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Abstract

Manually curating biomedical knowledge from publications is necessary to build a knowl-

edge based service that provides highly precise and organized information to users. The

process of retrieving relevant publications for curation, which is also known as document tri-

age, is usually carried out by querying and reading articles in PubMed. However, this query-

based method often obtains unsatisfactory precision and recall on the retrieved results, and

it is difficult to manually generate optimal queries. To address this, we propose a machine-

learning assisted triage method. We collect previously curated publications from two data-

bases UniProtKB/Swiss-Prot and the NHGRI-EBI GWAS Catalog, and used them as a

gold-standard dataset for training deep learning models based on convolutional neural net-

works. We then use the trained models to classify and rank new publications for curation.

For evaluation, we apply our method to the real-world manual curation process of Uni-

ProtKB/Swiss-Prot and the GWAS Catalog. We demonstrate that our machine-assisted tri-

age method outperforms the current query-based triage methods, improves efficiency, and

enriches curated content. Our method achieves a precision 1.81 and 2.99 times higher than

that obtained by the current query-based triage methods of UniProtKB/Swiss-Prot and the

GWAS Catalog, respectively, without compromising recall. In fact, our method retrieves

many additional relevant publications that the query-based method of UniProtKB/Swiss-

Prot could not find. As these results show, our machine learning-based method can make

the triage process more efficient and is being implemented in production so that human

curators can focus on more challenging tasks to improve the quality of knowledge bases.
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Author summary

As the volume of literature on genomic variants continues to grow at an increasing rate, it

is becoming more difficult for a curator of a variant knowledge base to keep up with and

curate all the published papers. Here, we suggest a deep learning-based literature triage

method for genomic variation resources. Our method achieves state-of-the-art perfor-

mance on the triage task. Moreover, our model does not require any laborious preprocess-

ing or feature engineering steps, which are required for traditional machine learning

triage methods. We applied our method to the literature triage process of UniProtKB/

Swiss-Prot and the NHGRI-EBI GWAS Catalog for genomic variation by collaborating

with the database curators. Both the manual curation teams confirmed that our method

achieved higher precision than their previous query-based triage methods without

compromising recall. Both results show that our method is more efficient and can replace

the traditional query-based triage methods of manually curated databases. Our method

can give human curators more time to focus on more challenging tasks such as actual

curation as well as the discovery of novel papers/experimental techniques to consider for

inclusion.

Introduction

The question of how genetic variation in a population influences phenotypic variation is of

major importance in biology. Naturally occurring genetic variants, both rare and common,

can provide insight into disease mechanism and protein function. This understanding, cou-

pled with the recent explosion in next-generation sequencing, has meant a dramatic increase

in publications on the subject. This also means that it is now impossible for individual

researchers to collect and collate all the variant information that may be relevant to them. To

assist researchers, variant information in publications is selected, summarized, organized, and

stored in a searchable form in knowledge bases such as UniProtKB/Swiss-Prot [1, 2] and the

NHGRI-EBI GWAS Catalog [3] for easier access and greater usability. However, such knowl-

edge bases require domain experts to collect and manually curate high quality information

from the literature [4], a highly time consuming and therefore costly process. In addition,

these knowledge bases have their own focus and collect information from publications accord-

ing to their own specific guidelines.

As shown in the study of Baumgartner et al., the manual curation of information for geno-

mic databases is, for the most part, not scalable due to the fast-growing number of publications

[5]. To overcome this scalability issue, automated or semi-automated methods can be used [6].

For this purpose, text mining and machine learning tools that support information extraction

and annotation have been developed [7–14]. Poux et al. [15] demonstrated that manual cura-

tion can be more efficient and scalable with the proper text-mining services and techniques.

As a typical first step in the manual curation process, the document triage process involves

identifying publications of interest [16, 17]. On average, three thousand biomedical papers are

indexed in PubMed every day. (In 2016, more than 1.1 million publications were indexed in

PubMed). Triage is then required to select a subset of relevant publications for curation. As

Hirschman et al. [16] explained, triage is usually carried out using pre-defined queries in the

PubMed database. The queries are generated using general terms related to topics such as

“GWAS” and “Drug screening” or a list of entities (e.g., onco-gene list [18]). Publication date or

publication type (e.g., review, book) are also included for a query as needed. However, a triage

process using pre-defined queries has several major limitations. Using general topic terms for a
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query may be futile because publications on a certain topic may not contain the specific terms.

