492 research outputs found

    Modeling the functional genomics of autism using human neurons.

    Get PDF
    Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD

    Antoni Kępiński’s Philosophy of Medicine – an alternative reading

    Get PDF
    Antoni Kępiński remains an often read and quoted author even 40 years after his premature death. Usually he is read in the context of his times and his connections with contemporary philosophy. This paper aims to show other aspects of his reflections on psychiatry. His views on the position of psychiatry within medicine, its methods, psychophysical problems, and other issues are compared with current knowledge and current thought paradigms. The goal is to show that while Kępiński was obviously functioning within a different scientific and philosophical paradigm many of his ideas and reflections can still be found within current debates. The important conclusion is to not hold on to the views that Kępiński held himself because he did not know as much as we do, but to see the importance of the debates that he foresaw even then and possibly learn something from his extensive clinical experience

    Runs of homozygosity implicate autozygosity as a schizophrenia risk factor

    Get PDF
    Autozygosity occurs when two chromosomal segments that are identical from a common ancestor are inherited from each parent. This occurs at high rates in the offspring of mates who are closely related (inbreeding), but also occurs at lower levels among the offspring of distantly related mates. Here, we use runs of homozygosity in genome-wide SNP data to estimate the proportion of the autosome that exists in autozygous tracts in 9,388 cases with schizophrenia and 12,456 controls. We estimate that the odds of schizophrenia increase by ~17% for every 1% increase in genome-wide autozygosity. This association is not due to one or a few regions, but results from many autozygous segments spread throughout the genome, and is consistent with a role for multiple recessive or partially recessive alleles in the etiology of schizophrenia. Such a bias towards recessivity suggests that alleles that increase the risk of schizophrenia have been selected against over evolutionary time

    What Next in Schizophrenia Genetics for the Psychiatric Genomics Consortium?

    Get PDF
    Over the last 8 years the Psychiatric Genomics Consortium (PGC; http://pgc.unc.edu) has fundamentally changed the landscape for psychiatric genetics research. This has been achieved through unprecedented teamwork, involving more than 900 investigators from 40 countries, allied to rigorous methodology. Significantly, the PGC has an open-source approach with the main findings freely available for unrestricted use (http://pgc.unc.edu/downloads). Dozens of groups around the world are using PGC data to develop better analytical methods and to perform secondary analyses on a dataset representing more than 400 000 human participants

    Waterborne aripiprazole blunts the stress response in zebrafish

    Get PDF
    Here we provide, at least to our knowledge, the first evidence that aripiprazole (APPZ) in the water blunts the stress response of exposed fish in a concentration ten times lower than the concentration detected in the environment. Although the mechanism of APPZ in the neuroendocrine axis is not yet determined, our results highlight that the presence of APPZ residues in the environment may interfere with the stress responses in fish. Since an adequate stress response is crucial to restore fish homeostasis after stressors, fish with impaired stress response may have trouble to cope with natural and/or imposed stressors with consequences to their welfare and survival

    Identifying Gene-Environment Interactions in Schizophrenia: Contemporary Challenges for Integrated, Large-scale Investigations

    Get PDF
    Recent years have seen considerable progress in epidemiological and molecular genetic research into environmental and genetic factors in schizophrenia, but methodological uncertainties remain with regard to validating environmental exposures, and the population risk conferred by individual molecular genetic variants is small. There are now also a limited number of studies that have investigated molecular genetic candidate gene-environment interactions (G × E), however, so far, thorough replication of findings is rare and G × E research still faces several conceptual and methodological challenges. In this article, we aim to review these recent developments and illustrate how integrated, large-scale investigations may overcome contemporary challenges in G × E research, drawing on the example of a large, international, multi–center study into the identification and translational application of G × E in schizophrenia. While such investigations are now well underway, new challenges emerge for G × E research from late-breaking evidence that genetic variation and environmental exposures are, to a significant degree, shared across a range of psychiatric disorders, with potential overlap in phenotype

    What's wrong with Psychology, anyway?

    Get PDF
    This chapter considers various factors that have been responsible for the comparatively slow development of psychology into a cumulative empirical science. Special attention is devoted to correctable methodological mistakes, the over-reliance upon significance testing (and the fact that, in psychology, the null hypothesis is almost always false), and an analysis of the concept of replication

    Genome-wide association analysis identifies common variants influencing infant brain volumes

    Get PDF
    Genome-wide association studies (GWAS) of adolescents and adults are transforming our understanding of how genetic variants impact brain structure and psychiatric risk, but cannot address the reality that psychiatric disorders are unfolding developmental processes with origins in fetal life. To investigate how genetic variation impacts prenatal brain development, we conducted a GWAS of global brain tissue volumes in 561 infants. An intronic single-nucleotide polymorphism (SNP) in IGFBP7 (rs114518130) achieved genome-wide significance for gray matter volume (P=4.15 × 10−10). An intronic SNP in WWOX (rs10514437) neared genome-wide significance for white matter volume (P=1.56 × 10−8). Additional loci with small P-values included psychiatric GWAS associations and transcription factors expressed in developing brain. Genetic predisposition scores for schizophrenia and ASD, and the number of genes impacted by rare copy number variants (CNV burden) did not predict global brain tissue volumes. Integration of these results with large-scale neuroimaging GWAS in adolescents (PNC) and adults (ENIGMA2) suggests minimal overlap between common variants impacting brain volumes at different ages. Ultimately, by identifying genes contributing to adverse developmental phenotypes, it may be possible to adjust adverse trajectories, preventing or ameliorating psychiatric and developmental disorders
    corecore