194,173 research outputs found
Radius and chirality dependent conformation of polymer molecule at nanotube interface
Temperature dependent conformations of linear polymer molecules adsorbed at
carbon nanotube (CNT) interfaces are investigated through molecule dynamics
simulations. Model polyethylene (PE) molecules are shown to have selective
conformations on CNT surface, controlled by atomic structures of CNT lattice
and geometric coiling energy. PE molecules form entropy driven assembly
domains, and their preferred wrapping angles around large radius CNT (40, 40)
reflect the molecule configurations with energy minimums on a graphite plane.
While PE molecules prefer wrapping on small radius armchair CNT (5, 5)
predominantly at low temperatures, their configurations are shifted to larger
wrapping angle ones on a similar radius zigzag CNT (10, 0). A nematic
transformation around 280 K is identified through Landau-deGennes theory, with
molecule aligning along tube axis in extended conformationsComment: 19 pages, 7 figure2, submitted to journa
Different sensing mechanisms in single wire and mat carbon nanotubes chemical sensors
Chemical sensing properties of single wire and mat form sensor structures
fabricated from the same carbon nanotube (CNT) materials have been compared.
Sensing properties of CNT sensors were evaluated upon electrical response in
the presence of five vapours as acetone, acetic acid, ethanol, toluene, and
water. Diverse behaviour of single wire CNT sensors was found, while the mat
structures showed similar response for all the applied vapours. This indicates
that the sensing mechanism of random CNT networks cannot be interpreted as a
simple summation of the constituting individual CNT effects, but is associated
to another robust phenomenon, localized presumably at CNT-CNT junctions, must
be supposed.Comment: 12 pages, 5 figures,Applied Physics A: Materials Science and
Processing 201
Double walled carbon nanotube/polymer composites via in-situ nitroxide mediated polymerisation of amphiphilic block copolymers
Because of their unique physical, chemical, and structural properties, carbon nanotubes (CNT) are playing an increasingly important role in the development of new engineering materials [1]. Across many different applications, CNT/polymer composites have been extensively studied [2] S.B. Sinnot and R. Andrews, Carbon nanotubes: synthesis, properties, and applications, Crit Rev Solid State Mater Sci 26 (2001), pp. 145–249.[2]. The key problem for CNT/polymer composite elaboration is the dispersion, compatibilization, and stabilization of the CNT in the polymer matrix. To solve this problem, a structure with di-block copolymers, one with a good affinity to CNT (monomer M1), the other being the matrix (monomer M2), is proposed in this study, as shown on the two steps mechanism of Fig. 1
Role of the particle size polydispersity in the electrical conductivity of carbon nanotube-epoxy composites
Carbon nanotubes (CTNs) with large aspect-ratios are extensively used to
establish electrical connectedness in polymer melts at very low CNT loadings.
However, the CNT size polydispersity and the quality of the dispersion are
still not fully understood factors that can substantially alter the desired
characteristics of CNT nanocomposites. Here we demonstrate that the electrical
conductivity of polydisperse CNT-epoxy composites with purposely-tailored
distributions of the nanotube length L is a quasiuniversal function of the
first moment of L. This finding challenges the current understanding that the
conductivity depends upon higher moments of the CNT length. We explain the
observed quasiuniversality by a combined effect between the particle size
polydispersity and clustering. This mechanism can be exploited to achieve
controlled tuning of the electrical transport in general CNT nanocomposites.Comment: 9 pages, 5 figure
High-Yield of Memory Elements from Carbon Nanotube Field-Effect Transistors with Atomic Layer Deposited Gate Dielectric
Carbon nanotube field-effect transistors (CNT FETs) have been proposed as
possible building blocks for future nano-electronics. But a challenge with CNT
FETs is that they appear to randomly display varying amounts of hysteresis in
their transfer characteristics. The hysteresis is often attributed to charge
trapping in the dielectric layer between the nanotube and the gate. This study
includes 94 CNT FET samples, providing an unprecedented basis for statistics on
the hysteresis seen in five different CNT-gate configurations. We find that the
memory effect can be controlled by carefully designing the gate dielectric in
nm-thin layers. By using atomic layer depositions (ALD) of HfO and
TiO in a triple-layer configuration, we achieve the first CNT FETs with
consistent and narrowly distributed memory effects in their transfer
characteristics.Comment: 6 pages, 3 figures; added one reference, text reformatted with
smaller addition
Systematically extending classical nucleation theory
The foundation for any discussion of first-order phse transitions is
Classical Nucleation Theory(CNT). CNT, developed in the first half of the
twentieth century, is based on a number of heuristically plausible assumtptions
and the majority of theoretical work on nucleation is devoted to refining or
extending these ideas. Ideally, one would like to derive CNT from a more
fundamental description of nucleation so that its extension, development and
refinement could be developed systematically. In this paper, such a development
is described based on a previously established (Lutsko, JCP 136:034509, 2012 )
connection between Classical Nucleation Theory and fluctuating hydrodynamics.
Here, this connection is described without the need for artificial assumtions
such as spherical symmetry. The results are illustrated by application to CNT
with moving clusters (a long-standing problem in the literature) and the
constructrion of CNT for ellipsoidal clusters
Improving oxidation resistance of carbon nanotube nanocomposites for aerospace applications
Carbon nanotubes (CNTs) based materials possess strong potential to substitute various functional materials developed exclusively for aerospace applications. However, because of the low oxidation temperature of CNTs (400-500 oC), using CNT based ceramic nanocomposites in high temperature applications can be problematic. Making ceramic-CNT nanocomposites by atomic layer deposition (ALD) method and field assisted sintering technology (FAST) is a good route to improve oxidative stability of CNTs. In this study, thermo-gravimetric analysis (TGA) of alumina coated CNTs (prepared by ALD) and alumina-CNT nanocomposites (prepared by FAST) were carried out. 16% improvements were observed in the oxidation resistance for alumina-CNT nanocompo-sites prepared by ALD and SPS techniques. Different strategies to improve oxidation resistance are discussed
- …