For example, if a user wishes to find publications on cancer-related genes, the query should con-

tain specific terms such as “HER2,” “Carcinoma,” “Tumor,” and so on, rather than “cancer-

related gene” because many publications on cancer-related genes do not contain the general

term “cancer-related gene.” Furthermore, the topic words in a publication may provide only

background information and may not be on the main topic of the publication. Also, longstand-

ing databases have their own complex and detailed guidelines for manual curation and it can be

difficult to create a PubMed query that fulfills their conditions [19]. For these reasons, query-

based triage is limited in retrieving highly precise and complete set of relevant publications for

further use, not to mention the process itself is also very labor intensive and time consuming.

To overcome the limitations of the query-based triage and manual curation processes,

machine learning-assisted curation research studies have been conducted. Poux et al. [15] used

PubTator, a web-based curation support system that assists users in annotating publications in

PubMed. Curators can read publications that are highlighted and pre-annotated by automated

named-entity recognition tools. Curators can also easily upload and generate their curation

collection and save their results with a simple mouse click. In their study, Poux et al. selected

only thirteen journals from which to collect protein function information, and ranked the pub-

lications of the journals by the number of proteins mentioned in the text. However, other than

the thirteen selected journals, there are many journals that have published papers on protein

function. Also, prioritizing the publications by the number of proteins may not be the best

method because some papers include valuable information on a small number of proteins.

Almeida et al. [20] built a method called mycoSORT using support vector machine (SVM),

Naïve Bayes and Logistic Model Trees on the triage task for the mycoCLAP database [21];

however, this required several text preprocessing steps and an extensive feature extraction pro-

cess which are data/domain dependent. Because of these dependencies, their method is not

directly applicable to other types of databases. Their feature extraction process is time consum-

ing, labor intensive, and requires domain knowledge from human experts [6].

In recent years, newly proposed deep learning-based text mining methods have started out-

performing traditional machine learning-based methods in various tasks [22–28]. In addition,

these deep neural network models do not require intensive feature engineering by domain

experts; hence, they can also be easily generalized to other tasks with datasets in different

domains. In this paper, we propose to employ convolutional neural network (CNN), a class of

deep, feed-forward artificial neural networks, for the identification of publications relevant for

variant curation. By comparing the results of our method with those of mycoSORT, the

method proposed by Almeida et al. [20], we demonstrate how our deep learning-based classi-

fier performs better than traditional machine learning classifiers, even without feature engi-

neering. For assessing the utility of our approach, we applied our method to two external

knowledge bases (UniProtKB/Swiss-Prot and the GWAS Catalog) in real-world circum-

stances. We compare the performance of our proposed method with that of each of the knowl-

edge base-specific query-based methods to demonstrate that our method can greatly improve

the efficiency of the document triage step in these two databases. While the usage of CNNs to

classify text documents is not new, the application of deep learning to speed up the real-world

triage process for biomedical literature is, to the best of our knowledge.

Results

In this research, our goal is to improve the triage process by predicting the most suitable publi-

cations for each knowledge base in their manual curation. We aim to provide both binary and

ranked results with scores for each selected publication.
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Fig 1 shows the overview of our proposed framework. In a nutshell, using the previously

curated publications from each knowledge base as positive examples and other variant-con-

taining publications as negatives, we first train our machine learning classifiers. Then, we clas-

sify and rank new publications in PubMed using the trained classifier. Finally, we import

classified results into PubTator, and provide the results to curators for manual verification.

For the evaluation of our method, we collected publications from UniProtKB/Swiss-Prot

[1, 2] and the GWAS Catalog [3], both of which are widely used variant information knowl-

edge bases containing several thousand manually curated publications. For method compari-

son, we also collected a previous document triage dataset called mycoSet [20] where other

machine learning approaches were tested.

Document classification results

We evaluated our deep learning-based triage method on three different datasets. Table 1

shows the performance of our method on the publications in UniProtKB/Swiss-Prot and the

Fig 1. Literature triage using our deep learning framework.

https://doi.org/10.1371/journal.pcbi.1006390.g001

Table 1. Classification performance on UniProtKB, the GWAS Catalog and mycoSet. (CNN: Convolutional Neural Networks, SVM: Support Vector Machine, LMT:

Logistic Model Trees).

