Enzymatic Mechanism of Human Apurinic/Apyrimidinic Endonuclease against a THF AP Site Model Substrate

Abstract

The endonucleolytic activity of human apurinic/apyrimidinic endonuclease (AP endo) is a major factor in the maintenance of the integrity of the human genome. There are estimates that this enzyme is responsible for eliminating as many as 105 potentially mutagenic and genotoxic lesions from the genome of each cell every day. Furthermore, inhibition of AP endonuclease may be effective in decreasing the dose requirements of chemotherapeutics used in the treatment of cancer as well as other diseases. Therefore, it is essential to accurately and directly characterize the enzymatic mechanism of AP endo. Here we describe specifically designed double-stranded DNA oligomers containing tetrahydrofuran (THF) with a 5′-phosphorothioate linkage as the abasic site substrate. Using H218O during the cleavage reaction and leveraging the stereochemical preferences of AP endo and T4 DNA ligase for phosphorothioate substrates, we show that AP endo acts by a one-step associative phosphoryl transfer mechanism on a THF-containing substrate

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0