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Abstract – Digital system has been a part of human life since 

the invention of the computer with a microprocessor as the 

central brain. At the heart of a processor is an Arithmetic 

Logic Unit (ALU) that handles arithmetic and logic 

operations. The need for high-speed computation to handle 

complex computations demands microprocessors with 

higher performance. The existing 4-opcode 8-bit ALU 

cannot handle multiplication operations, so a solution is 

needed. In this research, while raising the appeal of 

beginners, a 12-bit ALU with eight operation codes (opcode) 

was designed and implemented in Xilinx’s Field 

Programmable Gate Array using a schematic diagram 

approach through logic gates. The designed and 

implemented ALU provides addition, subtraction, 

multiplication, square, AND, OR, NAND, and XOR 

operations. The multiplication operation was tested by 

performing the computation to provided datasets to obtain 

the distance travelled by ten military aircraft based on their 

maximum speed and air travel duration to ensure its 

performance. The computation performance comparison 

with an 8-bit ALU with four opcodes was also done. The 

computation was done for air travel between 10 to 60 

minutes with a 10-minute difference. It was found that the 

12-bit ALU with eight opcodes outperformed its contender 

with computation differences between 130.815 ns and 

1,468.214 ns. This high performance is supported by the 

multiply operation that does repeated addition at one time. 

Based on this finding, the 8-opcode 12-bit ALU is more 

efficient in the context of computation time, with consistent 

accuracy. Moreover, the computation time required to 

calculate military aircraft data with different maximum 

speeds and air travel duration is only 119.501 ns.  

 

Keywords: Arithmetic logic unit, field programmable gate 

array, microprocessor, military aircraft, operation code 

I. INTRODUCTION 

The invention of the transistor in the 1940s has led to 

the development of various digital systems, including 

computer-based systems. As the human helper in 

delivering solutions for complex computing tasks, the 

microprocessor plays vital roles as the instruction 

executor, controller, and central to digital data processing. 

Hence, the microprocessor is said to be a Central 

Processing Unit (CPU). Generally, a microprocessor 

consists of three central units: Control Unit (CU), 

Arithmetic Logic Unit (ALU), and register. At the heart 

of it, ALU is the vital part of various gadgets [1]–[3] that 

handle arithmetic and logical operations, such as addition, 

subtraction, multiply, square, AND, OR, NAND, and 

XOR. It is the most used element of the microprocessor 

because it is the only one that does mathematical and 

logical operations required by computing-based systems 

[2], [4]. The ALU is an indispensable part of the CPU, the 

central core of all digital systems that certainly use a 

microprocessor as their primary computing engine [5], 

[6]. The better the ALU performance, the better the CPU 

performance, which has an impact on the better the 

performance of the digital system [7]. 

The need for high-speed computation to handle 

complex computations demands higher-performance 

microprocessors. This means it needs ALU with better 

performance. The challenge is how to design ALU with 

that demand. Another challenge is how to attract electrical 

engineering students to have an interest in this field. One 

of the simple approaches is to use a schematic diagram 

followed by its implementation to Field Programmable 

Gate Array (FPGA). The main objective of this research 

is to arouse the appeal of beginners by showing easy ways 

to design an ALU using available tools and implement 

them through FPGAs. 

It is a programmed digital Integrated Circuit (IC) that 

consists of various logical blocks that are easy to 

reconfigure or allow the designers to change the design 

according to the need at any time. It requires a small 

amount of power, supports simultaneous operations, and 

is easy to learn [8], [9]. It is the primary reason it is often 

used to implement digital circuits. Moreover, the use of 

FPGA stimulates creativity. It facilitates the students to 

think, explore, and learn [10]–[13] how to design and 

implement digital circuits from a simple one to a more 

complex one. 

Some works in designing and implementing 

microprocessor’s ALU have been done, such as ALU with 

two logical operations, namely AND and OR [14], and 8-

bit ALU with four operation codes (opcode) that can carry 

out arithmetic operation’s addition and subtraction, and 
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logical operation’s AND and OR [15]. However, the 

primary ALU's operation is the addition [16]. For 

example, a multiply operation in essential is a repetitive 

addition operation, such as 2 ∗ 3 = 2 + 2 + 2. Therefore, 

it is not an efficient operation faced with increasing data. 

