3,474,161 research outputs found
Device-Centric Monitoring for Mobile Device Management
The ubiquity of computing devices has led to an increased need to ensure not
only that the applications deployed on them are correct with respect to their
specifications, but also that the devices are used in an appropriate manner,
especially in situations where the device is provided by a party other than the
actual user. Much work which has been done on runtime verification for mobile
devices and operating systems is mostly application-centric, resulting in
global, device-centric properties (e.g. the user may not send more than 100
messages per day across all applications) being difficult or impossible to
verify. In this paper we present a device-centric approach to runtime verify
the device behaviour against a device policy with the different applications
acting as independent components contributing to the overall behaviour of the
device. We also present an implementation for Android devices, and evaluate it
on a number of device-centric policies, reporting the empirical results
obtained.Comment: In Proceedings FESCA 2016, arXiv:1603.0837
Interleaving device
An interleaving device for processing energy signals between various logic devices has a first number of spaced energy carrying layer mateials. Each of the first layer materials has a number of juxtaposed conduits passing energy signals through which are passed. Each of the conduits has a longitudinal axis substantially parallel to a diagonal of each of the first layers. A second group of energy carrying materials is arranged between adjacent ones of the spaced first layer materials. Each of the second layer materials has a number of juxtaposed conduits through which the energy signals are also passed. Each of the conduits in the second layer has a longitudinal axis substantially parallel to a diagonal of each of the second layer materials and substantially perpendicular to the axes of the conduits of the first layer materials
Latching device
A latching device is suited for use in establishing a substantially motionless connection between a stationary receiver and a movable latching mechanism. The latching mechanism includes a pivotally supported restraining hook continuously urged into a capturing relationship with the receiver, characterized by a spring-biased pawl having a plurality of aligned teeth. The teeth are seated in the surface of the throat of the hook and positionable into restraining engagement with a rigid restraining shoulder projected from the receiver
Recommended from our members
Contrasting Experimentally Device-Manipulated and Device-Free Smiles.
Researchers in psychology have long been interested in not only studying smiles, but in examining the downstream effects of experimentally manipulated smiles. To experimentally manipulate smiles unobtrusively, participants typically hold devices (e.g., pens or chopsticks) in their mouths in a manner that activates the muscles involved in smiling. Surprisingly, despite decades of research using these methods, no study has tested to what degree these methods activate the same muscles as more natural, device-free smiles. Our study fills this gap in the literature by contrasting the magnitude of muscle activation in device-free smiles against the popular chopstick/pen manipulation. We also contrast these methods against the Smile Stick, a new device specifically designed to manipulate smiles in a comfortable and hygienic fashion. One hundred fifty-nine participants each participated in three facial expression manipulations that were held for 1 min: smile manipulation via Smile Stick, smile manipulation via chopsticks, and device-free smile. Facial electromyography was used to measure the intensity of the activation of the two main types of muscles involved in genuine, Duchenne smiling: the orbicularis oculi (a muscle group around the eyes) and the zygomaticus major (a muscle group in the cheeks). Furthermore, following each manipulation, participants rated their experience of the manipulation (i.e., comfort, fatigue, and difficulty), experienced affect (positive and negative), and levels of arousal. Results indicated that the Smile Stick and chopsticks performed equally across all measurements. Device-free smiles were rated as most comfortable but also the most fatiguing, and procured the greatest levels of positive affect and lowest levels of negative affect. Furthermore, device-free smiles resulted in significantly higher levels of both zygomaticus major (by ∼40%) and orbicularis oculi (by ∼15%) muscle activation than either the Smile Stick or chopsticks. The two devices were not different from each other in muscle activation. This study reveals that while device-free smiling procures the greatest changes in muscle activation and affect change, smiling muscle groups are activated by device manipulations, and expected changes in affect do occur, albeit to a lesser degree than device-free smiling. It also indicates that the Smile Stick is an acceptable and comparable alternative to disposable chopsticks
Electroexplosive device
An electroexplosive device is presented which employs a header having contact pins hermetically sealed with glass passing through from a connector end of the header to a cavity filled with a shunt layer of a new nonlinear resistive composition and a heat-sink layer of a new dielectric composition having good thermal conductivity and capacity. The nonlinear resistive layer and the heat-sink layer are prepared from materials by mixing with a low temperature polymerizing resin. The resin is dissolved in a suitable solvent and later evaporated. The resultant solid composite is ground into a powder, press formed into the header and cured (polymerized) at about 250 to 300 F
Secure Full-Duplex Device-to-Device Communication
This paper considers full-duplex (FD) device-to-device (D2D) communications
in a downlink MISO cellular system in the presence of multiple eavesdroppers.
The D2D pair communicate sharing the same frequency band allocated to the
cellular users (CUs). Since the D2D users share the same frequency as the CUs,
both the base station (BS) and D2D transmissions interfere each other. In
addition, due to limited processing capability, D2D users are susceptible to
external attacks. Our aim is to design optimal beamforming and power control
mechanism to guarantee secure communication while delivering the required
quality-of-service (QoS) for the D2D link. In order to improve security,
artificial noise (AN) is transmitted by the BS. We design robust beamforming
for secure message as well as the AN in the worst-case sense for minimizing
total transmit power with imperfect channel state information (CSI) of all
links available at the BS. The problem is strictly non-convex with infinitely
many constraints. By discovering the hidden convexity of the problem, we derive
a rank-one optimal solution for the power minimization problem.Comment: Accepted in IEEE GLOBECOM 2017, Singapore, 4-8 Dec. 201
Heat transfer device
A heat transfer device is characterized by an hermetically sealed tubular housing including a tubular shell terminating in spaced end plates, and a tubular mesh wick concentrically arranged and operatively supported within said housing. The invention provides an improved wicking restraint formed as an elongated and radially expanded tubular helix concentrically related to the wick and adapted to be axially foreshortened and radially expanded into engagement with the wick in response to an axially applied compressive load. The wick is continuously supported in a contiguous relationship with the internal surfaces of the shell
- …
