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Abstract - In the process industry, a control system is 

important to ensure the process runs smoothly and keeps the 

product under predetermined specifications.  Oscillations in 

process variables can affect the decreasing profitability of 

the plant.  It is important to detect the oscillation before it 

becomes a problem for profitability.  Various methods have 

been developed; however, the methods still need to improve 

when implemented online for multi-oscillation. Therefore, 

this research uses a machine learning-based method with the 

K-Nearest Neighbour (KNN) algorithm to detect multi-

oscillation in the control loop, and the detection methods are 

made to carry out online detection from real plants.  The 

developed method simulated the Tennessee Eastman Process 

(TEP), and it used Python programming to create a KNN 

model and extract time series data into the frequency 

domain.  The Message Queuing Telemetry Transport 

(MQTT) communication protocol has been used to 

implement as an online system.  The result of the 

implementation showed that two KNN models were made 

with different window size variations to get the best 

performance model.  The best model for multi-oscillation 

detection was obtained with an F1 score of 76% for 

detection. 
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I. INTRODUCTION 
 

 In the industrial sector, especially the process 

industry, a control system is important to ensure the 

process runs smoothly and keeps the product under 

predetermined specifications.  However, the operation of 

control systems in the process industry will not always run 

well because of the disturbances indicated by the 

oscillations.  Oscillation is a common problem in the 

industrial control loop where between 30% and 41% of 

the control loop in the industry has oscillated [1].  In the 

control process, oscillations were indicated by the time 

series data trend that did not meet a predetermined 

condition in the period. 

The oscillation caused by external disturbance, 

aggressive controller, and sticking valve [2] can adversely 

affect processes such as increased energy consumption 

and material waste, low-quality products, and damage to 

the control instrument.  In general, oscillation can affect 

the plant’s profitability [3].  Therefore, it is necessary to 

handle oscillation when it occurs.  The first step to 

handling oscillation is early detection when the oscillation 

occurs in a control loop [4].  

 The conventional method of oscillation detection is 

monitoring and analyzing the process variable (PV) data 

over a period with direct inspection at the control loops.  

Previous research has been conducted to develop a more 

efficient method for oscillation detection.  The methods 

are generally based on calculating certain parameters and 

setting a threshold, then evaluating it with if/else 

commands using the computational algorithm to 

determine the oscillation within the process variable’s 

data [1].  However, the methods still require a huge 

amount of time and are not so efficient since, in the 

industrial plant, there are hundreds or thousands of control 

loops [5].  For example, there is an application of the 

decomposition method using Empirical Mode 

Decomposition (EMD) and Fast Adaptive Chirp Mode 

Decomposition (FACMD) algorithm for oscillation 

detection in the control loop [6], [7].  Then, a combination 

of EMD and Delay Vector Variance (DVV) was 

developed for oscillation detection in chemical industries 

[8].  There is also a method based on the frequency 

domain property of time series data analysis using the 

Estimation of Signal Parameters via Rotational Invariance 

Technique (ESPRIT) that measures the frequency in data 

signal at Point of Common Coupling (PCC) to detect 

oscillation in control loops [9], [10]. 

The threshold-based method runs well in a regular 

oscillation with higher efficiency than the direct 

inspection method.  Unfortunately, in the industrial 

process, some disturbances, such as intermittent and 

multi-oscillation, can occur in oscillation with non-

regular amplitude or frequency.  This non-regular 

oscillation has factors and parameters that make the 

calculation more complex.  Thus, this method becomes 

too complex and hard to implement [1].  

The machine learning-based method is another 

method for detecting oscillation in control loops is the 

machine learning-based method [11].  The machine 

learning-based method has various algorithms that have 

been implemented, such as the application of the 

Convolutional Neural Network (CNN) and Principal 
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Component Analysis (PCA) algorithm for online 

detection [12].  Then, there is a combination of a Support 

Vector Machine (SVM) with a generalized statistical 

variable to detect oscillation caused by a stiction valve in 

the control loop [13].  Also, there is an improvisation 

Multilayer Feedforward Neural network for oscillation 

detection due to stiction in control valves [14].  However, 

these methods are implemented in a single data of control 

loops.  The machine learning-based method that had been 

developed shows that the machine learning method is 

simpler than the threshold-based method.   

This paper provides a new contribution by giving a 

simpler method based on machine-learning. This research 

aims to develop online machine learning-based methods 

that can be used to detect multi-oscillation that is caused 

by external disturbance, aggressive controller, and 

sticking valves in real-time control loop data.  The method 

was developed using a K-Nearest Neighbor (KNN) 

algorithm integrated with MQTT protocol and sliding 

windows technique to provide continuous detection. 
 