Furthermore, referring to [15], the addition operation 

offered by 4-opcode 8-bit ALU will not be efficient and 

will take a long time. On the other hand, the use of FPGA 

for designing and simulating the ALU has been done for 

developing 4-bit [4], 32-bit [9], and 64-bit [2], [3]. 

Based on the above hypothesis, we designed and 

implemented 8-opcode 12-bit ALU by increasing the 

number of operations to cover more arithmetic and logical 

operations. Furthermore, to ensure that our ALU can 

perform better, we employed it to calculate the distance 

traveled by military aircraft based on their maximum 

speed and travel time. The computation was done using 

multiply operation compared to addition operation done 

by 4-opcode 8-bit ALU and by 8-opcode 12-bit ALU. The 

rest of the article will present our research method, results, 

and analysis and be wrapped up with conclusions and 

further works. 

II. METHODOLOGY 

A. Research Stages 

The research was started by carrying out the literature 

study followed by an 8-opcode 12-bit ALU design using 

a schematic diagram approach. We used Xilinx ISE 9.2i 

software for this purpose and did the test and data 

collection for analysis. The research steps are depicted in 

Figure 1. 

 
Figure 1. Research stages flow. 

 

B. Data Collection Method 

For testing the ALU, two datasets were created. As 

presented in Table 1, one dataset contains random data 

used to test whether the eight operations are well carried 

out and result in the correct outputs. Another dataset 

contains actual data that consists of the name and type of 

military aircraft and each maximum speed in 

kilometers/hour (km/h) and its conversion to 

kilometer/minute (km/min).  

ALU will compute the distance traveled by each 

aircraft, that is, the maximum speed time and the traveling 

time. For this purpose, we set up the traveling time from 

10 to 60 minutes with 10 minutes difference between one 

another. The actual dataset for ALU testing is shown in 

Table 2, where the aircraft type and maximum speed are 

taken from [17]. As additional information, the F-16 

Fighting Falcon, JF-17 Thunder, and Dassault Rafale are 

multi-role fighter aircraft manufactured by the United 

States of America, the People's Republic of China, and 

France. At the same time, the Su-33 is an air superiority 

aircraft manufactured by the Russian Federation. The 

F/A-18 Hornet is a multi-role and carrier-capable landing 

aircraft manufactured by the United States of America. 

Table 1. Random Dataset for 12-Bit ALU Testing 

No 
Input 

Function Output 
A B 

1 1089 1442 Add 2531 

2 514 321 Subtract 193 

3 2194 324 Multiply 710856 

4 3712 - Square 13778944 

5 100110000110 101100111010 AND 100100000010 

6 001000110100 001011001011 NAND 110111111111 

7 010110101011 001100011001 OR 011110111011 

8 110011010111 101011100011 XOR 011000110100 

Table 2. Real Dataset for 12-Bit ALU Testing. 

Aircraft 

Name 
Type 

Maximum Speed 

(km/h) (km/min) 

F-16 Fighter 2120 35 

Su-33 Fighter 2500 42 

JF-17 Fighter 1960 33 

Rafale Fighter 2225 37 

F/A-18 Fighter 1915 32 

Super Tucano Attack 590 10 

C-130 Cargo 600 10 

A400M Cargo 780 13 

Super Puma  Helicopter     276 5 

Colibri Helicopter     280  5 

On the other hand, the EMB 314 Super Tucano is a 

turbo-propeller light-attack aircraft that is used to fight the 

guerillas manufactured by Brazil. There are two military 

cargo aircraft, namely, C-130 Hercules and Airbus 

A400M, that the United States of America and Spain 

manufacture. The last two aircraft, NAS-332 Super Puma 
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and Eurocopter EC120 Colibri, were manufactured in 

Indonesia and France. NAS-332 Super Puma is a heavy-

load carrier helicopter, while EC120 colibri is a light-

utility helicopter. 

