
ELKHA : Jurnal Teknik Elektro, Vol. 15 No.2, October 2023, pp. 98 - 105

ISSN: 1858-1463 (print), 2580-6807 (online)

- 98 -

1, 2, 3) Electrical Engineering Study Program, Faculty of Industrial Technology, Adisutjipto Institute of Aerospace

Technology, Indonesia
1, 2, 3) Master of Applied Electrical Engineering Study Program, Department of Electrical Engineering, Politeknik Negeri

Malang, Indonesia

Corresponding Email: *) arwin@itda.ac.id

Abstract – Digital system has been a part of human life since

the invention of the computer with a microprocessor as the

central brain. At the heart of a processor is an Arithmetic

Logic Unit (ALU) that handles arithmetic and logic

operations. The need for high-speed computation to handle

complex computations demands microprocessors with

higher performance. The existing 4-opcode 8-bit ALU

cannot handle multiplication operations, so a solution is

needed. In this research, while raising the appeal of

beginners, a 12-bit ALU with eight operation codes (opcode)

was designed and implemented in Xilinx’s Field

Programmable Gate Array using a schematic diagram

approach through logic gates. The designed and

implemented ALU provides addition, subtraction,

multiplication, square, AND, OR, NAND, and XOR

operations. The multiplication operation was tested by

performing the computation to provided datasets to obtain

the distance travelled by ten military aircraft based on their

maximum speed and air travel duration to ensure its

performance. The computation performance comparison

with an 8-bit ALU with four opcodes was also done. The

computation was done for air travel between 10 to 60

minutes with a 10-minute difference. It was found that the

12-bit ALU with eight opcodes outperformed its contender

with computation differences between 130.815 ns and

1,468.214 ns. This high performance is supported by the

multiply operation that does repeated addition at one time.

Based on this finding, the 8-opcode 12-bit ALU is more

efficient in the context of computation time, with consistent

accuracy. Moreover, the computation time required to

calculate military aircraft data with different maximum

speeds and air travel duration is only 119.501 ns.

Keywords: Arithmetic logic unit, field programmable gate

array, microprocessor, military aircraft, operation code

I. INTRODUCTION

The invention of the transistor in the 1940s has led to

the development of various digital systems, including

computer-based systems. As the human helper in

delivering solutions for complex computing tasks, the

microprocessor plays vital roles as the instruction

executor, controller, and central to digital data processing.

Hence, the microprocessor is said to be a Central

Processing Unit (CPU). Generally, a microprocessor

consists of three central units: Control Unit (CU),

Arithmetic Logic Unit (ALU), and register. At the heart

of it, ALU is the vital part of various gadgets [1]–[3] that

handle arithmetic and logical operations, such as addition,

subtraction, multiply, square, AND, OR, NAND, and

XOR. It is the most used element of the microprocessor

because it is the only one that does mathematical and

logical operations required by computing-based systems

[2], [4]. The ALU is an indispensable part of the CPU, the

central core of all digital systems that certainly use a

microprocessor as their primary computing engine [5],

[6]. The better the ALU performance, the better the CPU

performance, which has an impact on the better the

performance of the digital system [7].

The need for high-speed computation to handle

complex computations demands higher-performance

microprocessors. This means it needs ALU with better

performance. The challenge is how to design ALU with

that demand. Another challenge is how to attract electrical

engineering students to have an interest in this field. One

of the simple approaches is to use a schematic diagram

followed by its implementation to Field Programmable

Gate Array (FPGA). The main objective of this research

is to arouse the appeal of beginners by showing easy ways

to design an ALU using available tools and implement

them through FPGAs.

It is a programmed digital Integrated Circuit (IC) that

consists of various logical blocks that are easy to

reconfigure or allow the designers to change the design

according to the need at any time. It requires a small

amount of power, supports simultaneous operations, and

is easy to learn [8], [9]. It is the primary reason it is often

used to implement digital circuits. Moreover, the use of

FPGA stimulates creativity. It facilitates the students to

think, explore, and learn [10]–[13] how to design and

implement digital circuits from a simple one to a more

complex one.