Dataset Methods Precision Recall F1

UniProtKB/Swiss-Prot Our Method (CNN) 0.913 0.934 0.923

LinearSVC (SVM) 0.896 0.920 0.908

The GWAS Catalog Our Method (CNN) 0.973 0.991 0.982

LinearSVC (SVM) 0.965 0.980 0.972

mycoSet� Our Method (CNN) 0.602 0.667 0.633

LinearSVC (SVM) 0.566 0.627 0.595

mycoSORT (LMT) 0.552 0.6 0.575

� In this table, the positive vs. negative ratio of mycoSet is 1:9, and that of the other datasets is 1:1.

https://doi.org/10.1371/journal.pcbi.1006390.t001
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GWAS Catalog published before 2017 and mycoSet. Overall, our method achieved high per-

formance on this triage task. We hypothesized that our method would achieve higher perfor-

mance on the GWAS Catalog dataset than the other two datasets because most of the GWAS-

related publications contain terms such as “GWAS” or “Genome-wide association”.

We compared our classification results with those of the LinearSVC classifier which is a

non-deep learning-based method and has achieved the best results in a recent text classifica-

tion task [29]. LinearSVC is a classifier based on Support Vector Machine with a linear kernel.

We used the implementation of LinearSVC with Lasso regression in Scikit-Iearn [30] for

Python.

We also compared our classification results with those of mycoSORT [20]. Our method

achieved higher precision, recall, and F1 scores than mycoSORT [20], which uses traditional

machine learning techniques such as SVM, Naïve Bayes and Logistic Model Trees, as shown in

Table 1. It is important to note that our model did not use any preprocessing, information tag-

ging, or feature engineering steps, all of which were used in mycoSORT.

Notice that the ratio of positive vs. negative instances of mycoSet is set to 1:4 for the training

and validation sets, and 1:9 for the test set in order to be consistent with Almeida et al.’s myco-

SORT [20] evaluation settings. The other datasets have 1:1 ratios for their training, validation

and test sets. Note that in practice, those ratios are quite different in the triage process (see

details in the section on imbalanced dataset below).

Word distribution in the datasets

To better understand the classification results, we obtained lists of the enriched words from

the positively classified publications. We counted the number of times each word was men-

tioned in the positive and negative publications and obtained the top 100 most statistically sig-

nificant words from each dataset using chi square test. Table 2 shows the 26 most significant

terms in each dataset after manually combining the different forms of the same word (e.g. plu-

ral and past tense). An interesting observation is that documents in the UniProtKB/Swiss-Prot

dataset often contain the word "mutation" while documents in the GWAS Catalog contain

“variants” or “SNP(s)” at the top of its list. The words that overlap in the queries of each data-

bases’ query-based triage method are highlighted.

Table 2. Lists of the most significant words in the positively classified publications. (The words that are used as queries in the query-based method of each database

are highlighted.).

UniProtKB/Swiss-Prot NHGRI-EBI GWAS Catalog

mutation(s) syndrome wide variants

gene exon(s) genome meta

cdna encoding association(s) european

human chromosome loci (or locus) identify (-ies, -ied)

sequence two snp(s) susceptibility

missense region gwas near

families acid p ancestry

novel coding = chromosome

amino domain 10 significance

identified expressed genetic 8

family recessive study independent

autosomal affected replication (replicated) conducted

protein cloning associated cohorts

https://doi.org/10.1371/journal.pcbi.1006390.t002
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The different purposes of the two different knowledge bases are reflected in the differences

in the word lists. Since the UniProtKB/Swiss-Prot positive publications contain protein alter-

ing mutations, its word list includes words such as “protein,” “amino,” “acid,” “sequence,”

“coding,” “region,” and “missense.” Words related to typical GWAS study design and aims

(cohort, replication, susceptibility and p-value related tokens such as ‘p,’ ‘ = ‘ and ‘10’) are also

found.

The GWAS Catalog results contain terms such as “Genome-wide association study” or

“GWAS,” which are included in the PubMed query used by the query-based method of the

knowledge base. However, the UniProtKB/Swiss-Prot results do not contain the terms that are

included in the query which is “functional characterization and functional analysis”.

Based on this result, we verify that our method achieves high performance in classifying

publications. We also confirmed that the positively classified publications contained the cor-

rect signals.