 

C. Designing the ALU Operations 

It needs eight different opcodes to develop a 12-bit 

ALU that can do eight arithmetic and logical operations. 

The developed ALU can do arithmetic operations, that is, 

addition, subtraction, multiplication, and square, and 

logical operations, that is, AND, NAND, OR, and XOR 

functions. Xilinx 9.2i was used to implement and simulate 

our designed ALU. The two most essential subsystems for 

our designed ALU are the multiplier that does the 

multiplication task and the multiplexer that does the task 

selection function. Their designs are depicted in Figure 2 

and Figure 3. Table 3 gives a short explanation regarding 

the operations that the designed ALU will carry out. 

Table 3. A Short Explanation of Each ALU Operation  

Operation Explanation 

Addition 

Arithmetic operations are in the form of add 

operations where the value of one variable 

(A) is added with the value of another 

variable (B) to obtain a new value (C). The 

form of operation is C = A + B 

Subtraction 

Arithmetic operations in the form of 

subtract operations where the value of one 

variable (A) is subtracted with the value of 

another variable (B) to obtain a new value 

(C). The form of operation is C = A – B 

Multiplication 

Arithmetic operations are in the form of 

multiply operations where the value of one 

variable (A) is multiplied by the value of 

another variable (B) to obtain a new value 

(C). The form of operation is C = A x B 

Square 

Arithmetic operations are square operations 

where the value of one variable (A) is 

squared with itself to obtain a new value 

(C). The form of operation is 𝐂 =  𝐀𝟐 

AND 

The logical operation that compares the 

values of inputs to produce output follows 

the rules of the Boolean Rule, where if both 

inputs (A and B) are '1', the output © is '1'. 

In contrast, combining other inputs will 

produce an output of '0'. The form of 

operation is C = A AND B 

NAND 

The output of NAND logical operations is 

the opposite of that of AND logical 

operations. The form of operation is C = A 

NAND B. 

OR 

The logical operation that compares the 

values of inputs to produce output follows 

the rules of the Boolean Rule, where if both 

inputs (A and B) are '0', the output (C) is '0'. 

In contrast, combining other inputs will 

produce an output of '1'. The form of 

operation is C = A OR B 

XOR 

The logical operation that compares the 

values of inputs to produce output follows 

the rules of the Boolean Rule, where if both 

inputs (A and B) are ‘0’ or '1', the output (C) 

is '0'. In contrast, combining other inputs 

will produce an output of '1'. The form of 

operation is C = A XOR B 

1. 12-Bit Addition and Subtraction Operations 

Adder plays an essential role in ALU computation 

[16], [18], [19]. The basic adder schematic is a full-adder 

circuit. In our design, the ALU is equipped with a 12-bit 

adder and subtractor with two inputs, 𝐴 and 𝐵, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 
[20], and one input 𝑐𝑜𝑢𝑡 (𝐶𝑂). The circuit will function 

as an adder if 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is given logical 0 input. If it is 

given logical 1 input, then it functions as a subtractor. In 

the schematic, the XOR gate is used to reverse the logic 

at input 𝐵 to become (−𝐵) to change the function of the 

circuit from adder to subtractor.  

2. 12-Bit Multiplication Operation 

The 12-bit multiplier will have two 12-bit inputs, 𝐴 and 

𝐵, and one 24-bit output, and its schematic is developed 

based on the multiplication operation algorithm [21]. The 

AND gate is tasked to carry out the multiplication to each 

bit, and the 12-bit adder is tasked to sum the result of the 

multiplication [22]–[24]. The block diagram and the 

schematic of the 12-bit multiplier are depicted in Figure 2 

and Figure 3. 
 

 

 

Figure 2. The 12-bit multiplier block diagram. 

3. 12-Bit Square 

The schematic of the square operation is the same as 

that of the multiplication operation. It uses the AND gate 

to carry out each bit multiplication, and the 12-bit adder 

will sum the multiplication results. The distinct difference 

between multiplication and square is that the input to the 

square operation will be multiplied by its input. 