 

II. METHODOLOGY  
 

The method proposed in this research will be based on 

machine learning using the KNN algorithm as part of a 

thesis regarding the application of KNN for detecting and 

diagnosing multi-oscillation [15].  KNN is used in this 

research because, with the optimum value of k neighbor, 

KNN becomes an effective algorithm for classification 

tasks with outlier and noised datasets.  KNN is based on 

the distance metric like Euclidean distance to measure the 

similarity between a training sample and a testing sample, 

then identify the nearest neighbors of classified data 

according to the computed similarities, and finally decide 

the class label of the testing sample by the majority vote 

among the neighbors.  This research used KNN to classify 

the process variable dataset with noised data.  The KNN 

algorithm will be implemented in computing devices to 

process data and determine the presence of multi-

oscillation.  

To simulate that the methods can be implemented in 

the online system. The KNN-based detection methods 

device is connected to the Data Acquisition System to 

receive and process variable datasets online. The 

communication using Message Queuing Telemetry 

Transport (MQTT) communication protocol. The 

implementation concept is shown in Figure. 1. While 

MQTT is a protocol that uses the server-client concept 

[16], the KNN-based detection method devices become 

subscribers that receive data from a Data Acquisition 

System. 

 

Figure 1.  Implementation concept 

Implementing the online detection method requires a 

fast and efficient signal analysis to process continuous 

incoming data [17].  The incoming continuous data does 

not always have an oscillation within it.  The incoming 

data must be segmented to replace the old data with the 

new data in the optimum fix-sized data length to reduce 

the computing load and get the high-efficiency execution 

program.  Thus, the sliding windows technique 

determines the data that will be analyzed.  The sliding 

window technique will set a “window” with a certain data 

length, and when the new incoming data arrives, the initial 

data will be deleted to insert new data. 

 

Figure 2.  Sliding window process [19] 

This process will run continuously, like a window 

that slides among data visualized in Figure. 2.  The sliding 

window is one widely used technique to analyze and 

segment continuous data [18].  Therefore, this research 

will determine the window size for a more efficient 

method.  Three kinds of window sizes are used, 100, 150, 

and 200 lengths of data, which found that the three 

optimal window sizes were used to obtain the best-

performing model by varying the window size from 0 to 

200 [12].  One of the three size windows will be chosen 

based on the result of the F1 score for each size in the 

evaluation phase.  This research was carried out in four 

main stages, shown in Figure 3. 

.   

Figure 3.  Methods [18] 

Two categories of data are used to build the KNN 

model for multi-oscillation detection.  The first category 

is non-multi oscillation data, PV data under normal 

operation, and data with a single oscillation.  The second 

category is multi-oscillation data, which can be divided 

into three types of multi-oscillation, as shown in Table 1. 
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Table 1.  Type of Training Data 
 

Label Oscillation Source 

Non-Multi 

oscillation 

Normal 

Sticking Valve 

Poor-tunning controller 

External Disturbance 

Multi-

oscillation Type 

I 

Sticking Valve and Poor-tunning 

controller 

Multi-

oscillation Type 

II 

Sticking Valve and External 

Disturbance 

Multi-

oscillation Type 

III 

External Disturbance and Poor-tunning 

controller 

 

The data used to create the KNN model is obtained 

from the Tennessee Eastman Process (TEP) simulation.  

TEP is a simulation program developed by the Eastman 

Chemical Company that provides a natural process of an 

industry for evaluating control monitoring techniques and 

methods.  The simulation process in TEP is condition-

based, the actual chemical process by which the 

components, kinetics, and operating conditions have been 

modified.  The TEP dataset is a benchmark for comparing 

different anomaly detection approaches [20].  Therefore, 

in this research, TEP will provide generated artificial data 

representing industrial process data in a few setting 

conditions.  The data is then mapped into two segments: 

training and testing data. 

Training data is temperature data inside the reactor unit 

in TEP that is used to build the KNN model.  The 

temperature inside the reactor is controlled by adjusting 

the reactor coolant flow with the control loop shown in 

Figure 4.  Training data is retrieved when the process is 

under normal conditions and when a single oscillation 

occurs with three different error sources. Two categories 

of data are used to build the KNN model for multi-

oscillation detection.  The first category is non-multi 

oscillation data, PV data under normal operation, and data 

with a single oscillation.  The second category is multi-

oscillation data, which can be divided into three (3) types 

of multi-oscillation, as shown in Table 1. 

The data used to create the KNN model is obtained 

from the Tennessee Eastman Process (TEP) simulation.  

TEP is a simulation program developed by the Eastman 

Chemical Company that provides a natural process of an 

industry for evaluating control monitoring techniques and 

methods.  The simulation process in TEP is condition-

based, the actual chemical process by which the 

components, kinetics, and operating conditions have been 

modified.  The TEP dataset is a benchmark for comparing 

different anomaly detection approaches [20]. Therefore, 

in this research, TEP will provide generated artificial data 

representing industrial process data in a few setting 

conditions.   

