Thermoacoustic Transduction in Individual Suspended Carbon Nanotubes

Abstract

We report an experimental measurement of the acoustic signal emitted from an individual suspended carbon nanotube (CNT) approximate 2 μm in length, 1 nm in diameter, and 10<sup>–21</sup> kg in mass. This system represents the smallest thermoacoustic system studied to date. By applying an AC voltage of 1.4 V at 8 kHz to the suspended CNT, we are able to detect the acoustic signal using a commercial microphone. The acoustic power detected is found to span a range from 0.1 to 2.4 attoWatts or 0.2 to 1 μPa of sound pressure. This corresponds to thermoacoustic efficiencies ranging from 0.007 to 0.6 Pa/W for the seven devices that were measured in this study. Here, the small lateral dimensions of these devices cause large heat losses due to thermal conduction, which result in the relatively small observed thermoacoustic efficiencies

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.