused by

the action presented in generalised schemas.





Chapter 5

Simulated Infants and Play Behaviour

Dev-PSchema uses an excitation mechanism to generate play behaviours, modelled on the

behaviours observed in infants. This chapter describes the parameters of the excitation

mechanism/system and the infants’ play characteristics relevant to the modelled parameters.

Piaget’s developmental cognitive theory proposes staged learning in humans, gaining new

knowledge by building on existing knowledge. According to the theory, children develop

different cognitive skills at different ages [145], as discussed in Chapter 1. The first stage in

his proposed developmental theory, referred to as the sensorimotor stage, is about learning

through ego-centric sensorimotor experiences. Such experiences, gained through actions

performed and related sensory perceptions, help to build early stage knowledge about the

performed actions and the related objects, see Section 1.4.1.

During infancy, infants spend most of their awake time in playing. Through the play

they interact with their environment and surrounding objects. They build and develop their

knowledge through exploring their own actions, and learning the resulting effects on the

objects in their environment. That is the reason play behaviour is seen as an important

factor in cognitive development [153, 132]. In addition to learning and understanding the

environment, the play provides a foundation for academic and social learning [73].
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Infants appear to be very interested in their surrounding environment and tend to perform

a wide variety of free play activities in order to explore it. Their actions are not constrained

by any predefined rules other than those that are related to their physical capabilities. Nev-

ertheless, physical constraints do help them to scaffold learning, as the infants gradually

understand the different elements which are related to the behaviours they perform. In

addition to the exploratory play, infants demonstrate exploitation behaviours during play.

They perform similar play behaviours repetitively to reproduce the interesting effects they

had with their previous experiences in similar situations. Furthermore, they explore their

environment and objects in it, extending their learning into novel and similar situations

through a process of generalisation [13, 201].

As infants’ cognition develops their play behaviours develop with it, starting from ex-

ploratory play through to practice play, then developing further in pretend play and finally

to rule based play. The type of play behaviour seen in early infancy is called exploratory.

Exploratory play has a few core characteristics to identify as they include being pleasurable

and enjoyable, with no extrinsic goal, being actively engaged and non-literal characteris-

tics [73]. It can be concluded that play behaviour provides the fundamental motor and

cognitive capabilities for humans to grow and survive in their environment.

To understand the play behaviours, we need to understand the causes that generate such

behaviours. In Section 1.3 we discussed that the intrinsic motivations are seen as the reason

for exploratory play behaviours observed in the early infancy which are triggered by novelty,

change and ambiguity [116]. However, continuous exposure of the similar situations or envi-

ronments make infants habituated to it [177]. Thus novelty, change (in the environment or

objects) and ambiguity do provide motivation for exploratory behaviours in infants, however

these motivations decrease as the explorations end with either no change or, repetitive or

non-interesting effect in the environment. Thus infants tend to explore and seek out the novel

opportunities for learning through their play behaviours, however sometimes they maintain
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their focus on familiar objects [57, 59, 81].

A learning model for artificial agents, inspired from infant development, should develop

knowledge through exploratory play behaviours as humans do in their early infancy. The

Dev-PSchema system provides an open-ended learning mechanism through exploratory be-

haviours. The system uses an excitation mechanism to select interesting actions to perform on

objects perceived in the environment, then learns the outcomes related to the different actions.

The objects in the environment are defined with the perceptions containing underlying prop-

erties, see Chapter 3 for details. The action selection (i.e., excitation) mechanism depends on

the object perception and the schema statistics for finding suitable actions to perform in the

environment. The object perception statistics include the number of times the object appeared

in the environment C(Oe) and the number of times used in the schemas C(Os). Whereas the

schema statistics include success rate Sr and the time steps where the schema was executed TS.

Apart from generating exploratory play behaviour for a perceived state in the environ-

ment, the excitation mechanism in Dev-PSchema enables it to vary its action selection, hence

generate different exploration path by tuning weights for the excitation parameters. Similarity,

novelty and habituation are the three main parameters to control behaviours generated with

Dev-PSchema. It should be noted that these parameters are defined slightly differently to

those used in developmental psychology. They are discussed in detail later in this chapter

in Section 5.1. The statistics associated with the perceived sensory information and applied

actions also affect the action selection mechanism, hence behaviours produced.

In this Chapter, we demonstrate the capability of Dev-PSchema to generate variations in

behaviours by tuning the weights applied to the excitation parameters. We also demonstrate

how the past experiences and behaviours affect the action selection in the future. We evaluate

this capability of the system through two experiments. In one experiment we demonstrate

variations in the behaviours by changing weights for the similarity, novelty and habituation

parameters. In the second experiment, we demonstrate variations in the behaviours through
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changing weights for the schema statistics and a perceived sensory state i.e., world state

(WS). The experiments are performed in the Sandbox simulator, utilising reach, squeeze and

press actions (see Chapter 3 for details) on various objects, represented in the environment.

In Section 5.1 we discuss the excitation mechanism of the system and its underlying

processes. In Section 5.2 we provided details about the experiments performed and the

obtained results. Finally, in Section 5.3, we provide a conclusion based on the obtained

experimental results.

It should be noted that this Chapter includes parts from the published peer reviewed paper,

given below:

• Kumar S., Shaw P., Giagkos A., Braud R., Lee M.H., Shen Q. Developing

hierarchical schemas and building schema chains through practice play

behaviour. Frontiers in Neurorobotics. 2018;12:33.

5.1 Excitation Calculator

A Dev-PSchema enabled agent calculates excitation of each schema, hence action, in the

memory by comparing the perceived world state (WS), with the postconditions in each

schema. The excitation is based on the similarity, novelty and habituation for the perceived

world state. A combination of these weighted factors is further combined with a weighted

calculation based on the schema statistics. Thus the overall excitation represents the agent’s

action selection based on the similarity, schema statistics and the novelty for exploration,

through the novelty and habituation pair. Varying such weights, will allow the agent to

demonstrate variations in behaviour selection corresponding to the different simulated indi-

vidual infants with different preferences in a given environment. Thus a higher weighting

for similarity will lead the agent to demonstrate more predictable behaviours i.e., show

preferences towards similar actions and objects. Whereas with higher novelty/habituation
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weights, it will demonstrate more exploratory behaviours and preferences for novel objects.

The agent calculates the excitation of all schemas in the memory for a perceived state

of the environment and selects the schema that has the highest excitation. The excitation

calculation begins with finding the similarity between the perceived objects and the objects

i.e., observations, present in the postconditions of the schema. The similarity calculation is

followed by the similarity, novelty and habituation calculations of the perceived objects that

are calculated through incorporating their statistics. The agent further applies the schema

excitation using its statistics. Algorithm 17 describes the mechanism for calculating the

excitation for a perceived state of the environment i.e., world state (WS).

Algorithm 17 finds sequences of actions, described to as schema chains, before calcu-

lating excitation for each schema in the memory if possible. The chaining mechanism is

discussed in details in Chapter 6. The algorithm, later, calculates the excitation for all the

schemas and the chains in the memory. Either a schema or a chain with the highest excitation

is returned for execution in the environment. Schema chains and their excitations are further

discussed in details in Chapter 6.

When calculating excitation for each schema in the memory, the mechanism finds the

similarity between the schema postconditions and the perceived world state. The mechanism

calculates the highest match between each observation in the perceived world state and the

postconditions of the schema. The equation to calculate the similarity is discussed in Section

5.1.1. The novelty and habituation of each observation present in the perceived world state

are calculated using the equations discussed in Section 5.1.2 and 5.1.3 respectively. The

combination of the novelty and the habituation of an observation is also referred to as the

observation excitation.

A weighted combination of similarity and, novelty and habituation is further applied to

the calculated excitation value by considering previous experiences of the schema. This com-



122 Simulated Infants and Play Behaviour

Algorithm 17 Excitation Calculation
1: procedure get_most_excited_action (WorldState WS, Boolean chain_encouraged)
2: schema_excitations = new list o f pairs
3: Chains = empty list; max_schema_excitation = 0.0; most_excited_schema = None
4: for each schema S in Memory do
5: Chain = First chain in find_path(WS, S_postconditions) ▷ See Alg. 18 for details
6: Add Chain to Memory Chains, if any
7: for each observation O1 in WS do
8: max_sim = 0.0
9: excitations = empty list

10: for each observation O2 in Schema S_postconditions do
11: if similarity (O1, O2) > max_sim then
12: max_sim = similarity (O1, O2)
13: end if
14: end for
15: φ = ω1 ×max_sim+ω2 × [Novelty(O1)−Habituation(O1)]
16: Add φ to Excitations
17: end for
18: overall_exciatation = ω3 ×Avg(excitations)+ω4 ×λ ▷ For λ see Eq. 5.7
19: Add pair (key S, value overall_exciatation) to list schema_excitations
20: if max_schema_excitation < overall_exciatation then
21: max_schema_excitation = overall_exciatation
22: consider S as most_excited_schema
23: end if
24: end for
25: ▷ Calculating chain excitations
26: max_chain_excitation = 0.0
27: most_excited_chain = None
28: for each chain C in Chains from Memory do
29: chain_excitation = calculate_chain_excitation (C)
30: if max_chain_excitation < chain_excitation then
31: max_chain_excitation = chain_excitation
32: consider C as most_excited_chain
33: end if
34: end for
35: if max_chain_excitation < max_schema_excitation then
36: return most_excited_schema
37: else
38: return most_excited_chain
39: end if
40: end procedure

bination represents an excitation for the perceived object. Schema statistics i.e., activations

and successes, are used to calculate the schema excitation. A weighted combination of an

objects’ excitation and a given schema excitation represents the overall excitation for the

schema. This combination is discussed in detail in Section 5.1.4. Changing in weights for

both combinations enables the agent to demonstrate variations in behaviours.
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5.1.1 Similarity

The similarity is calculated by matching the degree of similarity between the perceived

objects (in world state) with those present in the postconditions of previously learnt schemas.

The mechanism matches individual properties present in a schema’s postconditions and

perceived objects’ perceptions such as colour or shape. Although the algorithm calculates

matches between one perception of the perceived object and all the perceptions present in the

postconditions individually, it only considers the highest match between the two perceptions.

The match returns a value between 0 ∼ 1, where 1 indicates the exact match. Equation 5.1 is

used for the calculation of similarity:

Similarity =
∑

C(ρ)
i=1 max

1≤ j≤C(ζ )
[Sim(ρi, ζ j)]

C(ρ)
(5.1)

Function Sim in Equation 5.1 returns the similarity between the ith property of the object’s

perception ρ , that is ρi, and the jth property of the schema’s object perception (ζ j). C(ρ)

represents the count of the number of properties in the perceived object and C(ζ ) is the count

of the number of properties found in a schema object perception. If a property appears in

both states but the values are different, then Sim will return a partial match, i.e., 0.5. However,

in cases of numerical parameters, a match between 0 ∼ 1 will be returned. The final match

value is normalised by taking a ratio between the sum of perception matches and the total

number of properties in the perceived object. Figure 5.1 show an example of a perceived

world state and the schema postconditions used for similarity calculation in Equation 5.1.

5.1.2 Novelty

The novelty of the perceived object is calculated by considering how frequently perceptions,

that describe an object, are appeared in postconditions of the schemas in the memory, in
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Fig. 5.1 Left: Perceptions in the current world state. Right: A schema postconditions
containing C(ζ ) number of perceptions, where each perception ζ contains j number of the
properties

connection to the running time-steps as shown in Equation 5.2.

τ1 =
C(Os)

C(Oe)
(5.2)

where C(Os) represents the number of times the object perception O appeared in schemas and

C(Oe) represents the number of times O it was perceived in the environment. τ1 calculated in

Equation 5.2, represents the ratio between the total number of times an object’s perception is

used in a schema postcondition against the total number of times it is observed (either before

or after an action is performed). Higher τ1 indicates that the object perception has been

used in the schema postconditions for most of the time it had appeared in the environment.

Equation 5.3 describes the calculation for the novelty.

Novelty = (1+ cos(4.75τ1))/2 (5.3)

The novelty equation is designed to express a smooth curve for values between 0 and

1 for τ1, as shown on the right in Figure 5.2. The cosine is scaled between 0 and 1, with

the period reduced such that at τ1 = 1.0 the value is 50%. The scaling coefficient i.e., 4.75,

is used for reducing the cosine period from 2π to approximately 75◦ to keep its value in
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positive coordinates of the graph for all the values. Thus Equation 5.3 provides positive

values between 0 and 1 for any input value of τ1.

The novelty of the perceived object transitions from the maximum to the minimum and

then back up to the 50% over the values of τ1 from 0 → 1. Initially, the novelty of the newly

perceived object will be the maximum. As the object appears more in schemas or is played

with more frequently its novelty reduces. If the object is not played with for a period of time

(i.e., not included in new schemas), its novelty gradually increases.

Fig. 5.2 Left: Value of τ1 for an object perception used in 1, 2 or 3 schemas continuously
against the number of times it appeared in the environment. Right: Novelty of an object
perception over the range of value for τ1

The graph on the left-hand side (LHS) in Figure 5.2 shows the value of τ1 for the objects

used in 1, 2 and 3 schemas as 0.5, 0.667 and 0.75 respectively when appearing continuously

in the environment. The value of τ1 starts reducing as the object perception is not used

further in schemas. Thus, the agent will be interested in the object after a while as its

novelty increases. However, τ1 increases to 0.5 for an object which is used in one schema

as it appears in the environment. This will help to maintain the novelty of the object, to

some level, which is used only once in a schema, providing an opportunity to explore it

further. After that, the value of τ1 will be increased to 0.67 if the object is used twice as it

appears three times in the environment, as shown on the LHS of the graph in Figure 5.2.

Therefore, the novelty of such an object will be 0. However, if an object is continuously
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used in schemas, while it appears in the environment continuously, its τ1 and the novelty

will be increasing. For example, if an object is used three times in the schema while it

appeared four times in the environment, its τ1 will be 0.75, hence the novelty of 0.0436.

Thus, the novelty of an object increases towards the value of 0.5 as it is continuously used in

the schemas. Therefore, another parameter, “habituation”, is introduced for calculating the

object excitation in combination with the novelty. The habituation parameter, described in

Section 5.1.3, starts affecting the object excitation once it is used at least twice in the schemas.

5.1.3 Habituation

Habituation, in combination with the novelty, will enable the agent to draw its attention

from an object, that has been interacted with recently and continuously, towards a different

object that has not been interacted with at all or for a while. Habituation (for an object)

depends on how recently schemas that contain the object perceptions are used (executed) in

the environment. The agent is expected to be more habituated, hence less interested, with

an object/situation that reoccurs after interacting with the environment. This is inspired by

developmental psychology, where infants become habituated with objects or events after a

period of exploration or observation [77, 175, 39, 89]. Habituation at a given time-step is

given by Equation 5.4.

τ2 =


1
n ∑

n
i=1

TSi
Tc
, i f n > 0

0.0
(5.4)

where n is the total number of schemas that contain the object perceptions and have been

executed at least twice, Ts is the time step when such a schema S was last executed and Tc is

the current time step. If schemas containing the object perception have not been executed

more than twice or the object perception never appeared in a schema(s) then τ2 = 0 and

habituation for the perceived object remains 0. This keeps the agent’s interest in objects
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which either have not been explored much or never been interacted with. Also, notice that τ2

is used to calculate the habituation over a period of time steps. Thus, the value of τ2 increases

as a schema containing the object perceptions was executed recently, as shown in Figure 5.3.

Conversely, on the right-hand side of Figure 5.3, τ2 decreases when the object perceptions

do not occur for a period of time steps or a schema(s) containing the object perception has

not been used for a long time. Equation 5.5 presents the formula for the habituation.

Habituation = 1.0− e(−5τ2) (5.5)

Similarly to novelty, the coefficient of the exponential is designed to smooth the curve for

the range 0–1 (as shown on the right-hand side of Figure 5.3). The coefficient (i.e. -5) also

helps to increase the habituation for an object rapidly for smaller values of τ2 and decrease it

slowly, as can be seen on left-hand side of Figure 5.3. Habituation is expected to increase

during frequent interactions with the environment that lead to the same object perceptions

being captured, which in turn allows the agent to select actions that promote interactions

with different areas of the environment.