Some works in designing and implementing

microprocessor’s ALU have been done, such as ALU with

two logical operations, namely AND and OR [14], and 8-

bit ALU with four operation codes (opcode) that can carry

out arithmetic operation’s addition and subtraction, and

Design and Implementation of 12-Bit Arithmetic

Logic Unit with 8 Operation Codes to

Field Programmable Gate Array

Arwin Datumaya Wahyudi Sumari1*), Sukriya Hijriana2), and Denny Dermawan3)

Manuscript received 2023-03-31; revised 2023-09-17 ; accepted 2023-09-19

This work is licensed under a Creative Commons Attribution 4.0 License For more information, see https://creativecommons.org/licenses/by-nc-sa/4.0/

12-Bit ALU with 8 Operation Code (A.D.W. Sumari, et al.)

- 99 -

logical operation’s AND and OR [15]. However, the

primary ALU's operation is the addition [16]. For

example, a multiply operation in essential is a repetitive

addition operation, such as 2 ∗ 3 = 2 + 2 + 2. Therefore,

it is not an efficient operation faced with increasing data.

Furthermore, referring to [15], the addition operation

offered by 4-opcode 8-bit ALU will not be efficient and

will take a long time. On the other hand, the use of FPGA

for designing and simulating the ALU has been done for

developing 4-bit [4], 32-bit [9], and 64-bit [2], [3].

Based on the above hypothesis, we designed and

implemented 8-opcode 12-bit ALU by increasing the

number of operations to cover more arithmetic and logical

operations. Furthermore, to ensure that our ALU can

perform better, we employed it to calculate the distance

traveled by military aircraft based on their maximum

speed and travel time. The computation was done using

multiply operation compared to addition operation done

by 4-opcode 8-bit ALU and by 8-opcode 12-bit ALU. The

rest of the article will present our research method, results,

and analysis and be wrapped up with conclusions and

further works.

II. METHODOLOGY

A. Research Stages

The research was started by carrying out the literature

study followed by an 8-opcode 12-bit ALU design using

a schematic diagram approach. We used Xilinx ISE 9.2i

software for this purpose and did the test and data

collection for analysis. The research steps are depicted in

Figure 1.

Figure 1. Research stages flow.

B. Data Collection Method

For testing the ALU, two datasets were created. As

presented in Table 1, one dataset contains random data

used to test whether the eight operations are well carried

out and result in the correct outputs. Another dataset

contains actual data that consists of the name and type of

military aircraft and each maximum speed in

kilometers/hour (km/h) and its conversion to

kilometer/minute (km/min).

ALU will compute the distance traveled by each

aircraft, that is, the maximum speed time and the traveling

time. For this purpose, we set up the traveling time from

10 to 60 minutes with 10 minutes difference between one

another. The actual dataset for ALU testing is shown in

Table 2, where the aircraft type and maximum speed are

taken from [17]. As additional information, the F-16

Fighting Falcon, JF-17 Thunder, and Dassault Rafale are

multi-role fighter aircraft manufactured by the United

States of America, the People's Republic of China, and

France. At the same time, the Su-33 is an air superiority

aircraft manufactured by the Russian Federation. The

F/A-18 Hornet is a multi-role and carrier-capable landing

aircraft manufactured by the United States of America.

Table 1. Random Dataset for 12-Bit ALU Testing

No
Input

Function Output
A B

1 1089 1442 Add 2531

2 514 321 Subtract 193

3 2194 324 Multiply 710856

4 3712 - Square 13778944

5 100110000110 101100111010 AND 100100000010

6 001000110100 001011001011 NAND 110111111111

7 010110101011 001100011001 OR 011110111011

8 110011010111 101011100011 XOR 011000110100

Table 2. Real Dataset for 12-Bit ALU Testing.

