765,825 research outputs found

    Influential cited references in FEMS Microbiology Letters: lessons from Reference Publication Year Spectroscopy (RPYS)

    No full text
    The journal FEMS Microbiology Letters covers all aspects of microbiology including virology. On which scientific shoulders do the papers published in this journal stand? Which are the classic papers used by the authors? We aim to answer these questions in this study by applying the Reference Publication Year Spectroscopy (RPYS) analysis to all papers published in this journal between 1977 and 2017. In total, 16 837 publications with 410 586 cited references are analyzed. Mainly, the studies published in the journal FEMS Microbiology Letters draw knowledge from methods developed to quantify or characterize biochemical substances such as proteins, nucleic acids, lipids, or carbohydrates and from improvements of techniques suitable for studies of bacterial genetics. The techniques frequently used for studying the genetic of microorganisms in FEMS Microbiology Letters' studies were developed using samples prepared from microorganisms. Methods required for the investigation of proteins, carbohydrates, or lipids were mostly transferred from other fields of life science to microbiology

    Absent in vitro interaction between chloroquine and antifungals against Aspergillus fumigatus

    Get PDF
    This work was supported by Medical Mycology Section, Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands. Parts of these results were presented at the ASM Microbe Conference of American Society for Microbiology, June 16–20, 2016, Boston, MA, Poster no. 426,Peer reviewedPostprin

    Microbial Effects on Repository Performance

    Get PDF
    This report presents a critical review of the international literature on microbial effects in and around a deep geological repository for higher activity wastes. It is aimed at those who are familiar with the nuclear industry and radioactive waste disposal, but who are not experts in microbiology; they may have a limited knowledge of how microbiology may be integrated into and impact upon radioactive waste disposal safety cases and associated performance assessments (PA)

    Laboratory Focus on Improving the Culture of Biosafety: Statewide Risk Assessment of Clinical Laboratories That Process Specimens for Microbiologic Analysis

    Get PDF
    The Wisconsin State Laboratory of Hygiene challenged Wisconsin laboratories to examine their biosafety practices and improve their culture of biosafety. One hundred three clinical and public health laboratories completed a questionnaire-based, microbiology-focused biosafety risk assessment. Greater than 96% of the respondents performed activities related to specimen processing, direct microscopic examination, and rapid nonmolecular testing, while approximately 60% performed culture interpretation. Although they are important to the assessment of risk, data specific to patient occupation, symptoms, and travel history were often unavailable to the laboratory and, therefore, less contributory to a microbiology-focused biosafety risk assessment than information on the specimen source and test requisition. Over 88% of the respondents complied with more than three-quarters of the mitigation control measures listed in the survey. Facility assessment revealed that subsets of laboratories that claim biosafety level 1, 2, or 3 status did not possess all of the biosafety elements considered minimally standard for their respective classifications. Many laboratories reported being able to quickly correct the minor deficiencies identified. Task assessment identified deficiencies that trended higher within the general (not microbiology-specific) laboratory for core activities, such as packaging and shipping, direct microscopic examination, and culture modalities solely involving screens for organism growth. For traditional microbiology departments, opportunities for improvement in the cultivation and management of highly infectious agents, such as acid-fast bacilli and systemic fungi, were revealed. These results derived from a survey of a large cohort of small- and large-scale laboratories suggest the necessity for continued microbiology-based understanding of biosafety practices, vigilance toward biosafety, and enforcement of biosafety practices throughout the laboratory setting

    Robert Koch, Creation, and the Specificity of Germs

    Get PDF
    Microbiology is dominated by evolution today. Just look at any text, journal article, or the topics presented at professional scientific meetings. Darwin is dominant. Microbiology is dominated by evolution today. Just look at any text, journal article, or the topics presented at professional scientific meetings. Darwin is dominant. Many argue that “nothing in biology makes sense except in the light of evolution” (Dobzhansky 1973). But it was not always this way. In fact, a review of the major founders of microbiology has shown that they were creationists.1 We would argue that a better idea thanevolution and one of much more practical importance is the germ theory of disease, originally put forth primarily by non-Darwinian biologists (Gillen and Oliver 2009). In our previous article (Gillen and Oliver 2009), we documented these and many other creation and Christian contributions to germ theory. But only recently has it become known that another important microbiology founder, Robert Koch (Fig. 1) and his co-workers were Linnaean creationists in their classification.2 This is due, in part, to additional works of Robert Koch that were translated from German to English. The year 2010 marks the 100thanniversary of his death (died: May 27, 1910). Although Koch and other German microbiologists were fairly secular in their thinking, their acceptance of Darwinian evolution was minimal

    Rab14 regulates the maturation of macrophage phagosomes containing the fungal pathogen Candida albicans and the outcome of the host-pathogen interaction

    Get PDF
    Date of Acceptance: 02/02/2015 Copyright © 2015, American Society for Microbiology. All Rights Reserved.Peer reviewedPublisher PD

    Interdisciplinary Research-Based Learning in Organic Chemistry and Microbiology Laboratories: Synthesis and Biological Testing of Novel Penicillin Derivatives

    Get PDF
    Interests in the mechanism that penicillin bestows on its target protein has driven the curiosity of its binding specificity towards the methicillin resistant strain of Staphylococcus areus, and its expression of a unique penicillin binding protein that has enabled its resistance. The ability of bacteria to gain antibiotic resistance has strengthened the ongoing need to synthesize and discover novel drugs to combat the diseases that follow infection. If it were not for the collaborations between scientific disciplines, the production of effective novel drugs such as penicillin would not be the same. To encourage undergraduate students to make real world connections across disciplines, the development of an interdisciplinary organic chemistry-microbiology laboratory experiment was developed. By utilizing discovery-based, authentic research to intentionally encourage student collaboration and improve retention of knowledge gained, a pedagogical experiment involving students from both organic chemistry and microbiology was designed to meet these goals. To implement this educational experiment into existing curriculum, an original experiment was designed and tested in the fall of 2014 to develop a synthetic experimental procedure and biological assay that could be used by organic chemistry and microbiology students in the following spring. The synthetic experimental portion had to be completed within a three-hour laboratory period, yet provide enough versatility for each set of students to synthesize different penicillin compounds by varying the acyl tails attached to the penicillin head group. Once the penicillin compounds were synthesized, the organic chemistry students prepared brief presentations to explain the chemistry behind their syntheses to the microbiology students, who aided in their biological testing, allowing students to visualize the antimicrobial efficacy of their antibiotic on bacterial strains. Microbiology students collaborated in the biological analysis by teaching the chemistry students how to perform a disc diffusion assay and interpret possible susceptibility that the antibiotics may have had on gram-negative and gram-positive bacterial strains. This experiment illustrated the benefits of performing open-ended research to create new possible antibiotics in a chemistry course and of testing the synthesized products in a biology course to visualize the antimicrobial efficacy of their antibiotic on bacterial strains. Overall, this experiment gave students in each course the chance to teach and share their newly learned expertise with their peers, to make scientific connections across disciplines and to address an authentic, open-ended research problem through cooperative learning
    corecore