4. 12-Bit AND, NAND, OR, and XOR Operations 

For each function, the design will consist of 12 AND 

gates [11]–[12] for AND operation, 12 NAND gates to 

support NAND operation, 12 OR gates to perform OR 

operation, and 12 XOR gates to carry out XOR operation.  

5. Multiplexer 

In its operation, ALU will select an operation to be 

carried out by using a device called a multiplexer. It will 

select an operation based on the control line or opcode 

[19]–[20]. It can be designed based on the Boolean 

algebra function [11] and has 24-bit data wide. During 

operation, the multiplexer will receive eight inputs, 

namely addition, subtraction, multiplication, square, 

AND, NAND, OR, and XOR, but only deliver one output 

based on the inputted opcode. The block diagram and the 

schematic of the multiplexer are shown in Figure 4 and 

Figure 5. 
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Figure 3. The schematic of the 12-bit multiplier. It is taken 

initially from the Xilinx 9.2i display. 

 

Figure 4. The multiplexer block diagram. 

 

Figure 5. The schematic of the multiplexer. It is taken initially 

from the Xilinx 9.2i display. 

D. Designing the ALU  

12-bit ALU needs two 12-bit inputs and one 24-bit 

output with three control inputs or opcodes to select a 

particular operation from 8 available ones: addition, 

subtraction, multiplication, square, AND, NAND, OR, 

and XOR. The block diagram view of the designed 12-bit 

ALU and its schematic is depicted in Figure 6 and Figure 

7. As shown, besides two inputs, 𝐴 and 𝐵, there is also a 

3-bit ALU control input that consists of 𝑂𝑃_𝐶𝑂𝐷𝐸0, 

𝑂𝑃_𝐶𝑂𝐷𝐸1, and 𝑂𝑃_𝐶𝑂𝐷𝐸2. The control functions 

select one of eight functions supported by the ALU. Each 

function has a different combination of opcodes, as 

presented in Table 4, where the multiplexer uses these 

combinations to output a particular function or operation. 

 

 

Figure 6. The 12-bit ALU block diagram. 

 

Figure 7. The schematic of 8-opcode 12-bit ALU. 

Table 4. The Truth Table for 8-Opcode 12-bit ALU  

Input Function/ 

Operation OPCODE2 OPCODE1 OPCODE0 

0 0 0 A + B 

0 0 1 A – B 

0 1 0 A x B 

0 1 1 𝐀𝟐 

1 0 0 A AND B 

1 0 1 A NAND B 

1 1 0 A OR B 

1 1 1 A XOR B 

III. RESULTS AND DISCUSSION 

To ensure that the developed 8-opcode 12-bit ALU can 

carry out all eight operations, we did two tests using 

random and real datasets, as mentioned in Section II. The 

ALU inputs are 12-bit wide each, where input 𝐴(11: 0) 
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comprises 𝐴0 … 𝐴11, input 𝐵(11: 0) comprises 

𝐵0 … 𝐵11, while output 𝑌(23: 0) comprises 𝑌0 … 𝑌23, 

and 1 bit 𝐶𝑂. The results of the simulation of ALU 

computation are as follows.  

A. Simulation Results for Random Dataset – Operational 

Test 

Firstly, the 8-opcode 12-bit ALU was tested using a 

random dataset before a real one. As planned, the 12-bit 

ALU will have four arithmetic and four logical operations. 

For this purpose, a random dataset in Table 1 was used to 

test the operations and select the correct opcode to 

perform such operations. The arithmetic operation's 

addition and subtraction results are presented in Figure 8, 

while multiplication and square operations are given in 

Figure 9. On the other hand, the results of logical 

operations, namely, AND, NAND, OR, and XOR, are 

presented in Figure 10 to Figure 13. Numbers in yellow 

squares are the random dataset, as shown in Table 1. 