Aircraft

Name
Type

Maximum Speed

(km/h) (km/min)

F-16 Fighter 2120 35

Su-33 Fighter 2500 42

JF-17 Fighter 1960 33

Rafale Fighter 2225 37

F/A-18 Fighter 1915 32

Super Tucano Attack 590 10

C-130 Cargo 600 10

A400M Cargo 780 13

Super Puma Helicopter 276 5

Colibri Helicopter 280 5

On the other hand, the EMB 314 Super Tucano is a

turbo-propeller light-attack aircraft that is used to fight the

guerillas manufactured by Brazil. There are two military

cargo aircraft, namely, C-130 Hercules and Airbus

A400M, that the United States of America and Spain

manufacture. The last two aircraft, NAS-332 Super Puma

12-Bit ALU with 8 Operation Code (A.D.W. Sumari, et al.)

- 100 -

and Eurocopter EC120 Colibri, were manufactured in

Indonesia and France. NAS-332 Super Puma is a heavy-

load carrier helicopter, while EC120 colibri is a light-

utility helicopter.

C. Designing the ALU Operations

It needs eight different opcodes to develop a 12-bit

ALU that can do eight arithmetic and logical operations.

The developed ALU can do arithmetic operations, that is,

addition, subtraction, multiplication, and square, and

logical operations, that is, AND, NAND, OR, and XOR

functions. Xilinx 9.2i was used to implement and simulate

our designed ALU. The two most essential subsystems for

our designed ALU are the multiplier that does the

multiplication task and the multiplexer that does the task

selection function. Their designs are depicted in Figure 2

and Figure 3. Table 3 gives a short explanation regarding

the operations that the designed ALU will carry out.

Table 3. A Short Explanation of Each ALU Operation

Operation Explanation

Addition

Arithmetic operations are in the form of add

operations where the value of one variable

(A) is added with the value of another

variable (B) to obtain a new value (C). The

form of operation is C = A + B

Subtraction

Arithmetic operations in the form of

subtract operations where the value of one

variable (A) is subtracted with the value of

another variable (B) to obtain a new value

(C). The form of operation is C = A – B

Multiplication

Arithmetic operations are in the form of

multiply operations where the value of one

variable (A) is multiplied by the value of

another variable (B) to obtain a new value

(C). The form of operation is C = A x B

Square

Arithmetic operations are square operations

where the value of one variable (A) is

squared with itself to obtain a new value

(C). The form of operation is 𝐂 = 𝐀𝟐

AND

The logical operation that compares the

values of inputs to produce output follows

the rules of the Boolean Rule, where if both

inputs (A and B) are '1', the output © is '1'.

In contrast, combining other inputs will

produce an output of '0'. The form of

operation is C = A AND B

NAND

The output of NAND logical operations is

the opposite of that of AND logical

operations. The form of operation is C = A

NAND B.

OR

The logical operation that compares the

values of inputs to produce output follows

the rules of the Boolean Rule, where if both

inputs (A and B) are '0', the output (C) is '0'.

In contrast, combining other inputs will

produce an output of '1'. The form of

operation is C = A OR B

XOR

The logical operation that compares the

values of inputs to produce output follows

the rules of the Boolean Rule, where if both

inputs (A and B) are ‘0’ or '1', the output (C)

is '0'. In contrast, combining other inputs

will produce an output of '1'. The form of

operation is C = A XOR B

1. 12-Bit Addition and Subtraction Operations

Adder plays an essential role in ALU computation

[16], [18], [19]. The basic adder schematic is a full-adder

circuit. In our design, the ALU is equipped with a 12-bit

adder and subtractor with two inputs, 𝐴 and 𝐵, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
[20], and one input 𝑐𝑜𝑢𝑡 (𝐶𝑂). The circuit will function

as an adder if 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is given logical 0 input. If it is

given logical 1 input, then it functions as a subtractor. In

the schematic, the XOR gate is used to reverse the logic

at input 𝐵 to become (−𝐵) to change the function of the

circuit from adder to subtractor.