Fig. 5.3 Left: Value of τ2 for an object perception in schemas used in execution steps [1 & 2],
[1, 2 & 3], [1, 2, 3 & 4] and [1, 2, 3, 4 & 5] against the execution steps. Right: Habituation
of an object (perception) over the range of values for τ2
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The graph on the left in Figure 5.3 shows τ2 for the perceived objects against the number

of an action executions performed in the environment. τ2 for a perceived object increases

as the schema, in which it is used, is executed in recent time-steps. However, τ2, hence

habituation, starts reducing as the schemas are no longer executed. A similar effect is also

observed in infants. Infants show a decrease in their interest as they interact with any objects

or observe the environment for a longer period of time. However, this interest is restored as

when the object reappears after a certain interval following the first interaction with it. The

graph on the right in Figure 5.3 shows that habituation is directly proportional to τ2, hence

the schema containing the object perception execution.

In developmental psychology, “habituation” is defined as a decrement in a response for a

repeated stimulation [155]. Thus a stimulation is said to be novel, when compared to the

previously experienced stimuli, if it causes a change in the response. Thus these two terms,

habituation and novelty, are related to each other. The excitation mechanism here is modelled

on the habituation paradigm in developmental psychology, thus novelty and habituation are

considered as a pair. However, both, novelty and habituation, are calculated separately with

different parameters hence defined separately.

5.1.4 Total excitation

The total excitation represents excitation for the perceived objects, calculated by combining

the similarity, novelty and habituation, as shown in Equation 5.6. This allows the agent to

select an appropriate object to interact with, by utilising previous experiences associated with

all objects in the environment. The excitation of an individual object, based on its perceptions

in the environment, is represented by φ in the system.

φ = ω1 ×Similarity + ω2 × (Novelty − Habituation) (5.6)
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where

ω1 +ω2 = 1 & 0 ≤ ω1, ω2 ≤ 1

5.1.4.1 Object excitation

In Equation 5.6, novelty and habituation are combined as they are both related to experi-

ences associated with the currently perceived objects, whereas the similarity considers all

experienced perceptions of the objects which the system has previously interacted with. The

combination of novelty and habituation is weighted with ω2, whereas similarity is weighted

with ω1. Both weights sum to 1, thereby a proportion is allocated to each component. By

varying the weights, we can simulate different artificial infants with different preferences

(e.g., novel versus favourite toy) in a given situation of the environment. Applying a higher

weight to ω1 will make the agent more likely to interact with similar objects which have a

higher degree of similarity to previously interacted objects. Whereas with higher values of

ω2, the agent will be more likely to interact with the novel or less familiar objects. This can

also be seen as a preference towards either exploration or exploitation.

In exploration, the agent will tend towards interacting with different objects following

a few interactions with one. If the environment contains a static set of objects, the agent

will tend to interact with one after another, cycling back to the first one. In exploitation

mode, the agent will tend to interact with more familiar objects rather than novel and less

habituated objects. The exploitation mode simulates an infant with a strong preference

towards interactions involving the familiar objects.

5.1.4.2 Schema excitation

Alongside the object-related excitation, the agent calculates the excitation of each schema in

the system, in order to select the appropriate schema to be executed. Thus, this excitation is

related to the possible actions that could be performed for the each object, rather than the
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object perception alone. Equation 5.7 gives the calculation of the schema excitation λ .

If the perception(s) in the environment following an action matches the postconditions of

the schema, the execution is considered to be successful. A success rate Sr is maintained to

record the proportion of time that the expected outcome of a given schema has been achieved.

This can also be considered as a reliability measure for each schema.

λ = Sr × e−1.1 Ts
Tc (5.7)

In the equation above, Ts is the last time step on which a particular schema was executed

and Tc is the current time step. A coefficient to the exponential power is used as a smoothing

factor to obtain an exponential response over the values of the ratio between schema execu-

tions and the current time. The coefficient (-1.1) gives λ value about 0.33 (considering Sr to

be 1.0) when the schema was executed in the last time step (Tc equal to Ts). This provides

some excitation to the schema even if it was executed in the last time step, as the schema

may be producing interesting results. For example, squeezing an object that produces sound

may be an interesting action for the agent and it may want to repeat it to get the same effect.

5.1.4.3 Combined excitation

Ultimately, the excitation for each schema is calculated by considering each object that is

present in the environment. Equation 5.8 gives the final excitation of a schema combined

with all object excitations.

Excitation = (ω3 ×
∑

m
i=1 φi

m
)+(ω4 ×λ ) (5.8)
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Where:

ω3 +ω4 = 1 & 0 ≤ ω3, ω4 ≤ 1

where m is the number of all the perceived objects, φi is the excitation of the ith object and λ

is the particular schema’s excitation. Notice that due to Equation 5.7, a schema that is being

executed repeatedly results in a lower excitation value for λ , which in turn contributes less to

the final excitation. In a similar vein, schemas that are never used become more excited than

their recently executed counterparts. This enables the agent to explore the environment by

performing different actions. The weights of the average object and schema excitation are

defined by ω3 and ω4 respectively.

The schema with the highest excitation competes with the most excited chain. Algorithm

17 returns either the schema or chain with the highest excitation for execution. The algorithm

describing the mechanism for the chain excitation and chain execution is given in Chapter 6.

The schema execution mechanism for the most excited schema is given in Algorithm 2.

5.2 Experiment and Results

To demonstrate and evaluate the excitation mechanism in Dev-PSchema we performed two

experiments. The first experiment demonstrates the effect of variations in object excita-

tion weights, ω1 & ω2, on preferences for the object to interact. The second experiment

demonstrates the effect of variations in schema weights, ω3 & ω4, on the choice of the

action in a given environment. Both experiments demonstrate the capability of the system to

simulate individual infants, having varying preferences and behaviours provided with the

same object(s), in the same situation.

The experiments are performed in the Sandbox simulator, discussed in Chapters 3 and 4.

The simulator contains a manipulator/hand to perform different actions in the environment,

and simulator provides high-level descriptions for the objects in the environment along with
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proprioceptive information i.e., touch and hand grip. The objects in the environment are

represented through visual perceptions, especially shape and colour. The agent performs

high-level actions in the environment selected by the excitation mechanism.

Although the set of actions used in the experiments are limited, they are sufficient to

demonstrate the playful capabilities of Dev-PSchema enabled agent similar to an infant

at play. The agent is provided with an initial set of predefined bootstrap actions. In a

developmental sensorimotor system, these actions may be learnt through motor babbling, as

discussed in Chapter 3.

5.2.1 Experiment 1: Novel vs Familiar Preference

This experiment is inspired by the study of “Young children’s preference for unique or owned

objects” by Gelman and Davidson [59]. The study investigates the infants’ preference for a

well-known object (a favourite toy) rather than a new identical object or a novel, non-identical

object. In the study, most of the time infants tend to select their own, well known, objects

when they are given a choice of two. Interestingly, the infants are found to select the identical

or novel object when they are asked to select an object for the experimenter.

To replicate the behaviour of infants in the experiment only the reach schema, hence ac-

tion, is used. The agent’s preference is expected to be demonstrated by utilising several reach

related schemas that are gradually learnt by interacting with the objects in the environment.

The experiment starts with a single object, a red cube, presented to the agent. With

the single reach schema in memory, the agent is most excited to interact with the object

by reaching towards it. Once reaching is performed successfully, we reset the environment

and return the hand to its initial position. The experiment is divided into two stages. The

first stage is for familiarisation, that is the agent reaches for the same object three times,

to decrease the object’s novelty and increase its habituation. The second stage is the test
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condition, where both, the familiar and a novel, objects are presented to the agent. This stage

is further divided into four parts for each of the novel objects introduced. For each object

combination, the weightings for similarity, novelty and habituation, ω1 and ω2, are varied

to show the change in preference. Notice that ω3 and ω4 remain 0.6 and 0.4, respectively,

in all the variations of the experiment, to keep the focus on object excitation (Equation 5.6)

rather than the schema excitation (Equation 5.7). A slight weighting is given to the value of

ω3 over ω4 to keep excitation dependence on the similarity and habituation/novelty rather

than schema statistics i.e., activations and successes.

5.2.2 Results: Experiment 1

Following the familiarisation stage, along with the original object (i.e., the red cube), we

introduce four different objects one by one. Each of the new objects either contains at least

one common property i.e., shape or colour, to the red cube or contains no matching property.

A blue cube, a red ball, a red cube and a blue ball are used, following the familiarisation. Each

of the new objects is introduced after the familiarisation stage, without any more experience

being acquired. We expect that the agent will prefer to reach for the novel object when it is

introduced after a few experiences with the previously introduced object, at equal weights

for the similarity and novelty/habituation pair. However, by changing the parameter values,

we expect the agent will reach for the familiar object rather than the novel one. The initial

weight for similarity, ω1, and novelty and habituation, ω2, are set to 0.5, then the weight ω1

is increased in steps of 0.1, whilst maintaining ω1+ω2 = 1 (Equation 5.6), until the observed

behaviour flips towards the familiar object.

In this experiment, only one schema (reach) is used. Thus the object used in the en-

vironment was only added in the one reach schema and τ1 values for all the cases of this

experiment were recorded as 0, 0.5, 0.33 and 0.25 in four execution steps, from 1 to 4

respectively. Below is a discussion of the observed behaviour of the agent following the

initial experience and perceiving the novel object over different values of the weights for
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excitation parameters.

5.2.2.1 Novel object with matching properties (same colour & shape)

An identical object, matching all the properties except at a different position, to the red cube is

placed in the environment. Although similarity and novelty/habituation are equally weighted,

the agent draws its attention to the novel object, as its new position gets higher novelty

than the identical position. With just 10% increase in the similarity weight (ω1 = 0.6), the

agent’s preference switches to reaching towards the familiar object, at the familiar position.

Figure 5.4 shows the excitations of two reaching decisions (reach familiar and reach novel) in

two simulated individuals, after reaching to the familiar object during stage one. In the figure,

the lines represent the excitation for the two reaching decisions in the different individuals.

Each pair of lines, having identical colour and symbol, represents the excitations for reach

actions towards the familiar object (dashed line) and novel object (continuous line), in an

individual. The action with the higher excitation, among each pair, is the individual’s decision

of reach action for either novel (continuous line) or familiar object (dashed line).

For each weighting, (colour and marker in Figure 5.4), the executed action is the one with

the highest excitation. The first three executions in the figure represent the familiarisation

stage of the experiment. The dashed lines represent the reach for the familiar object, whereas

the continuous lines represent the reach for the novel object. Note the novel object is only

introduced following the completion of the familiarisation stage (three executions). The

enclosed figure shows for the novel object at equal weightings (red star) the excitation of

the “reach for novel” object is higher, whereas, with a similarity weighting of 0.6 (blue

circle), the excitations are almost the same, but with “reach for familiar object” marginally

higher. At this point, the agent prefers to reach for the familiar object rather than the novel

one. Although, the gap between the two excitations, for novel vs familiar, is small, the agent

follows the winner takes all rule, hence the size of the gap is not important. Thus, a slight

increase in the weight for similarity (ω1) enabled the agent to prefer the familiar object over
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Fig. 5.4 Reach actions for Familiar (dashed line) vs. Novel (continuous line) (identical in
colour and shape) object. The enclosed figure shows the excitations at the 4th execution.

the novel.

Thus, Figure 5.4 shows excitation for reach actions in the two individuals, with different

weights for the excitation parameters. One individual (red stars), having ω1 = ω2 = 0.5,

prefers to reach for the novel object, at step 4, after reaching towards the familiar object for

three times previously. Whereas, the other individual (blue circles), having ω1 = 0.6 and

ω2 = 0.4, prefers to reach for the familiar object at step 4, over the novel one, even after

reaching for it previously.

5.2.2.2 Novel object with change in the single property

In this part, after the familiarisation stage, the agent is introduced with a novel object, varying

in one feature, either colour or shape. Varying just ω1 from 0.5 to 0.7, it is observed that the

agent interacts with the novel object, i.e., the blue cube or the red ball after being familiarised

with the red cube. The novel feature i.e., colour or shape, of the novel object attracts the

agent’s attention, therefore it prefers to reach for the novel object over the familiar one even
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for the higher similarity weights i.e., ω1 from 0.5 to 0.7. Changing ω1 further to 0.8, and ω2

to 0.2, the agent’s behaviour switches from interacting with the novel object to interacting

with the familiar one during the test condition.

The excitation of the novel object staying higher and a greater weighting towards the

similarity is required to cause the shift in behaviour. The additional variation in the object

properties results in the agent interacting with the novel object instead of the familiar one,

until a higher weighting towards the similarity parameter is applied to draw the agent’s

attention towards the familiar object. At this level (similarity weight ω1 = 0.8), the low

weight to the novelty/habituation parameters (ω2 = 0.2) counters the excitation generated

from the different properties. Figure 5.5 shows the excitation of the “reach novel vs. familiar

object” schemas for the different values of the excitation parameters.

Fig. 5.5 Reach actions for Familiar, in dashed line, vs. Novel (change in either colour
or shape) object, in continuous line. The enclosed figure shows the excitations at the 4th

execution.

Changing the similarity weight values allows several individuals to be simulated. For

weights in the range 0.5−0.7 for ω1, the agents are found to be interacting with the novel
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object, however, each of these has different excitations for the reach actions towards the novel

and familiar objects. When the similarity weight is set to 0.8 or above, the agent is more likely

to interact with the familiar object rather than the novel one. Furthermore, it is anticipated

that both the object and schema excitation weights (i.e., ω3 and ω4 in Equation 5.8) will

cause the agent to habituate with the same object and action when the agent is allowed to

interact with the world for a longer period of time.

Thus, Figure 5.5 shows that the excitations for reach actions in the four individuals (stars,

circles, triangles and right arrows), with different weights for the excitation parameters. The

three individuals (stars, circles and triangles), having ω1 = 0.5− 0.7 and ω2 = 0.5− 0.3,

prefer to reach for the novel object after reaching towards the familiar object for three times

previously. Whereas, the other individual (right arrows), having ω1 = 0.8 and ω2 = 0.2,

prefers to reach for the familiar object, over the novel one, even after reaching for it previously.

5.2.2.3 Novel object with change in the both properties (colour & shape)

If the agent is presented with a novel object having different shape and colour, following

the familiarisation, it requires a greater weight to the similarity to draw its attention to-

wards the familiar one. The novel object provides higher excitation due to novel shape and

colours, being at a different position. The results show that the agent interacted with the

novel object after familiarisation whilst the weight ranged between 0.5 and 0.8 for ω1, by 0.1.

When ω1 was set to 0.9, the agent had a higher preference for familiar features, hence

drew its attention towards the familiar object and reached for it. At this point, although,

the novel object has higher novelty, the agent prefers to reach for the familiar object due to

the higher weight for similarity. Figure 5.6 shows the excitations for schemas for reaching

towards the familiar and novel objects.
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Fig. 5.6 Reach actions for Familiar, in dashed line, vs. Novel object, in continuous line
(changed in both colour and shape). The enclosed figure shows the excitations at the 4th

execution.

Figure 5.6 shows that increment in the similarity decreases the excitation of the schema

related to reaching towards the novel object, whereas that for the familiar increases. However,

the “novel object” remains more interesting for the agent to interact with until the similarity

is weighted 90% (0.9) of the total object excitation. When ω1 is set to 0.9, the similarity

component makes the overall excitation of the familiar/similar object higher than that for the

novel object, causing the agent to reach for the familiar object rather than the novel one.

Thus, Figure 5.6 shows excitation for reach actions in the five individuals (stars, circles,

triangles, right arrows and hexagons), with different weights for the excitation parameters.

The four individuals (stars, circles, triangles and right arrows), having ω1 = 0.5−0.8 and

ω2 = 0.5−0.2, prefer to reach for the novel object after reaching towards the familiar object

for three times previously. Whereas, the fifth individual (black hexagon), having ω1 = 0.9

and ω2 = 0.1, prefers to reach for the familiar object, over the novel one, even after reaching

for it previously.
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From Figures Figs. 5.4 to 5.6, it is evident that the agent’s preference in the environment

changes with the variation in the excitation weights ω1 and ω2. A weighting towards ω1

will increase preference towards the familiar objects. However, as the difference between

the familiar and novel object increases, so do the required weighting towards ω1, in order to

draw the agent’s attention towards the familiar object.

In this experiment, the agent is shown to express different behaviours for the novel object,

while the weights of the similarity and excitation parameters change. A summary of the

points at which the changes occur is given in Table 5.1.

Matching Properties Behaviour Change
Sim / Nov-Hab (ω1 / ω2)

Two 0.6 / 0.4
One 0.8 / 0.2
Zero 0.9 / 0.1

Table 5.1 Summary of the weightings at which the observed behaviour changed the preference
from novel to familiar.