As presented in Figure 6 to Figure 11, the 12-bit ALU 

got correct outputs according to the selected operation 

based on the inputted opcode to the multiplexer. Opcode 

000 results in 𝐴 + 𝐵, opcode 001 results in 𝐴 − 𝐵, 

opcode 010 results in 𝐴 ∗ 𝐵, opcode 011 results in 𝐴2, 

opcode 100 results in 𝐴 𝐴𝑁𝐷 𝐵, opcode 101 results in 

𝐴 𝑁𝐴𝑁𝐷 𝐵, opcode 110 results in 𝐴 𝑂𝑅 𝐵, and opcode 

111 results in 𝐴 𝑋𝑂𝑅 𝐵. The ALU output is set to 24 bits 

to accommodate the results of multiplication and square. 

Therefore, data width for other operations must be the 

same, that is, 24 bits, and this can be done by adding 12 

bits of logical '0' after the Most Significant Bit (MSB). 

 

 

Figure 8. Addition and subtraction operations’ results. 

 

 

Figure 9. Multiplication and square operations’ results. 

 

 

Figure 10. AND operation’s result. 

 

Figure 11. NAND operation’s result. 

 

Figure 12. OR operation’s result. 

 

Figure 13. XOR operation’s result. 

B. Testing Results for Real Dataset – Computation Test  

Section A above has shown that the developed ALU 

succeeded in the operational tests, and each opcode 

combination in Table 3 has resulted in the correct 

operation as planned. In this section, the test objective is 

to ensure that the ALU can deliver the correct result using 

multiplication operations.  

For this purpose, it is tasked to obtain the distance 

traveled by some military aircraft with a dataset, as shown 

in Table 2. The inputs are the aircraft's maximum speed, 

𝐴, and air travel, 𝐵, where the traveling time is set up from 

10 to 60 minutes with a 10-minute difference between one 

another. The traveled distance is calculated using 

Equation (1). Then, we compared it with manual 

computation using a spreadsheet application to check the 

results. Some computation results are presented in Table 

5 to Table 7. The simulation results are depicted in Figure 

14 to Figure 16. 

𝑠 = 𝑣 × 𝑡  (1) 

where:  

𝑠 is the traveled distance (km) 

𝑣 is the maximum speed (km/min) 

𝑡 is time (min) 

 

Figure 14. The computation results for 10-minute airtime. 
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Table 5. Computation Results for 10-Minute Airtime 

Aircraft 

Type 

Speed 

(km/min) 

Manual 

(km) 

ALU 

(km) 
Discrepancy 

F-16 35 350 350 0 

Su-33 42 420 420 0 

JF-17 33 330 330 0 

Rafale 37 370 370 0 

F/A-18 32 320 320 0 

Super 

Tucano 
10 100 100 0 

C-130 10 100 100 0 

A400M 13 130 130 0 

Super 

Puma 
5 50 50 0 

Colibri 5 50 50 0 

Table 6. Computation Results for 30-Minute Airtime 

Aircraft 

Type 

Speed 

(km/ 

min) 

Manual 

(km) 

ALU 

(km) 

Discre-

pancy 

F-16 35 1050 1050 0 

Su-33 42 1260 1260 0 

JF-17 33 990 990 0 

Rafale 37 1110 1110 0 

F/A-18 32 960 960 0 

Super 

Tucano 
10 300 300 0 

C-130 10 300 300 0 

A400M 13 390 390 0 

Super 

Puma 
5 150 150 0 

Colibri 5 150 150 0 

 

Figure 15. The computation results for 30-minute airtime. 

 

Figure 16. The computation results for 60-minute airtime. 

From the results above, there is no discrepancy result 

between the ALU computation and spreadsheet one. 

Therefore, our developed ALU succeeded in the 

computation tests. Moreover, it shows outstanding 

performance with a computation accuracy of 100%. 