Training data is temperature data inside the reactor unit 

in TEP that is used to build the KNN model.  The 

temperature inside the reactor is controlled by adjusting 

the reactor coolant flow with the control loop shown in 

Figure 4.  Training data is retrieved when the process is 

under normal conditions and when a single oscillation 

occurs with three different error sources.  

 

Figure 4.  TEP reactor unit control system [20] 

Training data retrieval is carried out during the 

simulation until the data reaches a predetermined length.  

The results of retrieving training data with a range of 

training data for each label are shown in Table 1.  The 

multi-oscillation data consist of two single oscillation that 

occurs simultaneously.  However, multi-oscillation data 

with more than two oscillation sources will be ignored 

because two sources are enough to represent a multi-

oscillation. 

The training data obtained is then processed at the 

initial stage: data segmentation, normalization, extraction, 

and labeling.  Data segmentation is the division of process 

variable time series data (PV data) based on the size of a 

specified window.  Each control block on the training data 

is divided into subsets with a length corresponding to the 

window size.  The segmentation process is shown in 

Figure 5.  The training data is divided into 200 subsets 

according to each window size. 

 

Figure 5.  Data segmentation [15] 

Frequent domain features are extracted from data using 

the frequency feature extraction library in a time series 

already available in Python [21].  The extraction of 

frequency features from time series data is then divided 

into three domains: temporal, statistical, and spectral.  In 
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this study, extraction is configured in a spectral domain 

that will produce frequency domain features from the 

data.  Extraction is performed on each training data subset, 

and each subset's extraction results will be unified into a 

new dataset with a frequency domain feature.  The feature 

extraction process is shown in Figure. 6.  Feature selection 

is performed to get features with a strong influence on 

model detection results while reducing the computational 

load of detection.  Features strongly impacting the model 

are features with a high-value correlation coefficient. 

 

 

Figure 6.  Data extraction process [15] 

Segmentation is performed on the train data based on 

the specified window size.  Three window sizes are to be 

tested, with sizes 100, 150, and 200.  The segmentation 

process is carried out as in Figure 3 with a subset size 

according to the size of the test window.  Segmentation 

was performed on four types of data from the training data 

in Table I, and each label was segmented into 200 subsets, 

resulting in a total of 800 subsets for each test window.  

The data in the subset is then extracted using the 

frequency feature extraction library in the time series to 

derive the frequency domain feature from the data.  The 

extraction result from each subset will result in one row 

of data with columns containing the values of the 

frequency domain data feature.  The extraction results 

from all subsets are then reunited in one new dataset.  The 

extraction results are then normalized before being used 

to train the model.  Based on this, training data is obtained, 

with details shown in Table 2. 

Table 2.  Training Data After Extraction Process 

Label Total Data 

Non-Multi Oscillation 4 x 200 data 

Multi-oscillation Type I 1 x 200 data 

Multi-oscillation Type II 1 x 200 data 

Multi-oscillation Type III 1 x 200 data 

 

Depending on the desired conditions, the test data is 

taken from several control cards.  Non-multi-oscillation 

test data is the PV data in the TE process unit under 

normal conditions.  Meanwhile, multi-oscillation test data 

is data from several units in the TE process according to 

the cause of the multi-oscillation type. 11 non-multi 

oscillation condition data and 5 data for each kind of 

multi-oscillation were taken for the test data.  Therefore, 

in the test data, a total of 26 data were obtained.  The 

details of the test data are shown in Table 3, each process 

variable containing 200 sampled data.  The testing data 

was obtained with different process variables from 

training data but with similar oscillation conditions.  It 

will deliver the model's performance in detecting multi-

oscillation in other units with additional variable and 

shows its performance in the new environment.  The 

testing data represent the multi-oscillation and non-multi-

oscillation data with various oscillation sources.  

Therefore, the version of the machine learning model can 

describe how the model performs in a different 

environment. 

Table 3.  Testing Data 

Label Total Data 

Non-Multi Oscillation 11 x 200 data 

Multi-oscillation Type I 5 x 200 data 

Multi-oscillation Type II 5 x 200 data 

Multi-oscillation Type III 5 x 200 data 

 

The detection model is trained using two classes of 

data: non-multi oscillation data labeled 0 and multi-

oscillation data labeled 1.  The model training stages are 

performed using the Python programming language.  The 

machine learning model uses the KNN algorithm.  The 

model is then trained using the dataset prepared in Table 

2. Three window sizes are used in each model type: 100, 

150, and 200 data lengths. 