2. 12-Bit Multiplication Operation

The 12-bit multiplier will have two 12-bit inputs, 𝐴 and

𝐵, and one 24-bit output, and its schematic is developed

based on the multiplication operation algorithm [21]. The

AND gate is tasked to carry out the multiplication to each

bit, and the 12-bit adder is tasked to sum the result of the

multiplication [22]–[24]. The block diagram and the

schematic of the 12-bit multiplier are depicted in Figure 2

and Figure 3.

Figure 2. The 12-bit multiplier block diagram.

3. 12-Bit Square

The schematic of the square operation is the same as

that of the multiplication operation. It uses the AND gate

to carry out each bit multiplication, and the 12-bit adder

will sum the multiplication results. The distinct difference

between multiplication and square is that the input to the

square operation will be multiplied by its input.

4. 12-Bit AND, NAND, OR, and XOR Operations

For each function, the design will consist of 12 AND

gates [11]–[12] for AND operation, 12 NAND gates to

support NAND operation, 12 OR gates to perform OR

operation, and 12 XOR gates to carry out XOR operation.

5. Multiplexer

In its operation, ALU will select an operation to be

carried out by using a device called a multiplexer. It will

select an operation based on the control line or opcode

[19]–[20]. It can be designed based on the Boolean

algebra function [11] and has 24-bit data wide. During

operation, the multiplexer will receive eight inputs,

namely addition, subtraction, multiplication, square,

AND, NAND, OR, and XOR, but only deliver one output

based on the inputted opcode. The block diagram and the

schematic of the multiplexer are shown in Figure 4 and

Figure 5.

12-Bit ALU with 8 Operation Code (A.D.W. Sumari, et al.)

- 101 -

Figure 3. The schematic of the 12-bit multiplier. It is taken

initially from the Xilinx 9.2i display.

Figure 4. The multiplexer block diagram.

Figure 5. The schematic of the multiplexer. It is taken initially

from the Xilinx 9.2i display.

D. Designing the ALU

12-bit ALU needs two 12-bit inputs and one 24-bit

output with three control inputs or opcodes to select a

particular operation from 8 available ones: addition,

subtraction, multiplication, square, AND, NAND, OR,

and XOR. The block diagram view of the designed 12-bit

ALU and its schematic is depicted in Figure 6 and Figure

7. As shown, besides two inputs, 𝐴 and 𝐵, there is also a

3-bit ALU control input that consists of 𝑂𝑃_𝐶𝑂𝐷𝐸0,

𝑂𝑃_𝐶𝑂𝐷𝐸1, and 𝑂𝑃_𝐶𝑂𝐷𝐸2. The control functions

select one of eight functions supported by the ALU. Each

function has a different combination of opcodes, as

presented in Table 4, where the multiplexer uses these

combinations to output a particular function or operation.

Figure 6. The 12-bit ALU block diagram.

Figure 7. The schematic of 8-opcode 12-bit ALU.

Table 4. The Truth Table for 8-Opcode 12-bit ALU

Input Function/

Operation OPCODE2 OPCODE1 OPCODE0

0 0 0 A + B

0 0 1 A – B

0 1 0 A x B

0 1 1 𝐀𝟐

1 0 0 A AND B

1 0 1 A NAND B

1 1 0 A OR B

1 1 1 A XOR B

III. RESULTS AND DISCUSSION

To ensure that the developed 8-opcode 12-bit ALU can

carry out all eight operations, we did two tests using

random and real datasets, as mentioned in Section II. The

ALU inputs are 12-bit wide each, where input 𝐴(11: 0)

12-Bit ALU with 8 Operation Code (A.D.W. Sumari, et al.)

- 102 -

comprises 𝐴0 … 𝐴11, input 𝐵(11: 0) comprises

𝐵0 … 𝐵11, while output 𝑌(23: 0) comprises 𝑌0 … 𝑌23,

and 1 bit 𝐶𝑂. The results of the simulation of ALU

computation are as follows.