5.2.3 Experiment 2: Action Preferences

This experiment is inspired by the study of “Stimulus variables which affect the concordance

of visual and manipulative exploration in six-month-old infants” by Steele and Pederson [182].

This study investigates habituation in the infants through continuous visual and manipulative

experiences. It was observed that the infants’ engagement in both experiences decreases

with each trial, hence both engagements were habituated with the continuous experience. In

this experiment, we demonstrate action switching in a Dev-PSchema enabled agent for a

set of perceptions experienced continuously. We consider the action switching behaviour as

the action habituation, observed in the infants with the continuous manual engagements [182].
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By varying the excitation parameters described in Section 5.1, several different behaviours

emerge from interacting with the environment. In this experiment, we vary the weights ω3

and ω4, keeping ω1 and ω2 constant (0.5 each). We examine the agent’s preference for either

favour a recently executed action or switch to a different action during a series of executions.

For this experiment, we use the same agent and the environment described in Experiment 1

above. To demonstrate the behaviour with different preferences for actions, we provide the

agent with two different actions, “Press” and “Squish”, which produce the same outcome

in the environment. The purpose of this experiment is to demonstrate the variations in the

behaviour of the agent by changing ω3 and ω4, whilst keeping ω1 and ω2 constant. Having

the same outcome/postconditions and the object for both actions give the same similarity and

novelty/habituation. Thus, the excited schema (hence excited action) depends only on the

schema excitation, described in Equation 5.7, calculated through incorporating the schema

statistics.

We only use one object in the environment for this experiment to control the variation

in object excitation, and place the end-effector at the same position as the object to remove

the reach action from this experiment. Each action, squeeze or press, responds with a new

observation, “press”, in the environment, which provides the same similarity value for the

both action schemas.

5.2.4 Results: Experiment 2

We let the agent play with the object using the actions and record which action is selected at

each execution. The agent’s observed behaviours for different values of ω3 and ω4 are shown

in Figure 5.7.

Figure 5.7 shows the most excited schema, hence the action, for each execution at the

different pair values of the ω3 and ω4 for 10 executions. From the results, it is evident

that the agent shows different behaviours as the weights vary, thus representing as different



5.2 Experiment and Results 141

Fig. 5.7 Excited schema action for different values of ω3 and ω4. Lines off-set for visibility

individuals. As the weight shifts towards ω4, the agent becomes increasingly inclined to

frequently switching between actions, rather than to explore the effects of the previous action

further.

For all the ω4 weights the agent initially performs the squeeze action three times con-

sequently, except for ω4 = 0.4. Following that, it performs the press action as it gets more

excitation than the squeeze action. After performing the press action three times, the agent

prefers the squeeze action again as it gets more excitation. At this point both actions have

been executed an equal number of times, however the press action has been executed more

recently. At values 0.5-0.8 for ω4, the agent starts alternating between the two actions.

However, at the value of 0.9 for ω4, the agent still performs the squeeze action for the third

time before switching action again, as the press action has been executed recently resulting

lesser excited than the squeeze action.

In this experiment, only one object and two different actions, press and squeeze, were

used. For novelty/habituation calculation τ1 was recorded as 0, 0.5, 0.67, 0.5, 0.4, 0.33,
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0.28, 0.25, 0.22 and 0.2 for executions steps 1 to 10 respectively. Whereas, values of τ2

for execution steps 1 to 10 were recorded as 0, 0, 0.5, 0.67, 0.75, 0.8, 0.83, 0.85, 0.88 and

0.89 respectively. However, novelty/habituation remained the same for both actions and the

excitation was only based on the individual schema excitation.

5.3 Discussion and Conclusions

A habituation paradigm is widely used in developmental psychology experiments to test

infants’ ability to identify or recognise objects [203, 163, 168], or events [86, 158] based on

visual perceptions. These studies show that infants tend to look longer towards the novel

objects or novel and unexpected events than those with which they are familiar or able to

predict. However, infants have been observed to have favourite objects for interaction and

play [57, 81]. Also, it has been observed that young children prefer their favourite toy over

new toys, even in the presence of a brand new version [59]. In the experiments by Gelman

and Davidson [59], young children were asked to select a toy from a choice of their own or a

new toy (identical and non-identical). They preferred their own toy when they were asked to

choose a toy for themselves and preferred the novel object when they were asked to select

one for the experimenter.

In another study, Sigman [175] investigated exploratory behaviours of the pre-term and

full-term infants at the same conceptional age. Following the object familiarisation, the

infants were provided with the same object along with another novel one. The experimenters

observed that the both groups explored the novel objects more than the familiar object.

However, the pre-term infants explored the familiar object for longer than the full-term

infants. Similarly, Ruff [161] examined behaviours of 7-month and 12-month infants with a

set of objects over a period of time. Different activities such as examining, mouthing and

banging, were recorded during the experiment. It was observed that the examining activity

occurred before the other activities when a new object was presented and the examining
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activity decreased over the period of time. Furthermore, the 7-month old infants spent more

time on examining and mouthing than the 12-month old infants. The activity time for bashing

the new object was, also, found to be increasing over the trial for the both age groups.

Steele and Pederson [182] investigated the effect on visual fixation and manipulation

with toys across 10 continuous trials in 26 weeks old infants. They were presented the same

toy for the 1st to 7th and 10th trials and a novel object was introduced at 8th and 9th trials.

Fixation and manipulation time was found to be decreasing at each trial. However, fixation

time was increased at the 8th trial when a novel object was introduced, different in either

colour, shape, texture or shape and texture. The manipulation time was increased when the

novel object consisted of a different shape and texture. However, the manipulation time was

found to continue decreasing when the novel object only differed in colour.

These studies, [57, 175, 59, 81, 182, 161], demonstrate that over a period of continuous

interaction with an object an infants interest declines leading to them increasingly seeking

out novel objects and events. However, they show variations in their behaviours or deci-

sions [59, 182]. This demonstrates that the attention for different objects depends upon

the individual preferences and experiences. Excitation and attention are seen as important

factors for individual behaviours in developmental psychology. Colombo [38] considers

alertness, object features, spatial orientation and endogenous control as the basic factors that

affect visual attention in the environment. Although vision is the least developed sense at

birth, humans have evolved to rely heavily on this sense [176]. These experiments are con-

cerned with the last three factors of visual attention; object features, spatial orientation and

endogenous control. Object features and relevant spatial orientation are inseparable from one

another. The endogenous control factor in visual attention is responsible for holding attention

and engagement. The novelty-familiarisation pair is used in developmental psychology to

investigate visual attention in humans. To investigate the attention in the first experiment,

the simulated infant is initially familiarised (habituated) with a visual stimuli or event and

then is presented with a novel and the familiar objects side by side, a procedure seen during
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experiments with human infants [203, 59, 182, 163, 168].

In particular, Steele and Pederson [182] found that the infants’ engagement with the

objects decreases with each trial, hence the objects get habituated. The infants tend to engage

more with the objects if they are novel visually. In experiment 1, we demonstrated that the

agent tends to interact with the novel objects if they differ more from the habituated. Thus the

weight required for the similarity, to drive the attention towards a familiar object, increases

as the visual change in the novel object increases (see Section 5.2.2).

From the results in developmental psychology experiments, discussed above, it is evident

that children show different behaviours for novel and familiar objects depending upon their

experiences and preferences. This effect was reproduced within the experiments here by

changing the weights of the excitation parameters. The results demonstrate the capability of

the system to generate different behaviours when interacting with novel vs familiar objects.

The agent also transfers the habituation from the habituated objects to a perceived object

having similar perceptions. This results in low novelty, hence higher habituation, for the

newly perceived object, as observed in the first part of Experiment 1 (i.e., same colour

and shape). Therefore, only a small change in favour of the similarity weighting triggers a

change in observed behaviour. However, as the novel object becomes increasingly different

(hence interesting), the novelty value of it becomes increasingly higher, requiring a greater

weighting on similarity to cause the change in agent’s behaviour, as observed in Section

5.2.2.3 (Experiment 1). Similar behaviours were observed in infants where they show more

interest in novel objects than the familiar [182].

This behaviour of the artificial agent can be compared with the infants’ behaviours. While

many of the parameters were controlled, particularly in Experiment 1, it should be clear that

within the pairs of weights, a higher weighting on ω1 will drive the agent to spend longer

exploring the same object, and a higher weighting on ω4 will encourage the agent to try

different actions. By adjusting each of the weights, different behaviours can be simulated.
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This could be considered as modelling different infants’ preferences, or different external

conditions under which the agent is acting. Currently, the weights are fixed at the start of an

individual experiment, but in the future allowing the agent to vary these, could generate a

shift from exploratory play behaviour to more exploitative or focused behaviour. Figure 5.8

shows the possible object preferences and behaviours of the agent for different values of the

excitation parameter weights i.e., ω1, ω2, ω3 and ω4.

Fig. 5.8 Behaviours of the agent over the axes for ω1, ω2, ω3 and ω4

In these experiments, we have presented the excitation mechanism and demonstrated the

effect of varying weights related to similarity, novelty and habituation. As the agent interacts

with the objects, variations in the weights lead to the expression of different exploratory

behaviours. Experiment 1 illustrates the variation in behaviours of the agent by changing

the weights of the similarity and novelty/habituation pair (ω1 and ω2), while keeping the

object and schema excitation weights constant (ω3 and ω4). Similarly, experiment 2 demon-

strates the variations in behaviours of the agent by changing the weights of the object and

schema excitation (ω3 and ω4), keeping the similarity and novelty/habituation weight pair

(ω1 and ω2) constant. This aspect of the system enables Dev-PSchema to simulate different
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individuals with individual behaviours rather than a single simulated agent with average

behaviour. It also enables the agent to switch behaviours from exploratory to more focused

behaviour and vice versa.

Researchers in developmental psychology mostly represent average results in their work

[67, 13, 59]. However, individuals demonstrate different behaviours and preferences, con-

tributing to the average result presented in that study [3, 186]. Similarly, in robotics applica-

tions, inspired from developmental psychology, researchers simulate an average behaviour

represented in developmental psychology studies [172, 141, 125, 83, 6, 136, 92]. In contrast,

in these experiments we have demonstrated the ability of the system, Dev-PSchema, to

simulate different individuals with different behaviours rather than an average behaviour

and preference. The variations among simulated individuals in their behaviours lead them

to develop skills through different developmental paths. A similar development is also

observed in infants. Thelen et al. [186] observed variations among four individual infants

in their behaviours and paths for developing reach onset. During the experiments, each

infant demonstrated different levels of activities and different preferences for the movement

patterns. This observation is also backed by Adolph et al. [3]. In their study, [3], the authors

observed variations among individuals while developing different locomotive skills. The

results also demonstrated variations among the infants in decision making during various

locomotion tasks, e.g., crawling down a slope.

In conclusion, we have demonstrated and evaluated the capability of Dev-PSchema to simu-

late different individuals through the experimental results reported above. We have focused

on the excitation mechanism and its parameters to demonstrate its importance in the agent’s

behaviours. The agents’ behaviours show attention, interest and their preferences in the

environment.



Chapter 6

Forming Higher Level Actions

Most actions performed by humans on a day to day basis are defined by high-level objectives

and actions. These objectives are typically achieved by a series of low-level motor actions

or a sequence of actions, referred to as primitive actions. For example, drinking water is

a high-level objective, which can be achieved by a sequence of actions, such as reaching

for the glass, grasping it, filling it with water, opening of mouth while transporting the

glass to the mouth, and adjusting the angle of the glass in the mouth to enable comfortable

drinking. In this example, a sequence of primitive actions is executed to achieve the overall

objective, drinking water. These primitive actions are continuous and often inseparable

from each other whilst predominately maintaining the sequential ordering, with some oc-

casional overlap between actions. For example, grasping an object involves reaching and

curling the fingers around the object. These two actions are executed in a particular temporal

order, however, a pre-grasp shape will have been formed as the arm reaches to the glass [194].

From developmental psychology, we have extensive evidence that sequences of actions

are planned and executed as a single high-level action. This capability is seen in the early

stages of life in humans. Piaget believed that the ability to plan and execute a sequence of

actions to achieve short objective appears in early infancy. According to him, infants are able

to achieve short objectives at the fourth sub-stage, Coordinating Secondary Schemes, (8 – 12

months old) of the cognitive developmental theory [147], see Section 1.4.1 for details. For
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example, at this age infants can reach for an object by avoiding or removing any object in the

path [119]. The objective, reaching for the target object, is achieved through planning and

performing the actions starting from moving the hand forward towards the target either by

avoiding the obstacle or removing the obstacle first.

Weigelt and Schack [199] found that 3-5 year old infants change their hand orientation to

grasp an object based on the goal in mind. The children, in the experiment, were asked to pick

and place one end of a two coloured cylindrical object. It was observed that the children were

picking the object in such a way that they could easily place the appropriate end as directed.

Efficiency in the task increased with age, however, younger children were also found with the

capability to achieve comfort for the end state, a final phase of a series of actions or situations.

This ability has also been investigated in younger infants. In a similar experiment, McCarty

et al. [118] found that 14 and 19, but not 9, month old infants planned the sequence of actions

before execution. The researchers found that the older infants reached and grasped the spoon

in such a way that offers clean transportation to their mouth. Achieving a proper grip to get

the spoon to their mouth provides an evidence for action planning in young children.

In the psychological studies discussed above, the subjects performed sequence(s) of

actions; reach, grasp, pick, transport and place, on the different objects. The action sequences

were structured from a given state of the environment to the objective (state), i.e., the goal.

Initially, psychologists focusing on sequential actions believed that such action sequences

were actually reflexive chains, labelled to as “reflex chains” [160]. In reflexive chains, a

sequence is executed in such a way that each action outcome triggers the next action in the

sequence. This theory defines that sensory feedback plays an important role in sequence

execution. Later, Lashley [98] raised a question on the reflexive chain theory regarding the

action sequences. He believed that action sequences can be executed even when feedback is

interrupted, as most of the sequences are executed so quickly that individual actions within

the sequence cannot be triggered by the sensory feedback. In addition, errors in behaviours

containing sequential executions suggest that the entire behaviour is planned as a single
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sequence rather than each step triggered by feedback [160]. According to Lashley’s theory,

action sequences are planned before execution and do not depend upon intermediary sensory

states.

Rosenbaum et al. [160] reviewed Leshley’s claims about action sequencing. Referring

to the psychological studies on end-state-comfort, the authors believed that in such action

sequences, the subjects used immediately generated plans in the following similar tasks.

The hand-path priming experiments, where the hand follows a previously used path in a

task [79], provide further evidence that the action sequences are potentially pre-planned and

independent of intermediary sensory feedback. van der Wel et al. [190] in their experiments

found that subjects anticipated sensory states rather than interrupting the sequence to get the

sensory state in an obstacle avoidance experiment. They found that subjects raised their hand

higher when an obstacle was expected, than when no object was expected during an object

transportation task between two points. They also found that subjects continued to raise their

hand, even after passing the obstacle. In a similar study, Jax and Rosenbaum [79] found

that subjects used previously generated sequence plans irrespective of the feedback during

the sequence execution. In the experiment, subjects were asked to transport an object while

avoiding the obstacle. They found that subjects used a more curved path when there was no

obstacle present in the path, having previously completed the same task involving obstacle

avoidance, than the subjects who previously completed the same task involving no obstacle

in the transportation path. Similarly, Kent et al. [87] in their experiment asked their subjects

to grasp a two coloured object with their thumb and index finger, specifying the colour and

side their thumb should touch. They observed that subjects who previously performed the

same task, tended to use a similar grasp to perform the same action again, even when the

grasping constraint was no longer present. Whereas a random group used more efficient

approaches to perform the task in the same situation. Similar to Kent’s [87] experiment,

Dixon et al. [43] asked the subjects to grasp from a particular part of the object and rotate it.

They found that the subjects reused action sequences that had been generated from previous
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trials, rather than planning a new and efficient sequence to achieve the objective.

From the above discussed studies, it is suggested that previously generated action se-

quences are re-used in repeated situations, with limited need for constant sensory feedback.