The next stage is an optimization process that is carried 

out by determining the optimal hyperparameter value for 

the model.  In the KNN model used, the hyperparameter 

that can be optimized is the Value of k in the neighbor 

parameter.  Optimization is then performed by varying the 

k value from 1 to 10 to get the best-performing model 

[22]. 

The trained model is then tested using test data to obtain 

a sliding window size with the best machine-learning 

performance parameters at this evaluation stage.  The 

performance parameter is accuracy in the form of F1 

values through confusion matrix analysis.  The F1 score 

measures a model's accuracy on a dataset.  It evaluates 

binary classification systems, classifying examples as 

'positive' or 'negative'. The confusion matrix is visualized 

in a table where each row refers to the actual class 

recorded in the test data.  

Each column refers to the class of prediction results by 

the classification model.  In the confusion matrix, a True 

Positive (TP) will be obtained where the positive label 

value is predicted correctly, False Positive (PS) where the 

negative label value is predicted as a positive label, True 

Negative (TN) where the negative label is predicted 

correctly, and False Negative (FN) where the positive 

label value is predicted as a negative label, as shown in 

Figure 7. 
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Figure 7.  Confusion matrix 

From Figure 7, precision and recall values are obtained, 

where accuracy is obtained from the ratio of correct 

positive data to all samples predicted as positive.  

Meanwhile, recall is obtained from the ratio of expected 

positive data to all data samples labeled positive.  

Precision indicates the reliability of the machine learning 

model in classifying the model as positive, and recall 

measures the model's ability to detect positive samples.  

The following equation uses the precision and recall 

values to obtain the F1 value. The optimal KNN model is 

then implemented in the Python program using the MQTT 

protocol, which provides the detection process to be 

carried out online.  This method is set to update the data 

within the sliding window and give the detection result 

every second. 
 

 

III. RESULTS AND DISCUSSION 
 

Machine learning model training is created using the 

Python programming language.  The model is then trained 

using the data processed in the data preparation stage.  At 

this stage of the training model, the initial k-values 

parameter of 5 was used.  Further optimizations were 

made to the models that had been made to get the best k-

value parameter for each model.  The optimization results 

in the form of the best k value for the detection sub-

program are shown in Table 4.  

Table 4.  Optimization Result or K-Value Parameter On 

Various Sliding Windows 

Sliding Window Length Best Value of k 

100 3 

150 15 

200 5 

 

The best k parameter obtained from the optimization 

stage will recreate the initial program by entering the k 

value obtained.  The optimization result model is then 

evaluated to determine the model with the best 

performance.  The evaluation is done by testing the 

optimization result model using test data, as shown in 

Table 5. 

Table 5.  Confusion Matrix for Three Sizes of Window 

Sliding 

windows 

length 

k 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

100 3 13 6 5 2 

150 15 14 3 8 1 

200 5 13 7 2 4 

The results obtained in Table 5 were then calculated to 

get the accuracy for detecting multiple oscillations.  This 

level of accuracy is obtained from the F1 score of each 

model shown in Table 6. 

Table 6.  Confusion Matrix for Three Sizes of Window 

Sliding windows 

length 
k F1 Score 

100 3 71% 

150 15 58 % 

200 5 76% 

Based on the evaluation results, the best-performing 

model is a machine learning model with a KNN algorithm 

with a parameter k of 5 and a sliding window size of 200 

data.  The model is then implemented online by creating 

an online detection program based on Python 

programming.  Process variable data is sent from the TE 

process to the MQTT broker.  The detection program will 

then retrieve the data at the broker for later detection.  The 

detection program will display the time variable, the 

process variable Value (sensor measurement results), and 

the detection results.  The detection program created is 

then reevaluated using test data to determine if there is a 

change in performance.  The evaluation results show that 

the online program has a detection performance with an 

unchanged F1 value of 76%.  It means that this method 

can detect 76% of multi-oscillation data correctly in the 

total of multi-oscillation data that has been inputted. 

The developed method in this research has an F1 score 

of 76%, which is higher than other works, such as using 

the Deep Feedforward Network (DFN) algorithm with an 

accuracy of 70 % for sensor noised data [1].  The method 

has a higher chance of detecting multi-oscillation 

correctly.  This method also updated incoming data within 

sliding windows and showed the detection result in setting 

time conditions. 
 

 

IV. CONCLUSION 

This research developed the multi-oscillation detection 

based on the machine learning KNN algorithm.  It 

implemented online detection using the MQTT protocol.  

The result showed that the developed method performs 

well based on the F1 score parameter of the 

implementation that can be reached until 76%.  It also 

shows that it can be implemented for online multi-

oscillation detection in the industrial process.  For further 

development, this developed method will be combined 

with intermittent and single oscillation data to complete 

the oscillation method for process variables in control 

loops. 
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