A. Simulation Results for Random Dataset – Operational

Test

Firstly, the 8-opcode 12-bit ALU was tested using a

random dataset before a real one. As planned, the 12-bit

ALU will have four arithmetic and four logical operations.

For this purpose, a random dataset in Table 1 was used to

test the operations and select the correct opcode to

perform such operations. The arithmetic operation's

addition and subtraction results are presented in Figure 8,

while multiplication and square operations are given in

Figure 9. On the other hand, the results of logical

operations, namely, AND, NAND, OR, and XOR, are

presented in Figure 10 to Figure 13. Numbers in yellow

squares are the random dataset, as shown in Table 1.

As presented in Figure 6 to Figure 11, the 12-bit ALU

got correct outputs according to the selected operation

based on the inputted opcode to the multiplexer. Opcode

000 results in 𝐴 + 𝐵, opcode 001 results in 𝐴 − 𝐵,

opcode 010 results in 𝐴 ∗ 𝐵, opcode 011 results in 𝐴2,

opcode 100 results in 𝐴 𝐴𝑁𝐷 𝐵, opcode 101 results in

𝐴 𝑁𝐴𝑁𝐷 𝐵, opcode 110 results in 𝐴 𝑂𝑅 𝐵, and opcode

111 results in 𝐴 𝑋𝑂𝑅 𝐵. The ALU output is set to 24 bits

to accommodate the results of multiplication and square.

Therefore, data width for other operations must be the

same, that is, 24 bits, and this can be done by adding 12

bits of logical '0' after the Most Significant Bit (MSB).

Figure 8. Addition and subtraction operations’ results.

Figure 9. Multiplication and square operations’ results.

Figure 10. AND operation’s result.

Figure 11. NAND operation’s result.

Figure 12. OR operation’s result.

Figure 13. XOR operation’s result.

B. Testing Results for Real Dataset – Computation Test

Section A above has shown that the developed ALU

succeeded in the operational tests, and each opcode

combination in Table 3 has resulted in the correct

operation as planned. In this section, the test objective is

to ensure that the ALU can deliver the correct result using

multiplication operations.

For this purpose, it is tasked to obtain the distance

traveled by some military aircraft with a dataset, as shown

in Table 2. The inputs are the aircraft's maximum speed,

𝐴, and air travel, 𝐵, where the traveling time is set up from

10 to 60 minutes with a 10-minute difference between one

another. The traveled distance is calculated using

Equation (1). Then, we compared it with manual

computation using a spreadsheet application to check the

results. Some computation results are presented in Table

5 to Table 7. The simulation results are depicted in Figure

14 to Figure 16.

𝑠 = 𝑣 × 𝑡 (1)

where:

𝑠 is the traveled distance (km)

𝑣 is the maximum speed (km/min)

𝑡 is time (min)

Figure 14. The computation results for 10-minute airtime.

12-Bit ALU with 8 Operation Code (A.D.W. Sumari, et al.)

- 103 -

Table 5. Computation Results for 10-Minute Airtime

Aircraft

Type

Speed

(km/min)

Manual

(km)

ALU

(km)
Discrepancy

F-16 35 350 350 0

Su-33 42 420 420 0

JF-17 33 330 330 0

Rafale 37 370 370 0

F/A-18 32 320 320 0

Super

Tucano
10 100 100 0

C-130 10 100 100 0

A400M 13 130 130 0

Super

Puma
5 50 50 0

Colibri 5 50 50 0

Table 6. Computation Results for 30-Minute Airtime

Aircraft

Type

Speed

(km/

min)

Manual

(km)

ALU

(km)

Discre-

pancy

F-16 35 1050 1050 0

Su-33 42 1260 1260 0

JF-17 33 990 990 0

Rafale 37 1110 1110 0

F/A-18 32 960 960 0

Super

Tucano
10 300 300 0

C-130 10 300 300 0

A400M 13 390 390 0

Super

Puma
5 150 150 0

Colibri 5 150 150 0

Figure 15. The computation results for 30-minute airtime.