Ranking results of unbalanced datasets in a real-world setting

In a real-world application, we need to address the issue of extremely unbalanced datasets in

terms of the ratio between positive and negative documents. Ranked results with scores are

helpful in practice for manual curators because they can freely decide the number of docu-

ments to curate or discard.

Between January to July 2017, 23 and 225 publications were included by UniProtKB/Swiss-

Prot and the GWAS Catalog through manual curation, respectively. Thus, these articles are

treated as positives. The other 0.6 million publications are considered as negative. Since these

datasets are extremely imbalanced, we evaluated our method in ranking/scoring using receiver

operating characteristic (ROC) curves. Fig 2(A) shows the ROC curves of the ranked results by

our method. We can see that most of the positive publications are ranked at the very top of the

results of the classifiers and achieved high AUROCs such as 0.995 and 0.998 for UniProtKB/

Swiss-Prot and the GWAS Catalog, respectively.

Additionally, we plotted Fig 2(B) using only the publications containing variants at the

abstract level. We used tmVar [8, 31] to find the variant-containing publications and around

Fig 2. ROC curves of the classification results on the 2017JanJul group of UniProtKB/Swiss-Prot (Blue) and the GWAS Catalog (Red)–(a) Curves in all the

publications, (b) Curves in the publications containing mutations at the abstract level.

https://doi.org/10.1371/journal.pcbi.1006390.g002
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10,000 of those were found. In this result, the ROCs are slightly lower compared to those

shown in Fig 2(A), but still we can see that all the positive publications are ranked in the top of

the results even in variant-containing publications.

Utility assessment

For evaluating its utility, our method was applied to the triage process of UniProtKB/Swiss-

Prot and the GWAS Catalog, in collaboration with the database curators. The comparison

between the query-based method and our method for both databases is provided in Table 3.

To evaluate and compare our method’s results with those of the query-based method, the cura-

tors of both the databases manually curated not only the results of the query-based method but

also the publications found only by our method. We consider all the curatable publications

found by both methods as positives. The documents not found by either method are consid-

ered as negatives, although some might have been deemed as curatable if retrieved. Hence, the

recall we reported in this section might be slightly lower than the actual recall. Nonetheless, we

still believe our recall is useful for comparing the performance of the two methods.

Machine learning-assisted manual curation framework—PubTator. To manage the

curation process more efficiently, we used the PubTator curation system [32]. After users

uploading a list of PMIDs for evaluation, PubTator provides users with an organized web-

based user curation interface that displays the text of a publication in which biomedical entities

are highlighted. Furthermore, users can indicate whether the publications are curatable by

clicking a button. The curation results can be saved and downloaded for future use. Manual

curation using PubTator has proven to be efficient in a previous study [15].

We generated the prediction results of the databases, uploaded them to PubTator, and cre-

ated a collection of publications for manual curation. The curators of each database, who are

also domain experts, curated the collections and sent their feedback through the PubTator

system.

UniProtKB/Swiss-Prot. For UniProtKB/Swiss-Prot, we provided collections of positively

predicted articles published in August, September and October 2017. Since the curators of

UniProtKB/Swiss-Prot wanted to curate publications containing variant names at the abstract

level, we used tmVar [31] to remove publications without variant mentions.

Table 3 shows the comparison of the results of our machine learning-based method and

those of the current query-based UniProtKB/Swiss-Prot method. Our machine learning-based

method found more publications than their current query-based method. Also, our method

achieved a precision of 82.43% while the query-based method obtained a lower precision of

67.74%. Out of all the 425 curatable papers, our method missed only 12 publications (97.17%

recall) compared with the query-based method that missed 398 publications (6.35% recall).

Table 3. Comparison of the results of our method with those of the query-based method in the UniProtKB/Swiss-Prot and GWAS Catalog triage. Both query-based

and CNN-based results were evaluated by the curators, resulting in the total number of curatable publications below.

UniProtKB/Swiss-Prot GWAS Catalog

Total number of target publications 4,680 (3 months, variant-containing publications) 64,405 (3 weeks, all publications)

Total number of curatable publications 424 27

Query-based Total 79 304

Curatable 36 (P: 45.57%, R: 8.49%) 27 (P: 8.88%, R: 100%)

Our CNN-based Method� Total 501 98

Curatable 413 (P: 82.43%, R: 97.41) 26 (P: 26.53%, R: 96.30%)

� As requested by the curators, UniProtKB results are filtered using tmVar as only articles with explicit variant mentions are within the scope of its data curation.

https://doi.org/10.1371/journal.pcbi.1006390.t003
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Our method found 11 curatable publications that the query-based method could not find. The

manual curator of UniProtKB/Swiss-Prot confirmed that our method addresses their need to

get a wide set of articles with high precision without returning an overwhelming number of

items.