These studies also suggest that action sequences are planned in advance and are executed as a

single continuous action after some repetitions, rather than as a series of individual primitive

actions. In psychology, it is also believed that a repetitive sequence of actions is performed

by a high-level motor command from the brain which emerges from practice and experience

[85, 53, 185]. Through repetitions, an action sequence often leads to being performed as a

single smooth movement [53]. In repeated action sequences, such actions become part of

what is referred to as a motor program [85, 185]. Motor programs are related to memory and

learning, and defined to be a set of motor commands structured before executing a sequence

of actions, which can be executed with limited or no peripheral feedback [185, 129], as if they

were a single fluid action. Each action in a motor program is executed in quick succession to

form a continuous action, with limited or no peripheral feedback [160, 98]. Interruption of

a motor program typically results in the individual restarting the full sequence, rather than

being able to continue from the point of interruption.

With age, action sequencing becomes an important part in our daily routines. Action

sequences are created, adapted and executed to achieve different objectives. Without the

learning and recall of commonly used action sequences, our minds would constantly be

caught up with planning fine motor actions required to achieve each task. Thus action

sequences created in one task may be re-used in a similar situation or environment without

recreating and planning a new sequence, as discussed above. In robotics, robots may also

need to achieve objectives via a sequence of primitive actions. Thus, the robots should be able

to develop complex actions using basic actions which have been applied in the environment

repeatedly. We have developed a chaining mechanism in Dev-PSchema, enabling it to create

and use action sequences, referred to as schema chains. The chains are discovered with

exploration and available for re-use in similar situations, triggered through the excitation
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mechanism discussed in Chapter 5.

In Section 6.1 we describe the Dev-PSchema mechanism for creating and executing

schema chains. In Section 6.2 we provide details of experiments, and the results, per-

formed to evaluate the chaining mechanism. Finally, in Section 6.3 we evaluate the chaining

mechanism based on the experimental results and provide a conclusion. We would like to

acknowledge that parts of this chapter, particularly Experiment 2 (Section 6.2.3), have been

published in a peer reviewed paper, given below:

• Kumar S., Shaw P., Giagkos A., Braud R., Lee M.H., Shen Q. Developing hierarchical

schemas and building schema chains through practice play behaviour. Frontiers in

Neurorobotics. 2018;12:33.

6.1 Schema Chains

As an agent, equipped with Dev-PSchema, gains more experiences and skills, some of the

skills can be linked together in order to form higher level skills. For example, individual ac-

tions such as reaching and grasping can become linked by a single reach→grasp action. This

combination is developed through creating a sequence of existing action schema, referred to

as schema chains or simply chains. Through playful exploration, more complex chains can be

learnt that combine basic actions and form more sophisticated high-level actions, hence skills.

Chaining helps in achieving distant states that are not possible when employing a single

schema. Schema chains are found during the excitation calculation process, described in

Chapter 5. Schema chains are found to achieve postconditions of a schema containing the

preconditions that do not match the current state of the environment. Thus, the aim of the

chaining mechanism is to achieve a state (schema postconditions) in the environment through

a sequence of schemas. The chaining mechanism finds links between the preconditions and
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postconditions of two different schemas in the memory to develop a chain. Figure 3.11, shows

an example of a two schema chain obtained by linking the preconditions and postconditions

of two different schemas. Longer chains are discouraged during the chaining process in order

to reduce computational costs and avoid overly complicated chains that are more likely to be

unsuccessful. Here, a limit of 4 schemas is set.

In PSchema chains were only found and executed to achieve a target state provided by

an external agent [172]. Dev-PSchema calculates the chains itself through the excitation

mechanism and executes if any of the discovered chains is found to be most excited. Thus

providing an opportunity for Dev-PSchema enabled agents to develop high-level actions

through a combination of basic actions and make use of them in play behaviour. Algorithm

18 describes the mechanism for developing chains using an initial and target sensory state.

Algorithm 18 finds a link between an initial state (WS) and a target state through schemas

in the memory. In the problem solving mode, the target state is provided by the user. The

problem solving mode is further discussed in Chapter 7. The chaining process starts by

finding the schemas that have similar preconditions as the initial state, usually a current

environmental state. The schemas Ss, line 2 of algorithm 18, contains preconditions which

are a subset of the current environmental state, WS. The algorithm finds links between

postconditions in schema S and any other schema, S′, in the memory. Any schema(s) linking

S and the target state form a chain from S to S′ that contains postconditions matching the

target state, a schema postconditions in the play mode or user-defined state in the problem

solving mode. The algorithm adds all the possible chains, for a given state of the environment,

and returns a list of all possible chains to achieve the target state. Each calculated chain is

provided with an estimated success rate, which helps to select a suitable chain. In the play

mode, the estimated success rate is calculated by taking the average success rate of all the

schemas present in the chain, whereas in the problem solving mode the agent calculates it

through equally weighted similarity between first schema preconditions and the current state

of the environment, combined with the average success rate of the schemas in the chain. The
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Algorithm 18 Schema chain calculation
1: function f ind_path (WorldState WS, WorldState Target, Boolean Problem_Solving)
2: Ss = schemas with similar preconditions as WS
3: Chains = empty list; Chains_ f ound = empty list of pairs
4: for each schema S in Ss do
5: Start = S; currentChain = [S]
6: while Start_postconditions ̸= Target do
7: for each schema S′ in Long-term Memory do ▷ Optimisation applied, see Section 6.1.1
8: if Start_postconditions ∼= S′_preconditions then
9: Append S′ to currentChain

10: if S′.post ∼= Target AND length(currentChain)< 5 then
11: Add currentChain to Chains; break ▷ Go to line 4 for next S
12: else
13: Start = S′
14: end if
15: end if
16: end for
17: if length(currentChain)≥ 5 then
18: break ▷ Restrict chain length
19: end if
20: end while
21: end for
22: for each chain C in Chains do
23: chainProb = 0.0; excs = empty list
24: for each schema S in Chain C do
25: chainProb += Sr(S) ▷ See Equation 3.1
26: end for
27: chainProb = chainProb/length(C)
28: if Problem_Solving is True then ▷ This is False by default
29: sim = states_similarity(1st schema_preconditions in C, WS)
30: chainProb = (sim×0.5)+(chainProb×0.5)
31: end if
32: prob = chainProb×Cr ▷ Cr = 1 if chain not exists/executed previously
33: add Pair [chain C, prob] to Chains_ f ound
34: end for
35: return Chains_ f ound
36: end function

estimated success rate in both cases, problem solving and play, is further weighted with the

chain success rate, if the chain already exists in the memory, see line 32 in the algorithm.

The chain success rate (Cr) is a ratio between chain successes and its activations, if any. Any

newly created chain has Cr set to its maximum value i.e., 1.0.

In the play mode, the agent uses the chain with the highest estimated success rate for

the schema excitation with which the chaining process began, Line 5 in Algorithm 17. In

problem solving mode, the user is provided with list of all possible chains and their estimated

success rate. The agent performs a user selected chain in the environment in problem solving

mode.
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6.1.1 Chain Optimisation

If a schema preconditions do not match the current state of the environment the chaining

mechanism is executed when attempting to calculate its excitation, then the excitation calcu-

lator triggers the chaining mechanism. To reduce the computational cost we mark child (i.e.

successor) and parent (i.e. preceder) schemas for each schema in the memory. Whenever a

new schema is constructed, its child and parent schemas are found through comparing the

preconditions and postcondition with each other schema in the memory. This provides a

limited set for searching schemas to build a chain. Furthermore, a limit has been applied

on potential chain length, see Algorithm 18. The child/pairing process and limit on the

chain lengths help to reduce computational cost consumed in calculating excitation for each

schema in the memory.

If a schema A is found to be a parent for a schema B, then the schema B is labelled as a

child to the schema A. They are then used to limit the search algorithm during the chaining

process, enabling the algorithm to cycle through a limited set of schemas rather than all the

schemas in the memory, see line 7 in Algorithm 18.

6.1.2 Chain Excitation

During play mode, the agent calculates excitation for all the schemas and chains existing

in the memory for a given state in its environment. Excitation for each chain, existing in

the long-term memory which was found and used previously, and existing in the short-term

memory found through Algorithm 18, is calculated through Algorithm 19.

Initially, the algorithm finds if the chain is relevant for the current state. Any irrelevant

chains get minimum excitation i.e., 0.0. The algorithm follows two different paths for excita-

tion calculation depending upon the user-defined play mode, either “encouraged chains” or

not. In “encouraged chains” mode the agent prefers to use chains over the individual schemas.
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Algorithm 19 Chain excitation calculation
1: function calculate_chain_excitation (WorldState WS, Chain C, Boolean chains_encouraged)
2: MostExcitedChain = None
3: ChainExcitations = empty list
4: if Not states_match (First schema preconditions in chain, WorldState WS) then
5: Return 0.0 ▷ Chains irrelevant to the current state get minimum excitation 0.0
6: end if
7: if chains_encouraged is True then ▷ Flag is set false by default
8: for i = 0 to length(C)−1 do
9: given schemas si and si+1 in chain C

10: ChainEx =Diff(si, si+1)
11: Add ChainEx to ChainExcitations ▷ In the code this is used for sorting
12: end for
13: ChainEx = ChainExcitations/(2×length(C))
14: else
15: chain_sim = state_similarity (First schema preconditions in chain C, WS)
16: chain_schema_excitations = empty list
17: for each schema S in Chain C do
18: Add schema S excitation f rom list schema_excitations to chain_schema_excitations
19: end for
20: chain_excitation = (0.7× chain_sim) + (0.3×Avg(chain_schema_excitations))
21: end if
22: ChainEx = ChainEx × Cr ▷ For Cr see line 32 in Algorithm 18
23: Return ChainEx
24: end function

The function Diff (line 10 in the algorithm), returns an excitation based on the changes

in the preconditions of schema si with the postconditions of the following schema, si+1, in

the chain. This provides a chain excitation based on the expected changes being caused by

the chain. In the other mode, chain excitation is calculated through the combination of the

average success rate of all the schemas in the given chain and the similarity between the first

schema preconditions in the chain and the current state of the environment.

The chain success rate depends upon the success rate of individual schemas within

the chain. An average success rate of individual schemas is calculated so the chain can

compete with individual schemas for execution. The probability of success rates may also

be calculated through multiplying individual success rates, however, this will reduce the

chain excitation further, hence the chain will be less excited than the most excited schema.

Consider a chain of three schemas, having success rates of 0.6, 0.7, 0.8 respectively. The

probability of the three will be 0.336, whereas the average success rate will be 0.7. Thus

average success rate, rather than the success probability, will help the chain to compete for
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execution with the individual schemas.

The combination of the chain similarity and average schema excitation is further weighted

to calculate final excitation of the chain. In this work all weights are kept constant, 0.7 and 0.3

for similarity and average success rate of schemas respectively. The overall chain excitation

is further weighted with its success rate.

6.1.3 Chain Execution

Schemas in a chain are executed in sequential order. After execution, a chain is considered

successful if the resulting sensory state matches the last schema’s postconditions. The chain

execution mechanism is inspired from developmental psychology, performed either as a

reflexive chain or a motor program. Both chain execution modes are described below:

6.1.3.1 Reflexive Chain

Newly created chains are executed in the reflexive chain mode. Sensory feedback is acquired

at the end of every executed step (a schema) in the chain to compare with the expected

postconditions of the executed schema. If it does not match with the expected state then the

schema chain is considered unsuccessful. The term “match” means all the observations in the

postconditions are obtained as an outcome. As the chain excitation depends upon the chain

success rate, the chain is less likely to be selected for execution next time if it is unsuccessful.

6.1.3.2 Motor Program

If a chain is successfully executed repeatedly, then it is considered reliable and therefore

becomes automatic, in a sense that it behaves as a singular continuous higher-level action

called a motor program. As such, the chain is used to achieve a certain condition that results
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from a hierarchy of actions. In the experiments, we revise at least four successful repetitions

and a success rate higher than 80% to render a chain repeatable enough to be considered as a

motor program. Motor programs are executed sequentially without the need of intermediate

verification of the world state. That is, only the last action’s resulting postconditions are

used for the evaluation of the motor program. Consequently, if the validation fails the motor

program’s success rate is negatively affected turning it to a standard chain, a reflexive chain.

Fig. 6.1 Flow chart for a chain
execution.

Figure 6.1 shows a flow chart for the execution of a chain in both modes i.e., reflexive

chain and motor program. The figure shows the action from each schema in a chain is

performed in sequence. Following each execution, the mechanism validates the outcome

if the chain is in the reflexive chain mode. However, the validation mode is avoided if the

executed chain is being considered as a motor program. Algorithm 20 describes the execution

process of a chain either as a reflexive chain or as a motor program.

The chain execution mechanism requests a sensory state update, line 10, if the chain is

executed in the “reflex chain mode”, reflecting the action sequencing in humans discussed

above. In the case of a motor program, the chain schemas are executed in sequential order,
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Algorithm 20 Chain execution algorithm
1: procedure execute_chain(chain C)
2: Increase C activations by 1
3: if C not in the Memory then
4: Add C in the Memory
5: end if
6: C_prob = C_successes/C_activations
7: for Schema S in chain C do
8: execute(S) ▷ See Algorithm 2 for schema execution process
9: if C_successes < 5 OR C_prob < 0.8 then

10: update_world_state of system ▷ See Chapter 3, Section 3.5
11: end if
12: end for
13: Return
14: end procedure

avoiding validating the sensory state. During the execution of a motor program, although the

external state of the environment may not be directly monitored by the agent, the internal

proprioceptive system is still active and the chain can still be interrupted if something unex-

pected was perceived.

We evaluated the chaining mechanism in Dev-PSchema using two experiments. The first

experiment demonstrates the capability of a Dev-PSchema enabled agent to develop and

execute chains in its environment. The chains are executed in the reflexive chain and motor

programs modes following the successful repetitions. The second experiment demonstrates

the agent developing schema chains through playful exploration and reusing them in the

environment.

6.2 Experiments and Results

To test the chain-building capability of Dev-PSchema, we interfaced it with a simulator,

Sandbox and a robot, iCub. The first experiment is performed with the simulator only,

whereas the second experiment is performed with the simulator as well as with a real robot.

To encourage the Dev-PSchema equipped agent to employ chains, rather than individual

actions, we set the “chain_encouraged” flag signal to true in Algorithm 19.
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6.2.1 Experiment 1: Demonstrating the Reflex Chain & Motor Pro-

gram

This experiment demonstrates the development of schema chains and their executions, in a

simulated environment, in both modes; reflexive chain and motor program. The simulated

agent is able to perform “Reach”, “Grasp” and “Press” actions in the environment. These

actions are described in detail in Section 3.3. Initially, the agent performs all these actions

in bootstrap mode to develop bootstrap schemas. Using bootstrap schemas, the agent then

interacts with the environment and develops the schema chains. Later, one of the newly

created chains is re-used in the environment to confirm it as a motor program. This experi-

ment is inspired from psychological studies about reusing previously generated movements

[79, 190]. In these studies, the subjects have been observed to re-use previously used reach

trajectories to move an object avoiding an obstacle even if there was no obstacle in the path.

In this experiment, the ‘obstacle’ is the requirement to press the button.

To test the chain-building and execution capability of the agent, we created different test

scenarios. The objective is for the agent to create a chain of schemas to reach an object ‘but-

ton’ and press it, which will result in a second object being introduced into the environment.

The agent should also create a chain to reach for the second object when it appears and grasp

it. An object, Red button, is introduced in the environment after bootstrapping. The button

can be pressed, but cannot be grasped. Pressing the button causes a red cube to appear in the

environment.

The observation of the button reminds the agent about the hand at that position and

the reach to that position was found to be the most excited schema. The press action is

found to be most excited after the “Reach”, which introduces another object, cube, in the

environment. The new object triggers the reach schema towards the red cube. Figure 6.2

shows the sequence of actions as executed in the simulated environment.
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Fig. 6.2 a) Button in the environment. b) Button is reached. c) Button is pressed, resulting in
second object in the environment. d) Second object is reached.

This sequence of actions is neither directed nor previously learnt, but discovered by

the agent itself through the exploration triggered by the excitation mechanism. Once this

sequence is performed through individual actions, the environment is reset as it was at the

beginning of the sequence. At this point, the agent creates two different chains; 2-schema

chain with “Reach button” and “Press button” actions, and 3-schema chain with “Reach

button”, “Press button” and “Reach cube” actions. The excitation mechanism finds the

3-schema chain to be the most excited. Subsequent steps are shown in Figure 6.3.

Fig. 6.3 Steps performed after bootstrapping.