Figure 16. The computation results for 60-minute airtime.

From the results above, there is no discrepancy result

between the ALU computation and spreadsheet one.

Therefore, our developed ALU succeeded in the

computation tests. Moreover, it shows outstanding

performance with a computation accuracy of 100%.

Table 7. Computation Results for 60-Minute Airtime

Aircraft Type
Speed

(km/min)

Manual

(km)

ALU

(km)
Discrepancy

F-16 35 2100 2100 0

Su-33 42 2520 2520 0

JF-17 33 1980 1980 0

Rafale 37 2220 2220 0

F/A-18 32 1920 1920 0

Super

Tucano
10 600 600 0

C-130 10 600 600 0

A400M 13 780 780 0

Super Puma 5 300 300 0

Colibri 5 3000 3000 0

C. Computation Time Comparison between

Multiplication and Addition Operation

The development of 8-opcode 12-bit ALU is to enhance

the one developed by [15]. Therefore, the crucial matter

of the test is to compare the performance of the two ALUs

to show that our developed one can perform better in

computation time. 4-opcode 8-bit ALU has only four

opcodes and is not supported with multiplication

operations. Therefore, this operation is carried out in

repetitive addition-like operations. Hypothetically, our

designed ALU, powered by the multiplication function

through the multiplier, will show much better

performance. The test was done successfully, the results

are shown in Table 8.

Table 8. Computation Time Comparison

Air-

time

(min)

4-opcode

8-bit

ALU

(ns)

8-

opcode

12-bit

ALU

(ns)

Discre-

pancy

(ns)

Computa

tion Time

Increase

(%)

10 250.316 119.501 130.815 209.468

20 518.337 119.501 398.836 433.751

30 786.357 119.501 666.856 658.034

40 1054.376 119.501 934.875 882.316

45 1188.385 119.501 1068.884 994.456

50 1322.395 119.501 1202.894 1106.597

60 1587.714 119.501 1468.213 1328.620

Even though multiplication is essential in a repetitive

addition, in the view of ALU, they are very different

operations. As shown in Table 7, using the same dataset,

the addition operation carried out by 4-opcode 8-bit ALU

needs to be performed more than the multiplication

operation done by 8-opcode 12-bit ALU. The longer the

airtime, the more significant the time discrepancy is.

Whatever the value of the airtime, the computation time

required by the 8-opcode 12-bit ALU stays at a consistent

value, that is, 119.501 nanoseconds (ns).

12-Bit ALU with 8 Operation Code (A.D.W. Sumari, et al.)

- 104 -

Figure 17. Significant increase in computation time of 4-

opcode 8-bit ALU as the value of airtime increases.

 On the other hand, for 4-opcode 8-bit ALU, there is a

significant increase in computation time as the airtime

increases. For example, the longest computation time for

4-opcode 8-bit ALU is obtained for 60' airtime with the

value of 1,587.714 ns, which is 1,328.620% longer than

that of 8-opcode 12-bit ALU. It also explains that the

longer the airtime, the longer the time is taken for the

repetitive addition operation. Therefore, it concludes that

multiplication operation outperforms repetitive addition,

as depicted in Figure 17. It proves that our designed 8-

opcode 12-bit ALU outperforms the 4-opcode 8-bit one

with a significant achievement. This finding shows that

having an ALU equipped with multiplication operations

can speed up the computation process, reducing the

computation time.