The GWAS Catalog. We predicted publications for the GWAS Catalog for three weeks

from January 10, 2018 to January 30, 2018. We compared our results with their query results

in Table 3. Since the GWAS Catalog is not interested in non-human research and review

papers, we found and removed those publications using PubTator and PubMed meta

information.

As shown in Table 3, our method achieved a precision of 26.53% versus a precision of

8.88% obtained by the query-based method. Our method retrieved a smaller number of results

which include all the relevant publications except for one (PMID 29313844) found by the tra-

ditional query-based method. Thus, our method returns 1/3 of the results returned by the

query-based method, which reduces the number of irrelevant publications for manual review

by curators. In this case, our method did not find any new publications beyond the query-

based results. Also, our method missed a curatable publication that the query-based method

found, which is explained in the Discussion section.

Discussion

Our results demonstrate that our machine learning triage method works well on different

datasets in different settings. Both the UniProtKB/Swiss-Prot and the GWAS Catalog manual

curation teams confirmed that our method achieved higher precision than the previous query-

based triage methods without significantly compromising recall. In the UniProtKB/Swiss-Prot

result, our method could find many relevant publications that the query-based method could

not find. In the GWAS Catalog case, our method significantly improved the efficiency of the

curation process by reducing the number of papers that required review. Both results show

that our method can replace the traditional query-based triage methods of manually curated

databases.

However, even though our method works well and improves the efficiency of the manual

curation process, it is difficult for our method to include new types of articles based on new

interests. For example, the GWAS Catalog, which has collected publications related to only

genome-wide array-based association studies so far, might find it difficult to find whole-

exome sequencing publications since our classifier is trained on only the publications related

to array-genotyped GWAS and there are no whole-exome sequencing papers in the training

set. This is known as the “filter bubble” problem of personalized search, social media and news

recommender systems [33]. For example, based on the behavior of a user, personalized news

recommendation algorithms suggest news articles on certain topics as results. The user selects

some of the results recommended by the algorithm, and the algorithm learns from those

results again to recommend similar results. After this process is repeated a few times, the rec-

ommendation algorithm narrows down the recommendation results based on the interests of

the user, which makes it more difficult for users to view new information other than the results

recommended by the algorithm. To solve this problem, the curators need to manually find

new topic publications as a separate activity. However, the curators and our team both agreed

that our classification and ranking methods would save curators considerable time in standard

triage. Thus they have extra time to manually find new subjects, using new queries in PubMed

or using their intuition, which can solve the filter bubble problem.

The other limitation of our method comes from the “black box” property of the deep neural

network models [34, 35]. In the utility assessment of the GWAS Catalog section, our method
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did not retrieve a publication (PMID 29313844) while the query-based method did. The confi-

dence score of the publication obtained by our method was 0.451 which is slightly lower than

the default threshold of the classifiers (0.5). We investigated why the publication was scored

low even though it contains GWAS relevant terms, such as “p-value” and “GWAS,” however

we could not clearly understand why this publication was not scored highly enough because

deep neural networks are “black boxes.” With other traditional machine learning models such

as decision tree, k-nearest neighbor and logistic regression, it is possible to see how the classifi-

cation of each case is made by looking at the decision rules, neighbors, or weight of features,

respectively; however, it is not possible in deep neural network models. This example shows

the limitation of deep learning methods.

The hardest part of designing our method was that there is no negative gold-standard data-

set available for training the classifiers. We could not collect any of the negative data for train-

ing / testing our method as we were able to for mycoSet [20]. We constructed negative datasets

using randomly collected variant containing publications using tmVar after filtering out the

positive publications; however, there are chances that some positive examples are included in

the negative dataset. Using tmVar for generating negative dataset may also cause some bias in

the classification results, because all the negative publications are tmVar positive. Our method

still over-performed compared to the query-based triage methods. If we can collect enough

gold-standard negative publications, our method may perform better. Since PubTator is now

used as a manual literature triage framework for several knowledge bases such as UniProtKB/

Swiss-Prot and the GWAS Catalog, we can easily collect negative publications that curators

mark as irrelevant and we expect to use them as negative gold-standard data for training the

classifiers in the future.