Once the 3-schema chain is performed, the “Grasp” action is found to be the most excited

and therefore executed. To test the chain execution as a motor program, we considered adding

the “Grasp” action in the original sequence of actions, prior to the first reset. To create the

4-schema chain, consisting of the “Reach button”, “Press button”, “Reach cube” and “Grasp

cube” actions, we reset the environment. This helped the agent to link “Reach button” to the

sequence up top the “Grasp cube” schema, using the chain creation mechanism described in

Section 6.1. Once the 4-schema chain is created, we let the system play in the environment,

by resetting the environment every time the chain is completed (the cube is grasped), until the
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chain becomes a motor program, after four successful repetitions. To test the newly created

“motor program” of the agent, we used three test conditions, described as below:

Test I.
Second object, red cube, appears in the environment when the first object, red
button, is reached rather than reached and pressed.

Test II. Second object does not appear in the environment at all.

Test III. Second object is present at the beginning of the experiment.

The results for this experiment are discussed in Section 6.2.2 below.

6.2.2 Experiment 1: Results

Once the 4-schema chain is created, following Figure 6.3, we let the agent interact with

the environment using the excitation mechanism. Figure 6.4 shows excitations of schemas

and chains at each execution step, from the very first step, i.e., reach action towards the

button. Once the red cube is reached, at execution step 4, we reset the environment by

sending the hand/end-effector to its initial position and removing the second object. In

the following execution step (i.e., step 5), the 3-schema chain becomes the most excited

chain. The agent executes this chain and end-up reaching the red cube, as shown in Figure 6.3.

Following the 3-schema chain execution, the agent identifies the grasp schema as most

excited at execution step 5. After grasping the red cube, we reset the environment and let the

agent explore the environment again. At this point, execution step 7, the agent creates the

4-schema chain and found it most excited. Every time the agent grasped the cube we reset

the environment and let the agent play again. This process is repeated in execution steps

7−10, with the 4-schema chain being highly excited in these executions, enabling the chain

to be successful 4 times leading to the 4-schema chain becoming a motor program. Although

the 4-schema chain is highly excited in these execution steps, its repeated executions will

gradually reduce its excitation whilst other schemas or chains that have not been executed
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Fig. 6.4 Excitations of schemas in sequences along with 2, 3, and 4 schema chains. Executions
are shown following the bootstrapping process, up to the 3rd test. At missing points in lines,
excitation is either 0 or schema/chain do not yet exist.

for a while may increase in excitation sufficiently to become the most excited.

Once the chain reaches the criteria to be considered as a motor program, we start our test

conditions. The results for each test condition are discussed below:

Test I. In this condition, the red cube appears in the environment when the button is

reached with the 4-schema chain. At this point, execution step 11, the chain

executes in motor program mode. Hence, the appearance of the cube before the

press action on the button does not affect the chain execution. At the end of the

chain execution, the agent validates the results by comparing the postconditions of

the last schema in the chain with the obtained sensory state. As the red cube was

present in the environment and the agent successfully grasped it, the execution of

the chain is considered successful.
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Test II. In this condition, the red cube does not appear in the environment. As the chain

is executed as a motor program, the agent does not notice the absence of the red

cube until it attempts to grasp the cube. At the end of the chain execution, the

agent validates the results by comparing the postconditions of the last schema in

the chain with the obtained sensory state. Since the red cube was not present in the

environment, the final grasp action did not result in the expected observation i.e.,

holding the cube, causing the chain to be unsuccessful. At this point, the chain was

previously executed 5 times successfully and failure on sixth time (at execution

step 12) reduced the success rate (Cr) of the chain. However, it is still higher than

the threshold i.e., 0.8, therefore the chain, “Reach button”, “Press button”, “Reach

cube” and “Grasp cube”, still continues to be executed as a motor program.

Test III. In the last condition, the red cube is introduced in the environment when reset

from the previous execution. As the result, the environment is perceived with two

objects in it rather than one, as it does in all 12 previous executions. This new

situation in the environment triggers a different excitation for all schemas and

chains present in the memory. At this point, the agent is excited to reach directly

for the red cube, rather than the button as it has done previously.

The results of this experiment show that the agent learnt schema chains of various length

through exploratory behaviours in the environment. The experiment also demonstrated

successful use of chains in both modes; reflexive chain and motor program. The experiment

shows that a chain is executed as a motor program after previous successful executions.

Furthermore, it is also demonstrated that a motor program may be changed back into a

reflexive chain mode after failing to acquire the expected results as it causes decrement in the

chain success rate Cr, as seen in Test II.
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6.2.3 Experiment 2: Develop Chains through Exploration

This experiment demonstrates playful behaviour for exploring an environment, discover-

ing action outcomes then creating schema chains to form higher level behaviours. This

experiment is also performed in a simulated environment, Sandbox. We will use the same

environment with different objects. The agent is provided with “Reach”, “Grasp” and “Re-

lease” actions to interact with the environment. The experiment is then repeated on an iCub

humanoid robot to show the application of Dev-PSchema in a real world scenario. This

experiment also demonstrates transferability of the system between two different platforms,

Sandbox and iCub, without any major changes in the system. Only 10% tolerance was intro-

duced in the similarity calculations of the system to handle noise in the sensory information

perceived by the iCub, see Section 4.1 for details.

The experiment contains two stages. In the first stage, we introduced an object (red

cube in simulator), and a hole in the environment and let the agent play with it. The hole

in the environment is perceived as an object with colour and shape, however, it cannot be

interacted with through grasping. The agent will not get any touch perception when it reaches

toward it and when attempting to grasp, the hand will close fully to a fist. When an object

with a similar shape as the hole is released in the hole, it disappears from the environment.

Figure 6.5 shows the environment for the first stage of the experiment and perceived state by

the agent.

Fig. 6.5 Left: Simulator environment containing end-effector, hole and an object. Right:
description of the sensory state of the environment
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During the first stage of this experiment, the agent is allowed to freely play with the

objects in the environment. The first stage ends when the agent drops the object in the

hole. It is worth mentioning that the aim to drop the object in the hole is decided by us

(experimenter), but not specified to the agent. The agent is neither programmed with this

aim nor contains any schema to perform this specific action. At the start, the agent only

contains the raw actions (Reach, Grasp, Release), without any understanding of the effects

the actions will have on either object in the environment. Thus as all the actions provide the

same excitation, then the first action is selected from the list of available actions. It should

be noted that the agent does not get any reward or penalty for any successful execution. Its

behaviours are only based on the internal excitations, thus demonstrate modelling of play

behaviours in infants. We expect that during a period of playful exploratory behaviour, the

agent will achieve the aim of the experiment.

In the second stage of the experiment, the environment is reset to evaluate the ability of

the agent to exploit the knowledge gained during stage 1 and apply chains of higher level

actions. We anticipate that the agent will be able to create a chain of four actions (reach for

the cube, grasp, reach for hole, release) to pick and drop the object in the hole in a single

execution rather than the exploratory play it did in the first stage. It should be noted that the

agent is still able to generate and reuse chains during the first stage of the experiment. The

excitation parameter weights used in this experiment for the simulator are 0.5, 0.5, 0.6 and

0.4 for ω1, ω2, ω3 and ω4 respectively, see Chapter 5 for details. We made a slight change

in the weights of the ω3 and ω4, to encourage the agent to become habituated with schema

actions quickly during play and therefore try different schemas, hence different actions.

This experiment was also repeated using the iCub humanoid robot [122]. With iCub,

a low-level system is responsible for (i) providing high-level action commands and (ii)

preparing and maintaining visual, proprioceptive and tactile perceptions. The only change

we made to the Dev-PSchema is to add a small tolerance (10%) of similarity to account for

some variation from the robot sensors, see Section 4.1 for details. The expected sensory state
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information is undefined, enabling the system to respond to new and previously unknown

states or actions that may become available from the low-level system. This, therefore, shows

the ability of Dev-PSchema to be applied to different and more complex settings.

The agent receives high-level sensory information from the low-level sensory-motor

control (SMC) system. iCub vision and motor control systems are discussed in details in [93].

A high-level diagram of the overall system is provided in Appendix A. Different high-level

actions are available for the robot to interact with the object in the environment, enabling

Dev-PSchema to send high-level action commands to the SMC, which are then translated it

into low-level motor commands. In terms of actions, the reach, grasp and release commands

are available after they are learnt in a developmental approach as documented in previous

research (Law et al. [103], Shaw et al. [171, 170], Lewkowicz et al. [107]). Reaching in iCub

is learnt by employing an approach that is inspired from child hand regard in infancy [157].

This learning approach consists of random arm movements that trigger eye saccades on the

visually stimulating hands. Once fixated, mappings are learned between the reaching space

and the visual space, i.e., the gaze space of the robot [62]. Further information regarding the

iCub’s sensory and motor systems is provided in [62, 107, 103, 171, 170, 47].

At the beginning of the experiment, the robot is given time to visually explore its interme-

diate space by performing saccades to stimulating targets. For the needs of this experiment,

green and red patches on the retina visually attract the robot’s attention. Gaze coordinates

are reported based on the combined proprioceptive eye and head positions for the fixation.

The gaze coordinates act as the equivalent of the world coordinates in the Sandbox simulator.

Subsequently, all colour information that is found within the foveal area of the retina (i.e.,

the circular region depicted in Figure 6.6), are grouped as part of the same visual perception.

The rationality behind this grouping is that at this stage, visual targets that are found in the

fovea are considered to be part of the same object in the world. Along with the HSV colour

model values (i.e., Hue, Saturation and Value), the size of the colour patch is also calculated

followed by the fixation target’s depth. The low-level feature extraction mechanism employed
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in this experiment is discussed in [62]. Although the gaze space is two-dimensional, an

estimation of the depth of the fixation is measured for the reach system. Depth is calculated

after the eyes converge or diverge, depending upon the object position, to focus on the same

object.

Fig. 6.6 Perceived colour patches by the iCub from the left and the right eye.

As with the visual perceptions, tactile information is analysed by the low-level system, in

order to prepare tactile perceptions for Dev-PSchema. A tactile perception consists of the

touching hand identification as well as the areas that received tactile information on it (i.e.,

the 5 fingertips and the palm). Finally, proprioception perceptions are sent for each hand of

the robot. They consist of the position of the hands in the gaze space and value related to the

current hand grip. The latter reflects the hand’s open and close configuration in percentage

(i.e., 0% fully open, 100% fully closed).

Unlike the Sandbox simulator, where the world state is provided by the software, visual

changes in the real world cannot be fully captured unless the robot visually revisits the areas

of interest. Notice that previously generated visual perceptions may no longer be available

due to several real-life phenomena. For instance, an object is perceived differently while

it is partially or fully hidden from the eye cameras while the arms move within the reach

space, or when the object has moved while an action is performed. Bearing in mind that

not all the visual perceptions are found in the retina at all times, meaning that substantial

head movement may be required in order to update their information, the robot needs a way

to update the world state perceptions after each action. To tackle this practical issue, the
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low-level system keeps a short term memory of the gaze targets with which it previously

engaged, and iterates through them at the end of every action. Hence, having access to

up-to-date world state perceptions and actions, the associated Dev-PSchema mechanisms

can efficiently operate.

Fig. 6.7 Experimental set up for the iCub & perceived sensory state.

The experimental set up used for this experiment is seen in Figure 6.7. A red soft toy

is placed on a wooden board that contains a hole, big enough to ensure a successful drop.

The hole is marked with a green colour tape in order to be visible to the robot. Thus, visual

perceptions of both targets are sent to Dev-PSchema containing their coordinates in the gaze

space. In order to match the simulator’s experiment, one robotic arm is utilised, limiting

the amount of proprioceptive and tactile perceptions to the right hand only. To speed up

the experiment, the robot is only allowed to saccade to the given target positions. Figure

6.6 shows how targets are perceived by the eye-cameras from the environment. Using the

iterative mechanism mentioned above, the visual perceptions of both the red and green targets

are updated to constitute a fresh world state for Dev-PSchema’s post-condition matching and

excitation calculations.

For the experiment with iCub we used a value of 0.5 for all the parameter weights ( ω1,

ω2, ω3 and ω4 ). Equal weights (0.5) for the similarity and novelty/habituation pair will

encourage the agent to interact with the less habituated and more novel object, having the
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same similarity. For ω3 and ω4, this encourages the agent to switch objects and schemas,

hence actions, frequently. Values from iCub perceptions were all normalised between 0 ∼ 1

with 10% tolerance to account for noise from the raw sensors.

6.2.4 Experiment 2 Results

The results for this experiment with the simulator and iCub robot are presented below.

6.2.4.1 Results: Simulator

During the first stage of the experiment, the agent playfully explored the two objects through

available actions in the environment. As new experiences were gained, new schemas de-

scribing these were formed. These new schemas had high novelty and were therefore often

selected as the next action, resulting in a playful behaviour that repeats interesting actions,

thereby also confirming their effects. Initially, the agent focused its attention on the cube,

learning the effects of reaching, grasping and releasing it. These actions were then combined

into various chains that were tested before the attention switched to the hole. At this point, it

was still holding the object, which it discovered moved with its hand. Attempts to grasp the

hole made no difference, allowing the release action to become the most excited again, and

finally dropping the object in the hole.

Figure 6.8 shows the excitations of different schemas and chains created during the

playful behaviour, showing that the agent played with the object using different actions.

Before each action execution, the agent calculates the excitation of all the actions (schemas)

and schema chains. Either a chain or a schema action with the highest excitation is executed

in the environment.

The figure shows the winning action at each execution in the experiment. During the play,

the agent also created some chains and executed them to obtain interesting results from the

combination of actions in the chains. The continuous lines in the figure show the excitations
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Fig. 6.8 Schema and chain excitations (Simulator). The most excited schema/chain at each
execution is specified across the bottom.

of the schemas and the dotted lines represent chain excitations. Initially, there are no chains

available for the agent. Once the agent performs the grasp action, it created the “Reach &

Grasp chain” and executed this at the 7th execution. Similarly, once the agent released the

object, it discovered the “Reach, Grasp & Release” chain. The chain was then executed twice

as it had the highest excitation at the 8th and 9th execution.

At the 18th execution, the agent drops the cube in the hole after moving it towards the hole

position. With this drop, the agent finished the first stage of the experiment, the discovery

of dropping an object in the hole. Once the agent reached the first stage aim, we reset the

environment, for the second stage of the experiment, by placing the object back at the same

position as shown in Figure 6.5, and the hand back to its starting position. At this point, the

agent already had experience of dropping the object in the hole, so this stage evaluates the

agent’s ability to reuse that knowledge. Through the excitation calculation mechanism, the

agent created the 4-schema chain “Reach, Grasp Cube, reach Hole and Release” following

stage 1. It calculated the excitations of all the schemas and the chains, and this 4-schema
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chain (dropping the cube in the hole) was found to be most excited. This is due to it being

a new chain and also making the highest difference within the environment. Execution 19

(“Reset” on X-axis) in Figure 6.8 shows the excitations of all the schemas and chains for the

given environment.

Figure 6.8 shows that at the final execution, the excitations for all the schemas were less

than the 4-schema chain. However, two other 3-schema chains i.e. “Reach, Grasp Cube &

Reach Hole” and “Reach, Grasp Cube & Release at Hole” have the same excitation as the

4-schema chain. The agent, in this condition, picks the longest chain (4-schema chain) to exe-

cute, to bring more changes in the environment. During the chain execution, the agent checks

the sensory feedback to confirm if it is getting the expected outcome at the end of the action

in the 4-actions (schemas) chain. Thus the chain is executed in the “Reflex Chain” mode here.

6.2.4.2 Results: iCub

The experiment starts with the robotic arm at what we refer to as the home position. Having

the arm raised next to the head and thus outside the robot’s visual field, it is ensured that the

initial acquired visual perceptions reflect a world state of inactivity. Figure 6.6 shows the

experimental set up for the iCub robot, perceived through the robot’s vision system. In the

beginning, both targets, the object and the hole, are equally exciting for the robot, therefore, it

initially selects to reach towards the hole target. Grasp happens to be the next exciting action

to be performed, and due to the perception changes at both visual and proprioceptive levels,

new schemas are generated. These new experiences are repeated followed by a release action,

an order which leads to the creation of a schema chain in the system; “Grasp→Release”. The

related excitations are depicted at the Y-axis of Figure 6.9, whereas the X-axis shows the

order of schema (i.e., action) execution.

