12,414 research outputs found

    Wood Density Determination by Drilling Chips Extraction in Ten Softwood and Hardwood Species

    Get PDF
    Producción CientíficaResearch Highlights: The novelty of this study is the development of an accurate wood density estimation method based on a relatively brand new semi-destructive testing technique (drilling chips extraction). This method is especially crucial in the assessment of existing timber structures. Background and Objectives: Probing, drilling, and coring are non-destructive and semi-destructive techniques commonly used for timber density estimation in existing timber structures. Most of these techniques show poor or medium accuracy or are so expensive or destructive. This paper aims to obtain accurate estimation models for wood density in existing structures using the easy to use drilling chips extraction technique. Materials and Methods: 300 specimens (95 × 65 × 200 mm3) from ten softwood and hardwood species covering a wide range of density (from 350 to 980 kg·m−3) were tested after conditioning. The Wood Extractor device based on the drilling chips extraction technique was used in the radial and the tangential direction. Mass of the chips collected (drilling residue) from each drill was recorded. Results: Density obtained from drilling residue was not statistically significantly different between radial and tangential directions avoiding take into account direction when measuring. The density obtained in the whole specimens is slightly higher than the density obtained by drilling residue being this difference uniformly through the range of densities studied. Two different estimation models were presented with high determination coefficients (96% and 97%) and low standard errors. These results were similar to those obtained by other authors using core drilling but causing less damage. Conclusions: Drilling chips extractor is a simple, reliable and inexpensive method to estimate density in existing structures with accuracy.Ministerio de Economía, Industria y Competitividad (project BIA2014-55089-P)Asociación de Investigación Técnica de la Madera (projects AITIM-Fucovasa 2012–2013 and ITIM Fucovasa 2014–2015

    Wood Density and Moisture Content Estimation by Drilling Chips Extraction Technique

    Get PDF
    Producción CientíficaThe novelty of this study is the development of an accurate wood moisture content (MC) estimation method based on a relatively brand-new, non-destructive testing technique (drilling chips extraction). The method is especially important in the assessment of existing timber structures, where non-destructive testing (NDT) results are affected by wood MC and should be adjusted to a reference MC, usually 12%. In the assessment of timber structures, it is not possible to determine MC by oven drying method and this should be estimated. Electrical resistance and capacitance are the conventional methods used for MC estimation. This research work aims to present an accurate MC estimation method based on the drilling chips extraction technique. For that, 99 specimens (90 × 65 × 38 mm3) from three softwood and hardwood species covering a wide range of densities (from 355 to 978 kg m−3) were tested after conditioning at five different MCs (5%, 10%, 15%, 20%, 25%). The Wood Extractor device based on the drilling chips extraction technique was used. The mass of the chips collected (drilling residue) from each drill was recorded. The results show that the MC of the chips extracted was statistically significantly different than the MC of the specimen and cannot be directly used as MC determination. However, the chips MC can be used as an estimator of specimen MC with high determination coefficients (R2 from 71% to 86%). As the main result, models to estimate density directly adjusted to a reference 12% MC from the wet and dry mass of chips extracted were developed with an R2 of 98%. In sum, the drilling chips extractor is a dependable and straightforward method to estimate MC and density from only one measurement. Density adjusted to a reference 12% MC can be directly estimated from a single model.Ministerio de Economía, Industria y Competitividad (project BIA2014-55089-P)Asociación de Investigación Técnica de la Madera (projects AITIM-Fucovasa 2012–2013 and AITIMFucovasa 2014–2015

    A simple field based method for rapid wood density estimation for selected tree species in Western Kenya

    Get PDF
    Wood density is an important variable for accurate quantification of woody biomass and carbon stocks. Conventional destructive methods for wood density estimation are resource intensive, prohibiting their use, limiting the application of approaches that would minimize uncertainties in tree biomass estimates. We tested an alternative method involving tree coring with a carpenter's auger to estimate wood density of seven tropical tree species in Western Kenya. We used conventional water immersion method to validate results from the auger core method. The mean densities (and 95% confidence intervals) ranged from 0.36 g cm−3 (0.25–0.47) to 0.67 g cm−3 (0.61–0.73) for the auger core method, and 0.46 g cm−3 (0.42–0.50) to 0.67 g cm−3 (0.61–0.73) for the water immersion method. The auger core and water immersion methods were not significantly different for four out of seven tree species namely; Acacia mearnsii, Mangifera indica, Eucalyptus grandis and Grevillea robusta. However, wood densities estimated from the auger core method were lower (t (61) = 7.992, P = <0.001). The ease of the auger core method application, as a non-destructive method in acquiring wood density data, is a worthy alternative in biomass and carbon stocks quantification. This method could protect trees outside forests found in most parts of Africa

