22 research outputs found

    AVADA: toward automated pathogenic variant evidence retrieval directly from the full-text literature

    Get PDF
    Purpose: Both monogenic pathogenic variant cataloging and clinical patient diagnosis start with variant-level evidence retrieval followed by expert evidence integration in search of diagnostic variants and genes. Here, we try to accelerate pathogenic variant evidence retrieval by an automatic approach. Methods: Automatic VAriant evidence DAtabase (AVADA) is a novel machine learning tool that uses natural language processing to automatically identify pathogenic genetic variant evidence in full-text primary literature about monogenic disease and convert it to genomic coordinates. Results AVADA automatically retrieved almost 60% of likely disease-causing variants deposited in the Human Gene Mutation Database (HGMD), a 4.4-fold improvement over the current best open source automated variant extractor. AVADA contains over 60,000 likely disease-causing variants that are in HGMD but not in ClinVar. AVADA also highlights the challenges of automated variant mapping and pathogenicity curation. However, when combined with manual validation, on 245 diagnosed patients, AVADA provides valuable evidence for an additional 18 diagnostic variants, on top of ClinVar’s 21, versus only 2 using the best current automated approach. Conclusion : AVADA advances automated retrieval of pathogenic monogenic variant evidence from full-text literature. Far from perfect, but much faster than PubMed/Google Scholar search, careful curation of AVADA-retrieved evidence can aid both database curation and patient diagnosis

    AVADA improves automated genetic variant database construction directly from full-text literature

    Get PDF
    Purpose: The primary literature on human genetic diseases includes descriptions of pathogenic variants that are essential for clinical diagnosis. Variant databases such as ClinVar and HGMD collect pathogenic variants by manual curation. We aimed to automatically construct a freely accessible database of pathogenic variants directly from full-text articles about genetic disease. Methods: AVADA (Automatically curated VAriant DAtabase) is a novel machine learning tool that uses natural language processing to automatically identify pathogenic variants and genes in full text of primary literature and converts them to genomic coordinates for rapid downstream use. Results: AVADA automatically curated almost 60% of pathogenic variants deposited in HGMD, a 4.4-fold improvement over the current state of the art in automated variant extraction. AVADA also contains more than 60,000 pathogenic variants that are in HGMD, but not in ClinVar. In a cohort of 245 diagnosed patients, AVADA correctly annotated 38 previously described diagnostic variants, compared to 43 using HGMD, 20 using ClinVar and only 13 (wholly subsumed by AVADA and ClinVar's) using the best automated abstracts-only based approach. Conclusion: AVADA is the first machine learning tool that automatically curates a variants database directly from full text literature. AVADA is available upon publication at http://bejerano.stanford.edu/AVADA

    PGxMine: Text Mining for Curation of PharmGKB

    Get PDF
    Precision medicine tailors treatment to individuals personal data including differences in their genome. The Pharmacogenomics Knowledgebase (PharmGKB) provides highly curated information on the effect of genetic variation on drug response and side effects for a wide range of drugs. PharmGKB's scientific curators triage, review and annotate a large number of papers each year but the task is challenging. We present the PGxMine resource, a text-mined resource of pharmacogenomic associations from all accessible published literature to assist in the curation of PharmGKB. We developed a supervised machine learning pipeline to extract associations between a variant (DNA and protein changes, star alleles and dbSNP identifiers) and a chemical. PGxMine covers 452 chemicals and 2,426 variants and contains 19,930 mentions of pharmacogenomic associations across 7,170 papers. An evaluation by PharmGKB curators found that 57 of the top 100 associations not found in PharmGKB led to 83 curatable papers and a further 24 associations would likely lead to curatable papers through citations. The results can be viewed at https://pgxmine.pharmgkb.org/ and code can be downloaded at https://github.com/jakelever/pgxmine

    RegEl corpus: identifying DNA regulatory elements in the scientific literature

    Get PDF
    High-throughput technologies led to the generation of a wealth of data on regulatory DNA elements in the human genome. However, results from disease-driven studies are primarily shared in textual form as scientific articles. Information extraction (IE) algorithms allow this information to be (semi-)automatically accessed. Their development, however, is dependent on the availability of annotated corpora. Therefore, we introduce RegEl (Regulatory Elements), the first freely available corpus annotated with regulatory DNA elements comprising 305 PubMed abstracts for a total of 2690 sentences. We focus on enhancers, promoters and transcription factor binding sites. Three annotators worked in two stages, achieving an overall 0.73 F1 inter-annotator agreement and 0.46 for regulatory elements. Depending on the entity type, IE baselines reach F1-scores of 0.48–0.91 for entity detection and 0.71–0.88 for entity normalization. Next, we apply our entity detection models to the entire PubMed collection and extract co-occurrences of genes or diseases with regulatory elements. This generates large collections of regulatory elements associated with 137 870 unique genes and 7420 diseases, which we make openly available.Database URL: https://zenodo.org/record/6418451#.YqcLHvexVqgPeer Reviewe

    PubMed and Beyond: Recent Advances and Best Practices in Biomedical Literature Search

    Full text link
    Biomedical research yields a wealth of information, much of which is only accessible through the literature. Consequently, literature search is an essential tool for building on prior knowledge in clinical and biomedical research. Although recent improvements in artificial intelligence have expanded functionality beyond keyword-based search, these advances may be unfamiliar to clinicians and researchers. In response, we present a survey of literature search tools tailored to both general and specific information needs in biomedicine, with the objective of helping readers efficiently fulfill their information needs. We first examine the widely used PubMed search engine, discussing recent improvements and continued challenges. We then describe literature search tools catering to five specific information needs: 1. Identifying high-quality clinical research for evidence-based medicine. 2. Retrieving gene-related information for precision medicine and genomics. 3. Searching by meaning, including natural language questions. 4. Locating related articles with literature recommendation. 5. Mining literature to discover associations between concepts such as diseases and genetic variants. Additionally, we cover practical considerations and best practices for choosing and using these tools. Finally, we provide a perspective on the future of literature search engines, considering recent breakthroughs in large language models such as ChatGPT. In summary, our survey provides a comprehensive view of biomedical literature search functionalities with 36 publicly available tools.Comment: 27 pages, 6 figures, 36 tool

    Scaling up data curation using deep learning: An application to literature triage in genomic variation resources.

    Get PDF
    Manually curating biomedical knowledge from publications is necessary to build a knowledge based service that provides highly precise and organized information to users. The process of retrieving relevant publications for curation, which is also known as document triage, is usually carried out by querying and reading articles in PubMed. However, this query-based method often obtains unsatisfactory precision and recall on the retrieved results, and it is difficult to manually generate optimal queries. To address this, we propose a machine-learning assisted triage method. We collect previously curated publications from two databases UniProtKB/Swiss-Prot and the NHGRI-EBI GWAS Catalog, and used them as a gold-standard dataset for training deep learning models based on convolutional neural networks. We then use the trained models to classify and rank new publications for curation. For evaluation, we apply our method to the real-world manual curation process of UniProtKB/Swiss-Prot and the GWAS Catalog. We demonstrate that our machine-assisted triage method outperforms the current query-based triage methods, improves efficiency, and enriches curated content. Our method achieves a precision 1.81 and 2.99 times higher than that obtained by the current query-based triage methods of UniProtKB/Swiss-Prot and the GWAS Catalog, respectively, without compromising recall. In fact, our method retrieves many additional relevant publications that the query-based method of UniProtKB/Swiss-Prot could not find. As these results show, our machine learning-based method can make the triage process more efficient and is being implemented in production so that human curators can focus on more challenging tasks to improve the quality of knowledge bases
    corecore