After a number of executions related to the hole target, habituation occurs, therefore,

the robot reaches towards the ball (10th execution). After a successful grasp action, the
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Fig. 6.9 Schema and Chain excitations for iCub. The most excited schema/chain at each
execution is specified across the bottom.

world state is updated with the red ball to be ultimately perceived differently due to the

grasping hand partially covering it. Subsequently, the sudden change to the visual perceptions

offers a lot of new stimulation, fostering the creation of new schemas. As a result, grasping

again becomes the most exciting action to perform, while holding the object. This repeating

behaviour is akin to squeezing an object, which in turn results in several changes in visual as

well as proprioceptive perceptions. However, after a number of grasp actions, the system

habituates and a release is selected for the 17th execution.

Once released, the object drops on the wooden board again giving different visual percep-

tions. A new post-release schema that reflects the new world state is learnt for iCub to repeat,

and after a few executions, it ultimately utilised the “Grasp→Release” chain to interact with

the object. It is then observed that the robot moves its arm to the hole coordinates while

holding the ball at the 25th execution, followed by a release command being issued at the

28th execution which causes a successful drop of the ball into the hole, finishing the first

stage of the experiment. As the purpose of this experiment is to demonstrate learning of the

schema chains in Dev-PSchema, rather than finding how and when the chains are developed.
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Therefore we proceed to the second stage of the experiment after completing the first stage,

without repeating the first stage.

For the second stage of the experiment, the robot is expected to utilise the previously

learnt schemas and schema chains in order to express a similar playing behaviour. Thus,

without specifying a particular objective state the aim is to evaluate the ability of the system

to link past experiences and actions from its repertoire with the environment and to succeed

in dropping the ball into the hole. In contrast to the simulator, the robot’s performance differs

in this stage. The amount of noise in the real world is found to play an important role in

delaying the process of appropriate schema selection for execution. The significant variation

between schemas makes it difficult for the robot to directly link between them to create a

chain for dropping the object in the hole. However, it is anticipated that with generalisation

over the variation in perceptions, the generation of a full chain for dropping the ball in the

hole would be possible given sufficient time for exploration. Nevertheless, subsets of the

desired full chain are generated and repeated by the system, such as the “Grasp→Reach” and

“Grasp→Release” chains.

6.3 Discussions & Conclusions

Both experiments demonstrated that Dev-PSchema is able to develop high-level actions

itself through a chain of schemas, rather than providing instructions or observations. The

agents use high-level actions as schema chains to achieve a high-level objective starting

from a sensory state in the environment. The agents demonstrate re-use of the schemas

chains in similar situations. From psychology, we have evidence that humans use previously

generated movements in similar situations. Kent et al. [87] found that action movements

from previous tasks influence the current reach to grasp task. The subjects, children and

adults, were initially asked to grasp a rotating object with fingers on a particular side. In the

test condition, experimenters found that the subjects used previously generated movements
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in the current task. However, a group of subjects who did not perform the initial task chose

the most efficient way to achieve the target grasp. Thus it can be concluded that the subjects

who performed the task initially re-used previously generated motor plans due to the cost

of change in action planning. In another similar study, researchers found that previously

generated motor plans were considered for use in later trials but not just for the immediately

following trial [43]. Dixon et al. [43] found the subjects considered multiple previously

generated action plans, taking into consideration context as well as contextual similarity to

the current situations in the environment.

The concept of action chains and motor programs is also inspired from developmental

psychology, such as the work by Lashley [98] investigating the hierarchical organisation

of behavioural plans. He believed that the concept of a motor program was being ignored

over the concept of reflexive chains. The theory of reflexive chains proposes the serial order

of behaviours with sensory feedback, which contributes to the excitation for each of the

sequential building blocks of the chain, as discussed in the beginning of this Chapter. On the

other hand, the motor program theory proposes the serial order of the actions in the behaviour

where the sensory feedback is ignored. The agent demonstrated the conversion of a reflexive

chain into a motor program after 4 successful executions. In a motor program, actions

are executed continuously, one after the other, without any sensory feedback. The motor

programs in Dev-PSchema are modelled on the sequential behaviours discussed in [160, 98].

According to Lashley [98] and Rosenbaum et al. [160] sequential actions are composed of

sequential actions as hierarchical behaviours. Repetitions in sequential behaviours make

them a singular unit, without any break in between underlying actions for sensory feedback.

Lashley believed that spending more time at the beginning of sequential actions than the

time in between the behavioural elements and errors support that actions sequences are hierar-

chically organised plans for behaviours, hence the theory of the motor program. He believed

that the longer time spent at the beginning of sequential actions provides an evidence for

planning the entire sequence and leading to a shorter gap between the behavioural elements,
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which is not enough to receive feedback and plan the following step. More recently, Lashley’s

work has been reviewed by [160]. This review suggests the identification of key-frames in

sequential behaviours. The behaviours between these key-frames could be considered as

short chains being executed as motor programs, thus considering motor programs as a bunch

of actions between two key frames in a sequential behaviour. The authors also reported that

the execution time for actions between key-frames is significantly reduced following 4 to 6

repetitions in sequential behaviours. Similarly, authors in [87, 85, 53, 193] found a decline

in response time as a sequence is repeatedly performed. However, accuracy decreases after

15 executions [85]. The error in a sequential behaviour is related to the behavioural planning

at the start of the behaviour [98].

In the first experiment, the agent demonstrated the execution of a motor program, a chain

converted from the reflexive chain after the successful executions in the environment. The

agent executed the chain of actions without confirming any peripheral states of the environ-

ment between the actions. Thus, the chains executed in tests conditions of the experiment

can be considered to have acted as a motor program. To make a motor program from a

schema chain, the system not only relies upon the number of times the schema chain has

been successful but also upon the success rate. For a schema chain to be a motor program it

must be successful at least four times, with a success rate of more than 80%. Furthermore,

developmental psychology supports thoughts of key frames containing a few actions in

sequential behaviours thus supporting the limit in chain length [160]. In Dev-PSchema, the

generated chains are limited to a maximum length of 4 action schemas.

The second experiment, presented in Section 6.2.3, has demonstrated the play behaviour

of the agent in the environment and examined the potential effects of the actions on different

objects. The agent was able to create a new schema while grasping the ball in the simulator,

and multiple different grasp schemas were learned by the iCub due to changes in perception

and the environment. For both the simulator and iCub, the agents did not create any new

schemas for grasping the hole as this does not make any change in the environment. This
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behaviour shows that the agent is capable of learning the effects of its actions on different

objects. Thus the agent learns the behaviours with objects through exploration. Furthermore,

the agent reuses learnt schemas during the exploitation stage. This stage reflects the sensori-

motor stage of Piaget’s theory [147], where infants are described as re-using or repeating

their learnt behaviours involving their bodies on the interesting objects.

The second experiment also demonstrated the capability of the system to be integrated

with different platforms, transferred from the simulator to the iCub robot in a laboratory

environment, without making any major changes to the system. In both experiments, we

demonstrated that the agent shows playful and exploratory behaviours. While Dev-PSchema

also enables the agent to simulate different individuals with different preferences while

weights of the excitation parameters remained constant during the experiment in this chapter.

Furthermore, in the Dev-PSchema system, the excitation of each schema decreases with

each execution if a similar environmental state is observed repeatedly. Thus similar situations

in the environment become less exciting to interact with. This is what can be seen in human

infants. Infants prefer to see a novel situation and pay attention towards them. They get

bored with similar situations and pay less attention to it [177]. However, new situations in

the environment can trigger previously used schemas. We can see in Figure 6.4 (execution

13) that “Reach” action for cube was found excited in Test II condition. Although this

schema had previously been used, independently and in the schema chain, the new state in

the environment triggered it again.

We demonstrated that the Dev-PSchema system provides the capability of creating

schema chains from previous experiences, schemas, by finding links between pre and post

conditions of different schemas. Schema chains are then compared with the other chains

and the schemas in the memory to find the most excited for a given sensory state of the

environment. In PSchema, the system was only able to find a schema chain when a target

sensory state was defined [172]. Our system is able to find chains automatically by finding
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links between the current sensory state of the environment and schema context. We also

developed the system to consider chains as motor programs, which are found successful re-

peatedly. In the case of the “reflex chain” mode, at each execution in the chain, the perceived

state of the environment is tested and compared with expected sub-target (post-conditions of

last executed schema). A failure in the chain will not decrease successes of the chain but it

will decrease the success rate of that chain. Thus a motor program can be changed back as

“reflex chain” if it fails to achieve the objective state repeatedly. With these developments in

Dev-PSchema, it is able to extend the play mechanism by finding an objective which can

be achieved through a sequence of actions rather than just a single action. The high-level

objective, postconditions of highly excited schema or postconditions of the last schema in

the highly excited chain, is set by the agent itself through the excitation mechanism. This

sequence of actions, schema chain, can be defined as a high-level action which is achieved

through different actions.





Chapter 7

Shaping Learning

Previously, in Chapters 4 to 6, we demonstrated knowledge development in the artificial

agents through intrinsically motivated active explorations. Apart from, developing object-

action pair knowledge in the shape of schemas, the agents demonstrated learning high-level

skills (behaviours) through schema chains. In this chapter we demonstrate the capability of

Dev-PSchema to solve user defined problems, described as a set of perceptions by an external

agent, using schema chains. This capability can be used to test the learning developed by

the agent through explorations. The problem solving capability of the agent provides an

opportunity for an external user to shape the agent’s knowledge. The agent is provided with

an opportunity to learn skills, increasing in complexity, and use the skills to solve a problem

provided by the external agent.

To demonstrate the problem solving capability in the agent, we performed two different

experiments. The first experiment demonstrates how the agent interacts with the external

agent to solve the problem. Furthermore, this experiment also demonstrates how a user can

shape the agent’s knowledge. This experiment also demonstrates the capability of the agent

to develop different solutions for a single problem. In the second experiment, we demonstrate

the agent’s learning capability to develop associations between objects and the performed

action. The learning is tested with the experiment to recreate a given state in the environment.

In Section 7.1 we describe the problem solving mechanism in the agent. The experiments and
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results are discussed in Section 7.2 and finally, the discussion and conclusion are provided in

Section 7.3.

7.1 Problem Solving-Interaction

In robotic applications, the robots often do not need to learn but instead solve problems

provided by an external agent, either a human, another robot, or by itself. In Chapter 6

we demonstrated that the agent is capable of forming chains to make high-level actions to

achieve a more distant state, which is a postcondition of one of the schemas in the memory.

The agent finds the series of actions that lead to the objective state from a perceived state.

When an external agent specifies the desired state this could be considered as shaping the

knowledge. The mechanism and design of the Dev-PSchema system limit its knowledge

development to that gained through active explorations only, however, it is capable of abstract

interaction with an external agent. This interaction is one-way, from an experimenter to the

agent, through the perceptual description, as shown in Section 3.2.

Section 3.1.3 briefly describes the mechanism for problem solving in the Dev-PSchema en-

abled agent. The agent is provided with an objective state by an external agent, as a descriptive

sensory state similar to the sensory state presented in schema preconditions/postconditions.

The agent finds chains that lead to the objective state from the currently perceived sensory

state (WS). The agent may end up with multiple solutions, chains, that achieve the objective.

At this point, the agent requires external feedback to select the solution to be executed. The

agent provides all the solutions with their estimated probabilities of success, referred to as

excitation, to the external agent.

Algorithm 21 describes the mechanism for problem solving when provided with the

current state of the environment and the target state. The mechanism finds all the possible

solutions through the chaining mechanism provided in Algorithm 18, with the active problem
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solving flag. This flag lets the agent calculate the probability of success of the found chain to

find suitable solutions for the problem. If the agent finds more than one solution, it hands over

the control to the external agent, the user, to select the suitable solution. The user selected

solution is executed either as Reflex chain or motor program depending upon the selected

chain, see Chapter 6 for details. Once the agent completes the whole sequence of actions, it

confirms the success by comparing the latest perceived state with the objective state. This

affects the excitation in problem solving applications. Although the external agent does not

provide the feedback regarding the success in solving the problem, the agent itself decides

the success of the solution by comparing the objective state with the perceived state at the

end of the behaviour. This enables the agent to shape its learning further from the experience

it gained during the problem solving.

Algorithm 21 Problem solving mode
1: function solve_problem (WorldState WS, WorldState Target)
2: chains = find_path(WS, Target, True) ▷ Problem solving flag is set True for Algorithm 18
3: if length(chains) > 0 then ▷ If any solution exists
4: if length(chains) > 1 then ▷ If more than one solutions found
5: Get user selection f or the solution to be executed
6: execute_chain(user selected chain) ▷ See Algorithm 20
7: else
8: execute_chain (chains) ▷ See Algorithm 20
9: end if

10: update_world_state ▷ See Chapter 3, Section 3.5
11: else
12: Return ▷ No solution found
13: end if
14: end function

In the following experiment, we demonstrate that the agent learns throughout their be-

havioural experiences, selected either independently during exploration or by the external

agent during problem solving. The problem solving mechanism in Dev-PSchema is adapted

from the PSchema system [172]. In PSchema, the agent finds a solution for a problem

defined by an external agent, followed by its execution. However, in Dev-PSchema, the

agent responds with more than one solutions, wherever possible, and waits for the external

agent to select one of the solutions to execute. This may be seen as help from the external

agent to shape the acquired knowledge of the agent through guiding in problem solving.

Furthermore, in PSchema a chain probability is calculated through success probability of
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the individual schemas in the chain. Whereas, Dev-PSchema calculates chain probability

through a weighted combination of schema probabilities and the similarity between first

schema preconditions in the chain and current state of the environment. This leads the agent

to find more relevant and successful solutions for the given problem.

We would like to acknowledge that parts of this chapter have been included in a paper, given

below, which is currently under internal review.

• Kumar S., Shaw P., Giagkos A., Braud R., Lee M.H., Shen Q. Learning affordances

with action sequences and shaping knowledge through problem solving.

7.2 Experiments & Results

We performed two different experiments to test chain building and learning associations for

tool use through exploratory play. For the experiments, we interfaced Dev-PSchema with the

iCub humanoid robot [122] as in experiment 2 from Chapter 6.iCub vision and motor control

systems are discussed in details in Chapter 6. The two experiments demonstrate the learning

capability of the agent through exploration by solving user defined problems. Figure 7.1

shows the robot, iCub, in the lab environment, used in the experiments, with some objects.

To encourage the agent to demonstrate exploratory behaviours with the provided objects,

we set the excitation parameters ω3 and ω4 to 0.3 and 0.7 respectively. As the experiment is

related to the actions of the agent rather than the objects on which the actions are performed,

we kept ω1 and ω2 as 0.5 for each. This enables the excitation to be more dependent on the

actions performed rather than the perceived objects to explore them. Although the agent is

able to develop knowledge through exploratory play, we simplified the scenarios to demon-

strate the concept of shaping knowledge and problem solving in Dev-PSchema.
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Fig. 7.1 The robot in the lab environment with some objects.

7.2.1 Experiment 1: Problem Solving with Experiences

This experiment is divided into four parts. Each part is related to learning a particular schema

in the environment and developing a chain as a high-level action related to it. Each part of

this experiment consists of two stages. In the first stage, iCub performs play behaviour in

the environment. In the second stage, we test the learning by defining an objective state to

achieve using learnt high-level actions. As the agent is not equipped with a natural language

processing system (which is considered to be irrelevant here), the user defined objective is

provided as a sensory state, similar to that used in schemas, as shown in Figure 7.2.

Fig. 7.2 (Left) iCub, in the lab environment, performing “Reach” action and some objects
in the environment. (Right) An instance of sensory information of a perceived environment
passed by SMC towards Dev-PSchema.
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In this 4 part experiment, we are demonstrating the scaffolding of knowledge and finding

alternative solutions for user-defined problems. Each part of this experiment is related to a

skill, learnt through exploration and play. Each such skill is described below:

Part I. Hold action

We refer to a chain of reach and grasp action schemas as a Hold action. This action

is learnt by combining the reach and grasp actions having perceptual similarity

between the preconditions and postconditions in the two different schemas respec-

tively.

Part II. Transport action

We call a chain of Reach, Grasp and Reach actions as the Transport action. This

action represents moving the hand towards another position while holding an object.

This action is learnt by adding a reach action to the previously learnt Hold action.

However, the second reach in the chain is towards a different position.

Part III. Move action

A Move action in this experiment involves a chain of reach, grasp, reach (different

positions) and release actions. This action represents transporting an object from

one position to another. The action is developed by the addition of a release action

to the previously learnt Transport action.