IV. CONCLUSION

Based on the results and discussion, we get some

conclusions. Our developed 8-opcode 12-bit ALU has

passed the operational and computation tests with

outstanding performance. Each combination of opcodes

has succeeded in instructing the ALU to carry out the

correct operation, while in computation, it delivers much

better performance than the 4-opcode 12-bit ALU with

more than 1,300%. Whatever the airtime values, our ALU

shows a stable and consistent computation time much

lower than its contender. Moreover, it is proved that

multiplication operation performs much better than

repetitive addition, making it an essential operation in the

ALU, which handles large data multiplication. Our ALU

also achieved 100% accuracy when carrying out the

computation to find the distance traveled by various

military aircraft. We concluded that an 8-opcode 12-bit

ALU equipped with multiplication operation can speed up

the computation process and reduce the computation time

needed for high-speed computing-based systems. A

schematic diagram delivers a straightforward approach to

designing ALU. In tune with that, Xilinx 9.2i software is

a helpful electronics circuit designing software that

provides such an approach and can help students design

other electronic circuits. The plan for the future is to

design and implement an 8-opcode 16-bit ALU, followed

by comparing its performance with the ALU implemented

in this study.

REFERENCES

[1] S. M. Swamynathan and V. Banumathi, “Design and

analysis of FPGA based 32 bit ALU using reversible

gates,” Proceedings - 2017 IEEE International

Conference on Electrical, Instrumentation and

Communication Engineering, ICEICE 2017, vol. 2017-

Decem, no. April 2017, pp. 1–4, 2017.

[2] V. Sharma, K. Nayanam, S. Shukla, and N. Bhatia,

“Design of Energy Efficient ALU on FPGA,”

International Journal of Advances in Engineering and

Management (IJAEM), vol. 2, no. 2, pp. 5–10, 2008.

[3] N. S. Bedir and F. Kaçar, “Design and Simulation of 64

Bit FPGA based Arithmetic Logic Unit,” Electrica, vol.

19, no. 2, pp. 158–165, 2019.

[4] A. K. Panigrahi, S. Patra, M. Agrawal, and S. Satapathy,

“Design and Implementation of a high-speed 4bit ALU

using BASYS3 FPGA Board,” in 2019 Innovations in

Power and Advanced Computing Technologies (i-PACT),

2019, pp. 1–6.

[5] R. Aliabadian, M. Golsorkhtabaramiri, S. R. Heikalabad,

and M. K. Sohrabi, “Design of an ultra-high-speed

coplanar QCA reversible ALU with a novel coplanar

reversible full adder based on MTSG,” The European

Physical Journal Plus, vol. 138, no. 5, p. 481, May 2023.

[6] M. Alharbi, G. Edwards, and R. Stocker, “Reversible

Quantum-Dot Cellular Automata-Based Arithmetic

Logic Unit,” Nanomaterials, vol. 13, no. 17, Sep. 2023.

[7] K. V. B. V. Rayudu, D. R. Jahagirdar, and P. S. Rao,

“Modern Design and Testing of High-Speed Vedic ALU

Controller using Vedic Algorithms,” Journal of The

Institution of Engineers (India): Series B, vol. 104, no. 1,

pp. 221–230, Feb. 2023.

[8] H. Wang and X. Chen, “Development and Optimization

Design of Digital Logic device based on FPGA,” J Phys

Conf Ser, vol. 1345, no. 6, 2019.

[9] B. Özkilbaç, “Implementation and Design of 32 Bit

Floating-Point ALU on a Hybrid FPGA-ARM Platform,”

Brilliant Engineering, vol. 1, no. 1, pp. 26–32, Dec. 2019.

[10] A. Borodzhieva, I. Stoev, and V. Mutkov, "Application

of Active Learning Methods in the Course 'Digital

Electronics' in the Topic Digital Comparators Using

FPGA Design," SIITME 2019 - 2019 IEEE 25th

International Symposium for Design and Technology in

Electronic Packaging, Proceedings, no. October 2019,

pp. 160–163, 2019.

[11] A. N. Borodzhieva, I. I. Stoev, and V. A. Mutkov, “FPGA

implementation of boolean functions using

multiplexers,” in 2019 28th International Scientific

Conference Electronics, ET 2019 - Proceedings, 2019.

[12] A. Borodzhieva, I. Stoev, and V. Mutkov, “FPGA

Implementation of Boolean Functions Using Decoders

and Logic Gates,” SIITME 2019 - 2019 IEEE 25th

International Symposium for Design and Technology in

Electronic Packaging, Proceedings, no. October, pp.