 

Table 7. Computation Results for 60-Minute Airtime 

Aircraft Type 
Speed  

(km/min) 

Manual 

(km) 

ALU 

(km) 
Discrepancy 

F-16 35 2100 2100 0 

Su-33 42 2520 2520 0 

JF-17 33 1980 1980 0 

Rafale 37 2220 2220 0 

F/A-18 32 1920 1920 0 

Super 

Tucano 
10 600 600 0 

C-130 10 600 600 0 

A400M 13 780 780 0 

Super Puma 5 300 300 0 

Colibri 5 3000 3000 0 

C. Computation Time Comparison between 

Multiplication and Addition Operation 

The development of 8-opcode 12-bit ALU is to enhance 

the one developed by [15]. Therefore, the crucial matter 

of the test is to compare the performance of the two ALUs 

to show that our developed one can perform better in 

computation time. 4-opcode 8-bit ALU has only four 

opcodes and is not supported with multiplication 

operations. Therefore, this operation is carried out in 

repetitive addition-like operations. Hypothetically, our 

designed ALU, powered by the multiplication function 

through the multiplier, will show much better 

performance. The test was done successfully, the results 

are shown in Table 8. 

Table 8. Computation Time Comparison 

Air-

time 

(min) 

4-opcode 

8-bit 

ALU 

(ns) 

8-

opcode 

12-bit 

ALU 

(ns) 

Discre-

pancy 

(ns) 

Computa

tion Time 

Increase 

(%) 

10 250.316 119.501 130.815 209.468 

20 518.337 119.501 398.836 433.751 

30 786.357 119.501 666.856 658.034 

40 1054.376 119.501 934.875 882.316 

45 1188.385 119.501 1068.884 994.456 

50 1322.395 119.501 1202.894 1106.597 

60 1587.714 119.501 1468.213 1328.620 

Even though multiplication is essential in a repetitive 

addition, in the view of ALU, they are very different 

operations. As shown in Table 7, using the same dataset, 

the addition operation carried out by 4-opcode 8-bit ALU 

needs to be performed more than the multiplication 

operation done by 8-opcode 12-bit ALU. The longer the 

airtime, the more significant the time discrepancy is. 

Whatever the value of the airtime, the computation time 

required by the 8-opcode 12-bit ALU stays at a consistent 

value, that is, 119.501 nanoseconds (ns). 
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Figure 17. Significant increase in computation time of 4-

opcode 8-bit ALU as the value of airtime increases. 

 On the other hand, for 4-opcode 8-bit ALU, there is a 

significant increase in computation time as the airtime 

increases. For example, the longest computation time for 

4-opcode 8-bit ALU is obtained for 60' airtime with the 

value of 1,587.714 ns, which is 1,328.620% longer than 

that of 8-opcode 12-bit ALU. It also explains that the 

longer the airtime, the longer the time is taken for the 

repetitive addition operation. Therefore, it concludes that 

multiplication operation outperforms repetitive addition, 

as depicted in Figure 17. It proves that our designed 8-

opcode 12-bit ALU outperforms the 4-opcode 8-bit one 

with a significant achievement. This finding shows that 

having an ALU equipped with multiplication operations 

can speed up the computation process, reducing the 

computation time. 

IV. CONCLUSION 

Based on the results and discussion, we get some 

conclusions. Our developed 8-opcode 12-bit ALU has 

passed the operational and computation tests with 

outstanding performance. Each combination of opcodes 

has succeeded in instructing the ALU to carry out the 

correct operation, while in computation, it delivers much 

better performance than the 4-opcode 12-bit ALU with 

more than 1,300%. Whatever the airtime values, our ALU 

shows a stable and consistent computation time much 

lower than its contender. Moreover, it is proved that 

multiplication operation performs much better than 

repetitive addition, making it an essential operation in the 

ALU, which handles large data multiplication. Our ALU 

also achieved 100% accuracy when carrying out the 

computation to find the distance traveled by various 

military aircraft. We concluded that an 8-opcode 12-bit 

ALU equipped with multiplication operation can speed up 

the computation process and reduce the computation time 

needed for high-speed computing-based systems. A 

schematic diagram delivers a straightforward approach to 

designing ALU. In tune with that, Xilinx 9.2i software is 

a helpful electronics circuit designing software that 

provides such an approach and can help students design 

other electronic circuits. The plan for the future is to 

design and implement an 8-opcode 16-bit ALU, followed 

by comparing its performance with the ALU implemented 

in this study. 
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