Part IV. Displace action

We refer to a schema chain of reach and push actions as a Displace action. This

action represents displacing an object from one position to another.

The agent, iCub, is pre-loaded with the bootstrap schemas. Bootstrap schemas and

the mechanism to develop higher level schemas from the bootstrap schemas is described
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in [95, 94, 93] and Chapter 3.

7.2.2 Results: Experiment 1

At each part of the experiment, we provided the agent with the relevant bootstrap schema(s)

to develop the target skill i.e., chain. We let the agent play with two different objects, labelled

A and B, to learn generalised skills, which can be applied to novel objects with a perceptual

similarity. Once the agent develops the generalised schemas, we introduce a different object,

labelled C, in the environment to test the learnt skill. We provide a problem related to the

learnt skill for the agent to solve during the application of the generalised schema to the

novel object. The agent responds with the possible solutions for the user-defined problem

and executes the solution selected by the user. It should be noted that the “encouraged chains”

flag is to make chains compete for excitation with other schemas in the memory. We discuss

each part of the experiment that leads to the development of a skill and its test condition below:

7.2.2.1 Hold action

To develop this skill we let the agent play with two different objects A and B to learn gen-

eralised reach and grasp schemas, which are then combined together to form a generalised

reach and grasp chain. Once the iCub reaches and grasps the first introduced object, we

remove it and introduce the other object to reach and grasp. It should be noted that the

position of the two objects may be different, leading the generalised positions, see Chapter

4 for details. As iCub reaches and grasps the second object the generalised mechanism

activates, as the generalisation threshold is met (see Chapter 4), leading to the development

of generalised reach and grasp schemas. With the generalised reach and grasp, the Part 1a of

the experiment ends the ingredients for the Hold action are in place. Figure 7.3 shows the

actions performed and their excitations during Part 1a of this experiment.
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Fig. 7.3 Play behaviour to develop generalised “Reach $” and generalised “Grasp $”.

Note, all the action types i.e., bootstrap, concrete and generalised, are combined together

and the highest excitation of that action type is plotted in Figures 7.3, 7.5, 7.8 and 7.10. Also,

fill patterns are used to represent the type of schemas and colours represent the actions in the

figures. Either a schema or chain with the highest excitation is executed using the winner

takes all algorithm. The “Next Step” provides the excitations following the last play ac-

tion. The play is stopped at this point so the excitations and the step are ignored for execution.

It should be noted that every time the iCub finishes the desired action (set by the user but

not defined to the iCub), its hands are reset to the home position and out of the visual field.

Once the agent creates the generalised reach and grasp schemas, we introduce the object C in

the environment. After updating the memory with perceptions of object C, an objective was

provided to “Hold” the novel object. The high-level objective was described as the “Hand”

at the novel object position and with the proprioceptive grip of 50%. Figure 7.4 shows the

chains with their excitations suggested by the iCub to achieve the target objective state.

From Figure 7.4 it is evident that iCub suggested three different chains to achieve the

objective state, “Hold” with object C. Each chain has its own excitation based on the schemas

successes, similarity to the current environment and length of the chain (see Chapter 6 for a
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Fig. 7.4 Chains suggested by the agent and their excitations to grasp an object when
the hand is not starting at the object position.

chain excitation). It should be noted that the second and third chains containing reach after

the grasp action in the sequence are a reach towards the same position. iCub is able to reach

for different positions, in this case, its second reach is towards the same position. This is

due to over-generalisation in the reach and grasp schemas and greedy chaining algorithm to

find longer chains up to the length limit. The highest excited chain to achieve the objective,

“Hold” object C, contains just one set of the generalised reach and grasp actions. We selected

the highest excited chain, which was successfully executed to grasp object C and leading the

chain to be included in the memory.

7.2.2.2 Transport action

To learn this action, the agent needs to learn moving its hand towards a different position

while holding an object. This needs an additional reach action to the “touch” as the agent

has already learnt to reach and grasp objects. We introduced object A in the environment,

which is reached and grasped. In the previous stage, the agent offered a “Reach, Grasp and

Reach” chain as a solution to the “Hold” problem, where the final reach was to the same
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position as the first object. The agent needs to learn a new generalised schema containing the

object and the iCub hand position in the postconditions. The excitation mechanism allows

reaching towards a random position when the excitation of all the schema gets below a certain

level, in order to speed up the experiment we introduce the second object (object B) in the

environment right after the first object is grasped. The reach action towards the new object is

most excited, following which it learns a new reach schema that now includes holding an

object. Figure 7.5 shows the play behaviour of the iCub to learn components of the Transport

action.

Fig. 7.5 Play behaviour to develop generalised “Reach $” while holding an object.

Once iCub reaches and grasps the new object, iCub sees two objects in the environment at

the same position as its hand. It records a new concrete schema which shows the association

of moving towards another object while holding an existing object. The iCub also learns a

generalised reach schema at this point, combining all previously learnt reach schemas with

the newly learnt schema. The new generalised reach schema will help to reach for the object

with open hands as well as reach towards a different position while holding an object, as it

contains the generalised “grip”. Figure 7.6 shows the generalised reach schema developed at
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the end of the play for Part 2a.

Fig. 7.6 Generalised reach schema generated from the play stage for the “Transport” action.

The schema in Figure 7.6 contains generalised preconditions and postconditions along

with the associated observations. The associated observations i.e., associated preconditions

and associated postconditions, contain the perceptions from the object in the iCub’s hand.

This generalised reach schema is developed from combining all the previously developed

reach schemas.

To test the skill developed in this play stage, we introduced object C in the environment.

Once iCub perceives the object, we provide an objective state for the novel object to be at a

different position. Since the system has so far only learnt to reach and grasp actions, it came

up with solutions containing reach and grasp actions. Figure 7.7 shows the chains suggested

by iCub to achieve the target objective.

From Figure 7.7 it is clear that iCub suggests two different chains to perform the Transport

action on the novel object. The highest excited chain is the previously successful Hold action,

however, the chain does not achieve the specified target. We let iCub execute the highest

excited chain to perform the objective, Transport action. The action ends with grasping the

object, rather than moving it to a different position as per the provided objective. In the

second try, Hold action still the most excited action but is still unsuccessful with respect to

the objective. On the third attempt, the excitation of the Hold action has now dropped below

the desired Transport action. On the third run, the iCub executes the sequence of reach, grasp

and reach schemas, which achieves the target state.
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Fig. 7.7 Chains suggested by the agent and their excitations to transport the novel
object to a different position while the hand is not at the object position.

7.2.2.3 Move action

We refer to a sequence of reach, grasp, reach (different positions) and release actions as the

Move action. This action represents transporting an object from one position to another. In

Transport, iCub has already learnt to move objects from one position to another. However,

iCub has not yet learnt a schema to release a grasped object. We introduce a release action in

the memory, providing an opportunity for the agent to scaffold its knowledge. This action

makes iCub’s hand open, if it is closed, and provides the grip as 0.0 in the proprioceptive

response. We introduced an object in the environment, which the iCub then reaches and

grasps. After the grasp action, the bootstrap release action becomes the most excited and it is

executed. This sequence of actions, reach, grasp and release, is repeated with another object

to get two examples of release actions, required for the generalisation. The new generalised

release schema will help to release the novel held object. Figure 7.8 shows the play behaviour

of the iCub to learn components of the Move action.
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Fig. 7.8 Play behaviour to develop generalised “Release $” while holding and
moving an object.

To test this skill, we introduced object C in the environment. Once iCub perceived the

object we set an objective state, novel object to be at a new specified position, a state similar

to the “move” action.

Figure 7.9 shows that the iCub suggests three different chains to perform the Move

action with the novel object. By the generalisation mechanism, each of the suggested chains

potentially achieves the target state. The highest excited chain is the Move action. A new

chain, “Reach, grasp and release”, action is also included in the suggestions. During the play

behaviour with the release action when the grasped object was dropped, it bounced slightly

and moved away from the hand position. Thus the generalised release schema ended up with

the postconditions having the iCub hand and the dropped object at different positions. This

caused a new suggested chain with reach, grasp and release actions, where the generalisation

does not restrict the range for the coordinates in the postconditions.

As the user-defined objective was to move object C to a different (specified) position,

all the suggested chains offer possible solutions. The chain excitation system finds the
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Fig. 7.9 Chains suggested by the agent and their excitations to transport the novel
object to a different position while the hand is not at the object position.

Move action as the most excited for the objective. However, we instruct the iCub to run the

second highest excited chain, reach, grasp and release, to encourage it to learn and adapt.

As the newly defined position of the objective is at a distant position to the current position,

releasing the simple object at the original position will not reach the target position causing

the excitation mechanism to reduce the excitation of this chain in following executions.

Before the second attempt, we reset the environment and set the same objective. The

agent returned the same suggested chains once more with updated excitation values, as seen

in Figure 7.9 at execution step 2. In the second execution, we instruct the iCub to run the

Move action, which it runs successfully and adds this chain into its memory.

7.2.2.4 Displace action

Instead of using reach-grasp, this action makes use of a new “Push” action to move an object

from one position to another. A sequence of reach and push action is referred to as Displace
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action in this experiment. To learn this action, the iCub only needs to learn the push action as

it has already learnt the reach action. We introduced a bootstrap “Push” action in memory.

This action makes iCub move its hand horizontally towards the body centreline and return to

the same position. Thus any object at the hand position will be displaced in the direction of

the hand motion.

To construct Displace action, iCub has to learn the generalised push schema. We let

iCub reach and push objects A and B one after the other to create two concrete examples of

push actions for the generalisation. Figure 7.10 shows the play behaviour of iCub to learn

generalised push action. At this point, the agent has all the components for the Displace

action. To test this skill, we introduced object C and provided an objective to make that

object appear at a different position.

Fig. 7.10 Play behaviour to develop generalised “Push $”.

Figure 7.11 shows that iCub suggests four different chains to displace the novel object.

As the Displace action is new, and the shortest chain, it receives the highest excitation. We

let iCub run this new chain which it runs successfully and adds this chain to its memory. It
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Fig. 7.11 Chains suggested by the system and their excitations to displace the novel
object to a different position while the hand is not at the object position.

should be noted that all the possible solutions provided by iCub are relevant to the target state

and provide higher probability to achieve it by considering previous experiences demonstrate

the ability to find multiple alternative solutions to achieve the same objective state.

During the experiment, iCub created 29 new schemas including 14 concrete and 15 gener-

alised schemas. The agent also added 5 different chains to memory. Figure 7.12 shows the

total number of bootstrap, concrete, generalised schemas and chains in the memory at any

point of this experiment.

During the experiment, the agent created different concrete and generalised schemas for

each type of action. The concrete schemas were created when existing concrete and gener-

alised schemas of the memory do not match with the perceived perceptions of the environment

after the action execution. This was caused by variations in the obtained results and object

perceptions such as lighting condition causing different perceptions for an object at a different

time of the day, noise in the system and complexity of working in the real world. Table
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Fig. 7.12 Number of schemas/chains in the memory at each execution step. Lines are stacked
up showing the cumulative total number of schemas and chains in the memory following
each step.

7.1 shows the number of concrete and generalised schemas created for the each type of action.

Schema action Concrete Generalised
Reach 4 5
Grasp 5 6

Release 3 2
Push 2 2

Table 7.1 Total number of concrete and generalised schemas created for each type of action.

Figure 7.13 shows an overview of all the actions, including chains, performed during this

experiment at each point of the execution.

7.2.3 Experiment 2: Learning associations - Towards tool-use

This experiment demonstrates the capability of the learning system to learn associations

between action and object, and between the objects in the environment. To demonstrate

this capability, we performed a tool-use like experiment. The experiment is designed to
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Fig. 7.13 All actions/chains executed during the play.

develop an understating of the associations between the objects effected through an action in

the iCub. The agent learns an association when an action is performed on one object, caus-

ing a change in the environment other than the object upon which the action is was performed.

The agent is provided with reach and grasp actions only to speed up the experiment, thus

providing a set of actions to choose from. We reset the agent with the memories from Part

7.2.2.2 (transport action) of experiment 1 described in Section 7.2.1. This set of memory

enables the agent to reach for the target action with small number play actions, limiting the

scope of actions for the purpose of this experiment. In the experiment, we introduce an object

(a tool) in the environment and let the agent play with it. To learn the associations between

the objects we set a trigger position in the environment, causing another object (a toy) to

appear in the environment at a dedicated position. The trigger position is set by the user,

hence the user decides when to present the toy object. The agent learns the association of

moving the tool object towards the trigger position and the new object, the toy, appearing in

the environment. Figure 7.14 shows the flow of the experiment for learning the associations

and test condition.
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Fig. 7.14 Flow for the experiment to learn “object-object-action” associations.

Following the tool object, we introduced a non-tool object in the environment and let the

agent play with it. We expected that the agent will re-use the learnt schema to re-introduce

the toy in the environment. However, unlike the tool object, the non-tool object does not

make the “toy” object appear in the environment. The agent records both experiences as

a concrete schema for the tool object and a generalised schema for both tool and non-

tool objects. This schema contains the common observations in the concrete pre and post

conditions. All the unmatched observations, including the observations that represent the

toy, are added into the associated pre and postconditions wherever necessary, see Section

3.3.2 regarding the associated observations. These schemas demonstrate an association

between the objects through a trigger action. To test this learning, we present both objects

(i.e., tool and non-tool) in the environment. Once the agent perceives both objects, we pro-

vide a target state to make the “toy” object appear in the environment at its dedicated position.

7.2.4 Results: Experiment 2

Although the agent is provided with a limited number of actions i.e., reach and grasp, it is

still able to perform the same action repeatedly, until less excited. The noise in the system

and variations in the perceived objects lead to lots of repetitions of the same actions. In the

results here, we are only representing interesting events, reach to grasp and reach towards the
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trigger position.

The experiment starts with the tool object in the environment. Figure 7.15 shows excita-

tions of schemas during the play behaviour with both tool and non-tool objects.

Fig. 7.15 Play behaviour to learn the association between the tool and the trigger position.

The agent starts with reaching for the tool object, as it is the only object present in the

environment. Once the object is grasped, the agent plays with the object using different

actions present in the memory. Later, at the execution tn in Figure 7.15, the agent reaches for

the trigger position, causing the toy object to appear in the environment. The action execution

leads the agent to record the associations in a schema.

Following the experience with the tool object, we reset the environment and introduced

the non-tool object. The agent reaches and grasps the non-tool object, at execution tn +1 and

tn +2 respectively in Figure 7.15. Subsequently, the agent plays with the non-tool object and

finally reaches for trigger position, using the previously generated schema shown at execution

tm. However, this action did not cause the toy object to appear in the environment. This leads

the agent to develop a generalised schema through combining effects of the reach action
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on the tool and non-tool objects towards the trigger position. The new generalised schema

contains the observations in the concrete pre and post conditions that are common in both

reach actions i.e., reach towards the trigger position while holding the tool or non-tool objects.

Observations representing the “toy” object are added in the associated postconditions, as

associated observations, of the newly created generalised schema.

To test the learning with both objects we introduce both, tool and non-tool, objects in the

environment together. Once the agent perceives the environment, we ask it to bring the toy

object in the environment by defining object features with its position where it was observed

previously. Figure 7.16 shows the suggested schema chains and their excitations to achieve

this objective.

Fig. 7.16 Suggested chains when the requested to make the toy appear in the environment

The agent suggested three different chains to achieve the objective to get the toy object.

The highest excited chain contains actions to reach and grasp the tool object, and reach

towards the trigger position. This is the only chain which can achieve this objective state

while the remaining two chains are “false positive” as those will not achieve the objective.

While learning the association between the tool and the toy, the agent created concrete and
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generalised schemas by combining previously generated concrete and generalised schemas.

The agent used generalised schemas to create the “false positive” chains. Thus, the agent

created over-generalised schemas and suggested chains based on these.

The highest excited chain consists of a combination of concrete and generalised schemas.

It included the generalised reach and grasp schemas to obtain the tool object and the concrete

schema to reach towards the trigger position. We selected the highest excited chain for

execution which was successfully executed to make the toy appear.

Figure 7.17 shows the final step of the executed chain, where the object appeared in the

environment.

Fig. 7.17 Demonstration of the final step of the executed chain to bring the toy object in the
environment.

As the agent reaches the trigger position, we (user) presented the toy object in the environ-

ment by holding it in the agent’s visual space. To reduce noise, the object is presented in such
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a way that only the toy object appears in the agent’s visual space, as shown in Figure 7.17.