In this research, we focus on the triage of variant-related knowledge bases; however, our

method can be applied to any knowledge base that relies on manual curation and to a triage

process if it has a sufficient number of documents for training the classifier.

We also believe it would be interesting to use our method for knowledge bases of biomedical

relations such as protein-protein interactions and drug-drug interactions. Although we did not

use any preprocessing in our method, named-entity tagging might be helpful in these tasks.

Materials and methods

UniProtKB/Swiss-Prot

UniProtKB/Swiss-Prot [2] is a knowledge base of protein sequence and functional information

based on manual curation and is a part of the universal protein knowledge base UniProt [1].

UniProtKB/Swiss-Prot contains rich information on genomic variants that affect protein func-

tion [2]. Poux et al. [36] explained that the curation process of UniProtKB/Swiss-Prot is expen-

sive and time consuming. Currently, the triage process of variant information in UniProtKB/

Swiss-Prot is performed using manually pre-defined queries in PubMed; however, it is difficult

to generate the perfect candidate set using such queries, and to find all the relevant publica-

tions from these queries. The variant publication curator of UniProtKB/Swiss-Prot explained

that they are currently curating variant publications that contain any of the following: 1)

missense nucleotide substitutions resulting in amino-acid changes, 2) nonsense nucleotide

substitutions producing a stop codon and resulting in protein truncation, 3) small in-frame

nucleotide insertions resulting in the insertion of few amino-acids at the protein level, and 4)

small in-frame nucleotide deletions resulting in the deletion of few amino-acids at the protein

level. If a publication does not contain any of the above, it is marked as “TBD” (to be deter-

mined) or “not curatable.” We used UniProtKB/Swiss-Prot human data downloaded on Sep-

tember 20, 2017 [37].
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The NHGRI-EBI GWAS Catalog

The GWAS Catalog [3] provides manually curated genome-wide association study informa-

tion from published results. The Catalog contains more than 50,000 unique SNP-trait associa-

tions from over 3,000 published research studies. The GWAS Catalog has strict guidelines for

study eligibility. For example, the publications must be array-based genome-wide association

studies of humans and examine >100,000 SNPs selected to tag variation across the genome.

The detailed criteria of eligible publications for the GWAS Catalog are explained on their web-

site [19], and if publications do not meet these criteria, they are not curated. All the publica-

tions need to be determined as eligible by at least two curators to be included in the knowledge

base. For the triage process, the curators use general query terms to find GWAS-related publi-

cations in PubMed and manually filter the papers that do not meet the criteria. We down-

loaded the October 11th 2017 issue of the GWAS Catalog from its website.

Dataset construction

We collected publications from UniProtKB/Swiss-Prot [1, 2], the GWAS Catalog [3], and

mycoSet [20]. Since we did not have curated gold-standard negative data from the knowledge

bases, we generated them de novo: we considered an article negative if it was not curated in

the knowledge bases, but has one or more variant mentions (found by tmVar). From all the

PubMed abstracts and PMC full-text articles with open access, we collected more than 442,000

articles containing variants using tmVar [8, 31].

Using these publications as a gold-standard, we trained classifiers for each knowledge base.

We downloaded only PMIDs from each data source. Given a PMID, we used the NCBI Entrez

Programming Utilities [38] to collect its title and abstract, journal information, and publica-

tion type.

Based on the date (Entrez Date (EDAT)) of each publication, we organized the publications

in UniProtKB/Swiss-Prot and the GWAS Catalog into the following three groups: (1) the

Before2017 group, which contains articles published before 2017, (2) the JanJul2017 group,

which consists of articles published from January 2017 to July 2017, and (3) the AfterAug2017

group, containing articles published after August 2017. We used the papers in the Before2017

group of each knowledge base to design, train, and evaluate the performance of our method in

binary classification and used papers in the JanJul2017 group for evaluating the ranking func-

tion of the method for curation. We divided the data in this way because we can train only on

the past data to predict newly published data in a real-world setting. This data separation set-

ting was used for simulating the real-world triage process. For the Before2017 group of each

knowledge base, we randomly collected the same number of negative publications from the

negative dataset that are excluded in each positive dataset.

mycoSORT and its dataset—MycoSet

Almeida et al. [20] constructed a dataset and used machine learning methods for a triage task.