164–167, 2019.

[13] F. Suryawan, “A project-based approach to FPGA-aided

teaching of digital systems,” International Conference on

Electrical Engineering, Computer Science and

Informatics (EECSI), vol. 2017-Decem, no. September,

pp. 19–21, 2017.

12-Bit ALU with 8 Operation Code (A.D.W. Sumari, et al.)

- 105 -

[14] A. Rani and N. Grover, “An enhanced FPGA based

asynchronous microprocessor design using VIVADO

and ISIM,” Bulletin of Electrical Engineering and

Informatics, vol. 7, no. 2, pp. 199–208, 2018.

[15] D. Dermawan, M. A. M. Putra, C. B. Waluyo, and B.

Sudibya, “Rancang Bangun Arithmetic Logic Unit 8 Bit

Pada Spartan 2 Field Programmable Gate Array,”

Conference SENATIK STT Adisutjipto Yogyakarta, vol.

6, pp. 185–198, 2020.

[16] S. K. Pattnaik, U. Nanda, D. Nayak, S. R. Mohapatra, A.

B. Nayak, and A. Mallick, “Design and implementation

of different types of full adders in ALU and leakage

minimization,” Proceedings - International Conference

on Trends in Electronics and Informatics, ICEI 2017, vol.

2018-Janua, pp. 924–927, 2018.

[17] Military Factory - Global Defense Reference,

“Militaryfactory.com”,2023.https://www.militaryfactory

.com/

[18] M. S. Ali, “Cascaded ripple carry adder based SRCSA for

efficient FIR filter,” Indonesian Journal of Electrical

Engineering and Computer Science, vol. 9, no. 2, pp.

253–256, 2018.

[19] N. S. Bedir and F. Kaçar, “Design and simulation of 64

bit FPGA based arithmetic logic unit,” Electrica, vol. 19,

no. 2, pp. 158–165, 2019.

[20] A. N. Borodzhieva, I. I. Stoev, I. D. Tsvetkova, S. L.

Zaharieva, and V. A. Mutkov, “Computer-Based

Education in the Course ‘Digital Electronics’ Teaching

the Topic ‘Adders-Subtractors,’” in 2020 43rd

International Convention on Information,

Communication and Electronic Technology, MIPRO

2020 - Proceedings, 2020.

[21] A. Borodzhieva, I. Tsvetkova, S. Zaharieva, D. Dimitrov,

and V. Mutkov, “Project-based learning approach applied

in the course ‘digital electronics’ for studying the topic

‘binary multipliers,’” in ACM International Conference

Proceeding Series, 2021.

[22] F. Nasser and I. Hashim, “Power Optimization of Binary

Multiplier Based on FPGA,” Engineering and

Technology Journal, 2021.

[23] J. L. Imana, “Low-Delay FPGA-Based Implementation

of Finite Field Multipliers,” IEEE Transactions on

Circuits and Systems II: Express Briefs, 2021.

[24] M. P. Véstias and H. C. Neto, “Decimal multiplication in

FPGA with a novel decimal adder/subtractor,"

Algorithms. 2021.

[25] P. K. Rai, S. Srivastava, and A. Johri, "Design, Layout

and Simulation of 8-bit Arithmetic and Logic Circuits

Pad frame using C5 Process for deep submicron CMOS,"

in 2018 International Conference on Advanced

Computation and Telecommunication, ICACAT 2018,

2018.

[26] J. R. Shinde and S. J. Shinde, “An optimization design

strategy for arithmetic logic unit,” Universal Journal of

Electrical and Electronic Engineering, 2019.

[27] N. Yadav and P. Kumari, “Design of ALU using dual-

mode logic with optimized power and speed,” IMPACT

2017 - International Conference on Multimedia, Signal

Processing and Communication Technologies, pp. 41–

45, 2018.