7.3 Discussions & Conclusions

In Chapter 6 we the demonstrated development of high-level actions through schema chaining

to achieve a distant objective (in perception) selected through the excitation mechanism. In

extension to this, in this chapter, we demonstrated the use of schema chaining in scaffolding

the learning through solving a problem provided by an external agent. In the experiments,

the agent (iCub) develops knowledge, through playful exploration, about the outcome of

different actions on the given objects. Following that, the agent is given a target sensory state

as an objective by the external agent (user). The agent finds potential solutions to achieve the

state by matching it with the outcomes of action schemas i.e., postconditions, and linking it

with the intermediary steps (schemas) to reach that point, i.e., objective schema preconditions,

from the current world state.

In Experiment 1 the agent develops complex skills through exploratory play behaviours.

The agent demonstrates usage of its learning to solve a problem related to the skills devel-

oped through play. In developmental psychology, scaffolding involves developing a physical

or mental capability in infants through providing a restricted environment related to the

ability [25]. Thus, this experiment demonstrates scaffolding of the skills and knowledge in

a Dev-PSchema enabled agent. The agent demonstrated its skills in solving the problems

provided as objectives by the external agent. As the problems are represented in sensory

perceptions (state), thus the problem solving mechanism ends up with several solutions that

are believed to be solving a problem, as shown in Figures 7.4, 7.7, 7.9 and 7.11. However, not

every solution will actually achieve the objective state, as demonstrated in Figures 7.7 and

7.9. This provides a learning opportunity for the agent to shape its knowledge and therefore

less likely to consider unsuccessful solutions in the future. Furthermore, this leads the user
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as an external agent to shape the agent’s knowledge through utilising its skills.

In the second experiment, the agent learns how an action on an object affects the per-

ception for another object at different location i.e., making it appear. This capability can be

compared with tool-use, where the agents use one object to act or bring an effect on another

object. Although this experiment may not represent a demonstration of tool-use, it can be

considered as a demonstration of the ability of the system to learn tool-use through action

sequencing. Thus the capability demonstrates learning the associations between the two

objects through an action on one of them.

In this experiment, the agent retrieves the object i.e., toy, by moving the tool object

towards the trigger position. There are several examples in developmental psychology re-

garding infants using one object to retrieve another [118, 66]. Goubet et al. [66] found that

the 14-18 month old subjects performed better in the toy retrieving tasks with more difficulty.

The toy retrieving task consisted of 3 to 11 steps in total, varying in difficulty. However, 9

months old infants performed better than the 14-18 months old in the tasks with three steps,

reach the mat, pull and retrieve the target object. The authors believed that older infants

may be inclined to use more newly developed skills than younger infants, causing them to

fail to complete the task. Furthermore, the results demonstrated that the older infants asked

for the experimenter’s help for a small number of times and used the tool more efficiently

as compared to the younger infants. The infants, in this study, not only demonstrated the

capability to build a plan to obtain the target object but the capability of tool-use.

The goal of the experiments was to demonstrate the capacity in Dev-PSchema for shaping

the knowledge, gained during the exploratory play, through utilising the skills developed

through experiences. The agent has successfully demonstrated to scaffold its knowledge and

skills through play and utilise the skills to re-achieve a state in the environment, provided as

a challenge to solve.



Chapter 8

Conclusion and Future Developments

In this thesis, we have presented a schema-based learning system with underlying mecha-

nisms for excitation, generalisation and chaining. We have presented a schema-based play

generator for artificial agents, termed as Dev-PSchema, inspired from Piaget’s cognitive

developmental theory. With the help of experiments in both, a simulated environment and

with the real iCub robot, we have demonstrated the ability of the system to create schemas of

sensorimotor experiences from playful interaction with objects in a given environment.

8.1 Conclusion on Contributions

In Chapter 1 we briefly introduced the contributions of this thesis. Here, we summarise and

provide conclusions on those contributions.

8.1.1 Open-ended Learning and Adaptability

The abstract representation of the observations, i.e., sensory information, and the actions

enable Dev-PSchema to be an open-ended learning system that is capable of processing

new sensory information and actions as captured during play. Although, the experiments

presented in this thesis were designed to demonstrate the underlying components of Dev-

PSchema, the experiments at some level demonstrate open-ended learning. The experiment,
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presented in Section 6.2.3, demonstrates the exploratory behaviours of the agents through

the decision making process. Although, the experiments ended when the agent, achieves the

goal, which the agent was unaware of, set by the experimenter, the experiment demonstrates

the decision making process and development of higher level actions through combinations

of schema, which in turn will enable the agent to explore further. Furthermore, due to

abstraction in observation and action, the experiment is performed with two totally different

platforms, a simple Sandbox simulator and a real humanoid robot, without any changes in

the Dev-PSchema system. This provides evidence to show the adaptability of Dev-PSchema

to different platforms, without any changes within the system itself.

Furthermore, in Chapter 7 the agents demonstrated learning in different ways, through

exploration. The agents learnt different schemas through performing actions on the objects

in the environment. The learnt schemas were used to suggest different solutions for a given

problem. The suggested solutions were developed through a combination of learnt concrete

and generalised schemas based on experiences. The suggested solutions were obtained

through predictions made with the generalised schema. However, all the suggested solutions

do not necessarily lead to achieving the target state, as demonstrated in Section 7.2.2. The

unsuccessful in attempts to solve the problems provide the agent further opportunities to

learn through either developing new schemas or reducing the likelihood of suggesting it in

the future. The experiment demonstrates the open-ended learning in the system, developing

skills to solve problems and adapting learning to different situations.

8.1.2 Generalising from Experiences

The generalisation enables the agent to build a general concept about effects through actions

on the perceived object by finding contextual similarity in similar experiences. The gener-

alisation mechanism helps to develop a general concept about action-object pair, through

inductive inference for generalisation, and a generalised representation (schema) helps to

predict action outcomes. The generalisation mechanism uses schemas with similar actions
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to build a generalised schema through inductive inference. It generalises the variations in

object features between similar schemas that share the same types of perception in response

to the action. The mechanism focuses on the common features (object properties) present

in schemas for generalisation to develop a common representation of all the schemas with

the same type of action. Thus the mechanism helps the agent to extend its knowledge to

novel situations and environments, based on perceptual similarity to previously experienced

environments, without needing to build a separate memory for each individual instance. This

capability of generalisation has been demonstrated through the two experiments presented

in Chapter 4. The first experiment, presented in Section 4.2.1, demonstrates developing an

understanding of non-visual properties of objects linked to visual properties. The second

experiment, presented in Section 4.2.3, demonstrates how generalisation can be used to pre-

dict object properties with numerical values through functional generalisation. In conclusion,

the experiments provide evidence to develop a general understanding about objects and the

effects of actions on them, predicting object features through generalised schemas developed

through playful exploration.

8.1.3 Simulating Individual Variations

The excitation mechanism of the system drives the play behaviour based on the perceived en-

vironment and the agent’s previous experiences. The excitation mechanism, that is modelled

on intrinsic motivations and habituation paradigm in developmental psychology, generates

play behaviours that demonstrate different preferences in the environment. The agents demon-

strated their interests toward either familiar or novel objects in the environment depending

upon the tuning parameters of the excitation system i.e., ω1 and ω2 (see Chapter 5). This

mechanism enables the system to simulate several agents, demonstrating different behaviours

in the same environment, whilst having the same state of knowledge and experiences. As

each individual in the environment develops with the different experiences, therefore vari-

ations between their preferences are more obvious. Furthermore, the mechanism enables

the agents to demonstrate either exploratory behaviours or exploitation of existing actions
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through tuning the other set of excitation parameters i.e., ω3 and ω4. This play behaviour

helps the agent in the decision-making progress for selecting a suitable action for a perceived

object and enables it to extend its knowledge through playful explorations. In conclusion, the

excitation mechanism provides the capability to explore the environment, learning and apply-

ing the skills and understanding gained. The agent can demonstrate different preferences in

decision making process, through tuning the excitation parameters as demonstrated through

experiments in Chapter 5.

8.1.4 Forming Higher Level Actions

We extended the chaining mechanism of the system, originally developed for PSchema [172],

enabling the agent to develop and use chains in the decision making process through the

excitation mechanism. Previously, in PSchema, the chaining mechanism was only used

for solving a problem provided by an external agent. In the developed excitation system,

the agent finds the possible sequences of actions to achieve the postconditions of a schema

which are not possible to achieve directly. Such action sequences can be considered as

high-level actions, represented as schema chains in the system. The chaining mechanism

demonstrates the learning of high-level actions, modelled on the planning behaviour observed

in early infancy [146]. Thus the mechanism demonstrates the developmental progression

in knowledge shaped from a set of single action schemas to schema chains representing

high-level actions. The mechanism is further extended by considering the schema chains as

either reflexive chains or motor programs, depending upon the repetitive use of the chains

as demonstrated in the experiment presented in Section 6.2. This feature is also modelled

on the infants’ behaviours observed in developmental psychology [160, 98, 41]. A motor

program represents a schema chain, that has been repeatedly used successfully executed as a

singular unit, without considering feedback at each individual step in the sequence.

Dev-PSchema provides an opportunity for an external agent to scaffold the agent’s knowl-

edge using the chaining mechanism by providing a target state to achieve. The mechanism
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provides two capabilities for the agent; i) scaffolding, and, ii) shaping knowledge. The agent

uses the chaining mechanism to find different high-level actions that achieve the target state

provided by the external agent and executes the solution to achieve the state. The agent

scaffolds its knowledge and skills through experiences increasing the skills’ complexity,

leading the agent to develop different solutions that achieve the same solution. If the agent

finds alternative solutions for a problem, it interacts with the user i.e., external agent, to select

a solution from the list of alternative solutions. This provides an opportunity for the external

agent to select a suitable solution that will lead the agent to develop further and shape its

learning. During the problem solving the agent executes a user selected solution, however,

if the chain is not successful, its excitation will be reduced, decreasing the likelihood of it

being selected again next time.

The chaining mechanism, in conclusion, provides the capability for the agent to construct

schema chains, leading it to learn high-level actions through combinations of basic actions.

As these chains are successfully reused, they can later be considered and executed as if they

were a single action.

By combining all the contributions, this model will lead a Dev-PSchema enabled agent

to develop its knowledge incrementally through experiences, develop complex behaviours

and utilise those to interact with novel objects and predict the outcomes. In a hypothetical

scenario where an agent with weights leaned toward exploratory behaviours that will lead

the agent to develop more complete generalised schemas through interactions with different

objects using different actions. This will also lead the agent to develop complex actions

(schema chains) using generalised schemas, which can further be utilised in novel situations.

An agent with weights leaned toward the exploitative behaviours will develop more partially

generalised schemas through interactions with preferred objects using repetitive behaviours.

This will lead the agent to develop complex actions using concrete and partially generalised

schemas, which can be utilised further in similar situations.
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8.2 Research Question and Objectives: A Revisit

In Chapter 1, we set research questions given below:

i. Can a schema based model offer open-ended learning through exploratory play and be

able to incorporate new information without any predefined template?

ii. Can a schema system develop generalisation structures, as observed in infants, through

play behaviours and find a functional relationship in the generalisation?

iii. Can a schema system simulate infants with different preferences for actions in a given

situation of the environment as infants do?

iv. Can a schema based system develop action sequences using basic schemas, through

exploratory play, and utilise the sequences as high-level actions, as observed in humans?

v. Can an external user help to scaffold and shape the schema knowledge developed through

play?

Through the series of experiments, presented in Chapters 4 to 7, we demonstrated the

capabilities of Dev-PSchema extended through its sub-components. We demonstrated that

Dev-PSchema is capable of developing general concepts about objects and predict the effects

of different behaviours on them through generalisation, as seen in Chapter 4.

In Chapters 6 and 7 we demonstrated Dev-PSchema building the high-level actions in the

shape of schema sequences. The chains represent high-level actions, considered as the skills,

developed through exploration and later used to achieve the objectives that are not possible

to achieve by any single schema. The acquired skills were applied in novel situations for

achieving an objective state, provided by either the internal decision making process in play

mode or the external agent in problem solving mode. This is also seen as an opportunity to

scaffold and shape the agent’s knowledge.
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Furthermore, Dev-PSchema demonstrated the capability to simulate variations in be-

haviours by adjusting preferences. The decision making process of Dev-PSchema enables the

agents to follow different learning paths resulting in the simulation of different individuals.

Thus Dev-PSchema provides opportunities for the agents to demonstrate playful behaviours

in the environment in order to learn different skills and build object-action concepts. In all

these experiments provide an evidence that Dev-PSchema offers open-ended learning. This

is further supported by smooth switching of the agent, from a simple simulator to a complex

humanoid robot, without any major changes in Dev-PSchema.

8.3 Future Work

In this section, we propose some future developments for Dev-PSchema to enhance its

capabilities.

Dev-PSchema builds schemas with pre and post conditions along with associated condi-

tions, see Chapter 3. These associated conditions once added into a schema remain unaltered

in the memory, except when these are obtained repeatedly through reuse of the same action

and added to the concrete pre/post-conditions. Such associations may be part of the noise

included in perceptions acquired following an action. Dev-PSchema can be further developed

to add tolerance for the associated observations following the repeated experiences. The

capability can be expanded further to remove such associations as a part of the behavioural

effect in a given situation. The mechanism can be developed to remove the associations

through repeated experiences that fail to obtain the associations.

Dev-PSchema has been observed to develop over-generalised schemas, as demonstrated

in Chapters 4 and 7. The possible solution is to amend the generalised schemas through

deductive reasoning, a method of reasoning from very generalised to specific examples based

on the evidences. The generalisation algorithm can be extended to de-generalise schemas
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through experiences. This solution will not increase the number of schemas in the memory,

however this will change the contents i.e., object properties, of generalised schemas from

generalised to specific values. Furthermore, the generalisation mechanism can be further

extended to learn bounds and limitations for property values present in generalised schemas.

For example, if a generalised reach schema contains generalised coordinates, then theoreti-

cally the agent assumes it can reach any point in the visual field. However, it is not possible

without locomotion which is not yet modelled. To solve this, the agent should be able to

learn possible extreme values for each generalised variable through its experiences.

The functional generalisation in Dev-PSchema is limited to the additive function only,

hence finds a linear relationship between the properties present in the schema pre and post

conditions.The functional generalisation can be further extended to include high-level func-

tional labelling such as less/more, smaller/larger, closer/farther etc. This capability can be

extended into Dev-PSchema and labelling through interaction when numerical functional

generalisation is built through concrete schemas having different numerical values for gener-

alised property.

The chaining mechanism is limited to develop chains from the schemas. This can be

expended to develop chains of the chains. Thus building more complex actions by combining

the complex actions. However, longer chains will be less likely to be successful in a real

environment due to unpredictable noise.

The excitation calculator in Dev-PSchema weights all the perceived properties equally.

However, the mechanism should be able to learn prioritisation of the properties for play

behaviours. For example, in the push action the shape of the object may be prioritised higher

than its colour as the shape of the object affects the distance travelled when pushed, not

the colour. Furthermore, the mechanism enables the agents to explore and play with novel

objects in the environment. Thus while playing with an object, the agent may drop the object

and interact with other perceived (novel) objects. This preference can be changed manually
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by varying the excitation parameters i.e., ω1 and ω2. Dev-PSchema may be extended to

develop the object preferences through the agent’s behaviours and acquired outcomes that

lead to dynamic changes in the preferences. For example, a hungry infant will be interested

in food rather than play. The infant’s behaviour may switch to play once the need is satisfied.

Montesano et al. [125] proposed that a robotic model inspired from developmental psy-

chology should be able to demonstrate learning through active experiences and imitations.

As this thesis is mainly focused on developing object knowledge using experiences gained

through active exploratory play, learning through observation and imitation is not incor-

porated in Dev-PSchema. Dev-PSchema may be extended to develop schemas through

observations. This could be implemented through simulating observed behaviours as active

behaviours, as if the agent is performing the action itself. This idea can be supported from

developmental psychology and neuroscience where mirror neurons in the human brain have

been observed to be activated when a subject performs an action him/her-self or observes the

same action being performed by the other subject [156, 50, 49]. This will extend the capabil-

ities of Dev-PSchema system, leading it to learn through passive experiences. Furthermore,

this capability will provide the opportunity to expand the agent’s learning through social

interactions with the other agents.
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Appendix A

Low-Level System Architecture

Fig. A.1 Low-level system architecture and the connection with Dev-PSchema.
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