63,119 research outputs found

    Thermogravimetric Analysis of Indicators of the Paste Based on Sour Cream

    Get PDF
    For forming structural-mechanical properties of sour milk pastes and guaranteeing their stability at storage, it is promising to use non-fried buckwheat in their recipes that allows to raise the food value of products additionally. The aim of the researches was the study of features of the condition of moisture of sour milk pastes, based on sour cream with introducing non-fried buckwheat in the amount 5,0 % of the mixture mass. A sample with modified starch Е 1410 was taken as a control in the amount 1,3 %.The study of the moisture condition was realized by the thermogravimetric method using a derivatograph Q-1500D (Paulik-Erdey) (Hungry). It was established, that the content of adsorptive moisture of the sour milk paste was 34,0 %, whereas in the control – 34,5 %, that confirm the effectiveness of using non-fried buckwheat as a moisture-binding component. Such properties of non-fried buckwheat may be explained by the presence of starch compounds and easily accessible protein in its composition, able to hydration in the process of preparation of a component and to keeping moisture at further storage of a product

    Fundamental studies on the synthesis of heat-resistant polymers Summary report no. 12, 31 Jan. - 15 Sep. 1966

    Get PDF
    Synthesis and thermogravimetric analysis of heat resistant polymer

    Thermogravimetric analysis of plant tissues

    Get PDF

    Effects of Surfactants on the Thermal and Fire Properties of Poly(Methyl Methacrylate)/Clay Nanocomposites

    Get PDF
    Nanocomposites of poly(methyl methacrylate) (PMMA) with layered silicates and with polyhedral oligosilsesquioxanes (POSS) were prepared by bulk polymerization. The thermal and fire stabilities of the various organically-modified clay and POSS nanocomposites were evaluated using both thermogravimetric analysis (TGA) and cone calorimetry. Thermogravimetric analysis is not a good criteria for evaluating nanocomposite formation but cone calorimetry can be. For montmorillonite systems, when more than 4% clay is present, the expected reduction in peak heat release rate is observed. For hectorite, a minimum of 6% clay concentration is required to achieve the same reduction in peak heat release rate. POSS has the potential to reduce the peak heat release rate but one must be careful in selecting the POSS material to be evaluated

    Stabilization of Polystyrene by Friedel-Crafts Chemistry: Effect of Position of Alcohol and the Catalyst

    Get PDF
    Polystyrene has been copolymerized with 4-vinylbenzyl alcohol, 4-(2-hydroxyethyl)styrene, and 4-(3-hydroxypropyl)styrene and it has been shown that thermal cross-linking of these copolymers is dependent upon the alcohol content. When the alcohol content is low, no thermal cross-linking is observed. When various phosphate esters are present as catalysts with these low alcohol content copolymers, cross-linking is observed at temperatures of about 250°C but not at lower temperatures. Cross-linking enhances the thermal stability of the copolymers. Studies of the thermal stability of the copolymers and their blends with the catalysts have been performed using thermogravimetric analysis and thermogravimetric analysis coupled to Fourier transform infrared spectroscopy. There is little difference in the thermal stability of all three copolymers and their blends with the catalysts

    On the quantitative thermogravimetric analysis of calcite content in hydrated cementitious systems

    Get PDF
    Calcite is a compound that is present in hydrated cementitious materials when carbonation of portlandite occurs or when limestone constituents are used. The quantification of its content in cementitious systems is then frequently necessary. Thermogravimetry (TG) measures the change in mass of a material (as a function of time) over a temperature range using a predetermined heating rate. It can be applied to estimate calcite content in the hydrated cement system, considering the temperature range at which it decomposes and releases carbon dioxide. However, the quantification is not easy because the onset of this decomposition is a function of many variables. The tangential method over the TG signal or the integration method over the derivative TG curve (DTG) are usually used to discount the background over the temperature range at which calcite decomposes. However, consistent underestimation of compounds is frequently described. The reasons for this are unclear and some hypothesis are discussed in this paper. Additionally, experimental quantitative TG of cement paste and aggregate containing calcite and diluted with low contents of analytical calcite are compared with the expected contents, as a calibration method regarding calcite content in the samples is given to improve the reliability of the results

    TGA/FTIR Studies on the Thermal Degradation of some Polymeric Sulfonic and Phosphonic Acids and Their Sodium Salts

    Get PDF
    The thermal degradation of poly(vinyl sulfonic acid) and its sodium salt, poly(4-styrenesulfonic acid) and its sodium salt, and poly(vinylphosphonic acid) was studied by a combination of techniques, including TGA/FTIR, to identify the volatile products which were evolved during the degradation as well as analysis of the residues which were obtained in order to propose a mechanism for the degradation. The motivation for the work was to attempt to identify new monomers which could be graft copolymerized onto a polymer in order to improve the thermal stability of that polymer

    Nanostructured Layered Copper Hydroxy Dodecyl Sulfate: A Potential Fire Retardant for Poly(vinyl Ester) (PVE)

    Get PDF
    Composites of poly(vinyl ester) (PVE) with copper hydroxy dodecyl sulfate (CHDS) were prepared by thermal curing. The efficiency of the additive, CHDS, in reducing flammability is demonstrated via cone calorimetry and thermogravimetric analysis (TGA). The addition of 1-10% by mass of the CHDS additive resulted in significant increments in char formation (~4-11%) from thermogravimetric analysis (TGA). Incorporation of the CHDS into the polymer matrix at these low concentrations leads to substantial reductions in the total heat release (~20-30%) but no significant change in the peak heat release rate. The composite materials generally ignite more quickly, however, the flame extinguishes faster for the composites relative to the virgin polymer. X-ray diffraction (XRD) and infrared spectroscopic analyses of the residues collected at various stages during thermal decomposition of the composities, suggest the participation of copper-containing species in promoting enhanced thermal stability of PVE

    Thermal Degradation of Blends of Polystyrene and poly(sodium 4-styrenesulfonate) and the copolymer, poly(styrene-co-sodium 4-styrenesulfonate)

    Get PDF
    The thermal degradation of blends and copolymers of styrene with styrenesulfonic acid has been studied using thermogravimetric analysis, TGA/FTIR, and cone calorimetry. The blends have enhanced thermal stability relative to virgin polystyrene but there is no enhancement in thermal stability for the copolymers. Apparently, it is necessary to have adjacent sulfonic acid groups in order to permit the formation of a graphite-like char which can provide thermal protection to the polymer. It is necessary to have a good match in degradation temperatures of the two components if one is to have significantly enhanced thermal stability

    EVA-Layered Double Hydroxide (Nano)Composites: Mechanism of Fire Retardancy

    Get PDF
    Composites of ethyleneevinyl acetate copolymer with two different layered double hydroxides have been obtained by melt blending and these have been characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, thermogravimetric analysis connected to mass spectroscopy and cone calorimetry. There is some small difference in dispersion between the zinc-containing and the magnesium-containing layered double hydroxides in EVA, but both these are microcomposites with good dispersion at the micrometer level and relatively poor dispersion at the nanometer level. There is a good reduction in the peak heat release rate at 10% LDH loading. In addition to chain stripping, which involves the simultaneous loss of both acetate and a hydrogen atom, forming acetic acid, and the formation of poly(ethylene-co-acetylene), side chain fragmentation of the acetate group also occurs and may be the dominant pathway of thermal degradation in the first step. The presence of the LDH causes acetone, rather than acetic acid, to be evolved in the initial step of the degradation
    • …
    corecore