    An assessment of the remodelling of bifurcations in hazel (Corylus avellana L.) in response to bracing, drilling and splitting

    Get PDF
    This paper provides an insight into the ability of bifurcations in hazel trees to remodel themselves after bracing, drilling and splitting. The study uses evidence from field observations and testing the strength of these bifurcations using a universal testing machine alongside wood density tests. This work highlights the importance of the centrally-placed xylem at the apex of hazel forks in supplying tensile strength to the bifurcation. Additionally, it provides evidence that rod-braced bifurcations can atrophy in terms of their tensile strength, growth rate and wood density, suggesting that thigmomorphogenesis plays an important role in the development of a strong bifurcation

    Climate driven trends in tree biomass increment show asynchronous dependence on tree-ring width and wood density variation

    Get PDF
    Tree growth is a key ecosystem function supporting climate change mitigation strategies. However climate change may induce feedbacks on radial growth and wood density, affecting the carbon sequestration capacity of forests. Using a mixed modeling technique long-term trends in radial growth, wood density and above-ground biomass, defined as the product of the annual basal area growth with the wood density, of common beech (Fagus sylvatica) and sessile oak (Quercus petraea) in the Belgian Ardennes, were determined and explained using climate drivers of change. This modeling strategy allowed us to determine if the same conclusions can be drawn when only BAI is considered, as is assumed in most carbon sequestration studies, when looking at long-term trends in carbon sequestration. The models indicate that above-ground biomass increment changes over time are more driven by changes in radial growth than by changes in wood density. Nevertheless, the assumption of constant wood density in most carbon sequestration studies is incorrect. Ignoring wood density results in an underestimation of long-term trends in above-ground biomass increment for beech, and an overestimation of above-ground biomass increment for oak. Interesting is that radial growth is mostly driven by climate variables of the current year, whereas wood density is more driven by the climate variables of the previous year. Beech radial growth and wood density is found to be negatively influenced by drought and positively by water availability. Oak radial growth and wood density is negatively affected by late frost and positively by water availability. The findings of this study suggest that radial growth in combination with wood density should be used in carbon sequestration studies as different climate driven long-term trends in radial growth and wood density are found

    Relationships Between Wood Density and Annual Growth Rate Components in Balsam Fir (Abies Balsamea)

    Get PDF
    This study examined relationships of wood density components with annual growth rate components (or annual ring width components) in juvenile wood and mature wood of balsam fir [Abies balsamea (L.) Mill.]. The relationships were studied at two different levels: 1) inter-tree level (between trees), and 2) intra-tree level (within a tree). In addition, juvenile-mature wood correlations for these characteristics were investigated. Wood density and annual ring width components of individual growth rings were measured by X-ray densitometry. Based on tree averages (at the inter-tree level), wood density is significantly correlated with its components (earlywood density, latewood density) and latewood percentage in both juvenile wood and mature wood; and earlywood density and latewood percentage are the two most important parameters in determining the overall wood density of the tree. Wood density, however, is not significantly correlated with annual growth rate (ring width) in either juvenile wood or mature wood, although a weakly negative correlation tends to strengthen in mature wood. This suggests that the relationship between wood density and annual growth rate in this species may vary with cambial age. Intra-ring wood density variation (IDV) shows a positive correlation with wood density traits, latewood width, and latewood percentage in both juvenile wood and mature wood, whereas a weakly negative correlation of IDV with ring width and earlywood width exists in balsam fir. Latewood traits are the most important parameters in determining the intra-ring wood density uniformity. At the intra-tree level (based on ring averages within a tree), relationships between wood density components and ring width components are similar to those found between the trees, although some relationships, to some extent, vary with tree. For each wood density trait, the juvenile-mature wood correlation is significant but moderate. For this species, earlywood density in juvenile wood seems to be the best parameter for predicting mature wood density
    • …
    corecore