Their dataset called mycoSet is manually curated and contains publications on enzyme family

information. It contains a total of 7,583 PMIDs, of which 9.88% are positive. Their machine

learning method used not only the abstracts and titles of the publications, but also used the

additional enzyme information (Enzyme Commission numbers and the “RegistryNumber”)

tagged to the publications. They also performed feature extraction using handcrafted rules,

and preprocessed the text using another text mining system called mycoMINE. Naïve Bayes,

Logistic model trees, and support vector machine (SVM) were used to classify the publications.

In [20], a total of 108 classification results of mycoSORT are listed (three different machine

learning classifiers using a total of 36 different ratios of positive and negative publications in
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the training set), and the logistic model tree classifier with a negative-positive ratio of 4:1

achieved the best F1 score of 0.575.

Convolutional neural networks (CNN)

We used convolutional neural networks as our machine learning classifiers. CNN is a deep learn-

ing method that uses feed-forward multi-layer neural networks such as fully-connected layers,

pooling layers and convolutional layers with shared weights for entire inputs [39]. Although

CNNs were typically used for image-related works in previous research [40–42], they have

recently achieved good results in text related works [22–24, 27, 43]. In addition, it does not require

labor intensive feature engineering by domain experts. Hence, our CNN-based approach can be

applied to datasets from different databases. We trained three different CNN classifiers on three

different sets of PMIDs collected from UniProtKB/Swiss-Prot, the GWAS Catalog and mycoSet,

respectively. The details of the datasets are provided in Table 4. The positive to negative ratio of

the publications is balanced in all the training, testing and validation sets of UniProtKB/Swiss-

Prot and the GWAS Catalog by generating the same amount of negative data.

We built the CNN text classification codes using Keras [44] and TensorFlow [45], based on

the implementation [22] available at https://github.com/yoonkim/CNN_sentence. We used

the 200-dimensional word2vec vectors of Pyysalo et al. [46–48], which were pre-trained on all

the PubMed abstracts and PubMed Central open access full texts, available at http://bio.nlplab.

org/. The windows of the filters were set to 3, 4, and 5. A dropout rate of 0.5, a learning-rate of

0.5�10−5, and a mini-batch size of 50 were used. We followed all the other detailed options as

Kim suggested. We used the same parameter settings for all the three classifiers, and we used

GeForce GTX 1080 Ti GPU on Linux CentOS 7.4 to train the models. Instead of intensive

parameter settings, we used most of the same parameters used in the previous implementation.

Our modified source codes and the detailed settings are available at https://github.com/ncbi-

nlp/VarTriage.

Assessment methods

We used precision, recall and F1-score to evaluate our classification methods. The scores are

calculated as follows:

Precision ¼ ðTrue PositiveÞ=ðTrue Positiveþ False PositiveÞ

Recall ¼ ðTrue PositiveÞ=ðTrue Positiveþ False NegativeÞ

F1 � score ¼ ð2� Precision� RecallÞ=ðPrecisionþ RecallÞ

Table 4. Statistics of the datasets.

UniProtKB/Swiss-Prot The NHGRI-EBI GWAS Catalog mycoSet

Positive

mycoSet

Negative

Version Sep. 20, 2017 Oct. 11, 2017

Ver 1.0.1 Studies

- -

Total # of PMIDs 12,779 3,164 749 6,902

PMIDs with abstracts 11,978 3,143 746 6,575

EDAT before 2017 11,955 2,892 N/A N/A

EDAT

from Jan to July 2017

23 225 N/A N/A

https://doi.org/10.1371/journal.pcbi.1006390.t004
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We randomly divided each dataset into 10 folds and used 8 of them for training, 1 for valida-

tion and 1 for obtaining the final results which are provided in Table 1. The test sets are used

only to obtain the final scores; they are not used for setting parameters or selecting models.

We also used receiver operating characteristic (ROC) curves to evaluate the ranking perfor-

mance of our methods. ROC curves are plotted using true positive rate (Y axis) and false posi-

tive rate (X axis). When the true-positive publications obtain higher scores and true-negative

publications obtain lower scores, the area under curve (AUC) becomes larger, which means

that the method is ranking the items accurately.
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