191 research outputs found

    Syndecan-1 tagged liposomes as a theranostic nanoparticle for pancreatic adenocarcinoma.

    Get PDF
    Theranostic nanoparticles are emerging as a novel mechanism for detecting and treating cancer. Due to the difficulties in detection and treatment of pancreatic cancer, these particles could serve within this unique niche. In this study, a Syndecan-1 ligand was utilized to increase tumor specificity of fluorescent dye encapsulated liposomes which were evaluated as a potential theranostic nanoparticle for pancreatic adenocarcinoma. Their diagnostic capabilities and specificity to pancreatic adenocarcinoma were determined in vitro using immunocytochemistry and in vivo using multi-spectral optoacoustic tomography (MSOT). Immunocytochemistry showed that liposomes preferentially bound and released their contents into cells expressing high levels of Insulin-Like Growth Factor 1 Receptor. In an orthotopic pancreatic cancer mouse model, the liposomes preferentially targeted the pancreatic tumor with little off-target binding in the liver and spleen. Peak accumulation of the liposomes in the tumor occurred at 8 h post-injection. MSOT imaging was able to provide high-resolution 3D images of the tumor and liposome location. Ex vivo analysis showed that non-targeted liposomes accumulated in the liver suggesting that specificity of the liposomes for pancreatic adenocarcinoma was due to the presence of the Syndecan-1 ligand. Syndecan-1 tagged liposomes specifically target pancreatic adenocarcinoma both in vitro and in vivo. Once bound, the liposomes released the dye in vitro as indicated by red fluorescence of DNA-bound propidium iodide. The therapeutic drug-delivering capabilities of Syndecan-1 liposomes remain to be tested

    Human Immunodeficiency Virus Theranostics

    Get PDF
    RATIONALE: Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. However, maintenance of sustained plasma drug levels, for weeks or months, after a single high-level dosing, could improve regimen adherence but, at the same time, affect systemic toxicities. Of these, the most troubling are those that affect the central nervous system (CNS) In an effort to facilitate LASER ART development, “multimodal imaging theranostic nanoprobes” were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. Additionally, dolutegravir (Tivicay, DTG), in both a native drug form and within a nanoformulations, were administered to mice to investigate potential neurotoxicity or lack thereof in animal models for further LASER ART technology development. METHODS: Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. Rodents were administered parenteral 45-mg/kg doses. DTG-associated changes in CNS homeostasis were assessed by measuring brain metabolic activities. After antiretroviral treatment, brain subregions were dissected and screened by mass spectrometry-based metabolomics. RESULTS: Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1 s-1 and r2 = 564 mM-1 s-1 in saline, and r2 = 850 mM-1 s-1 and r2 = mM-1 s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultra-small superparamagnetic iron oxide particles (r2 = 31.15 mM-1 s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. Within metabolomic experimentations, metabolic drug-related dysregulation of energy and oxidative stress were readily observed within the cerebellum and frontal cortex following native drug administrations. Each was associated with alterations in neural homeostasis and depleted canonical oxidation protection pools that included glutathione and ascorbic acid. Surprisingly, the oxidative stress-related metabolites were completely attenuated when DTG was administered as nanoformulations. These data demonstrate the importance of formulation design in control of DTG or perhaps other antiretroviral drug-associated CNS events

    Theranostics for Antiretroviral Biodistribution and Pharmacokinetics

    Get PDF
    RATIONALE: Our laboratories birthed the field of human immunodeficiency virus (HIV) theranostics. The new field allows simultaneous detection (diagnostics) and treatment (therapeutic) for the identification, treatment and inevitable elimination of virus in cell and tissue compartments. By employing theranostics, antiretroviral drugs (ARVs) can be tracked in lymph nodes, gut, spleen and liver. Cellular viral reservoirs including CD4+ T cell populations and mononuclear phagocytes (MP; monocytes, macrophages, microglia and dendritic cells) along with subcellular endosomal structures can now be targeted for drug delivery bringing therapeutics to areas where virus replicates. The overarching idea rests in improving precision targeted ARV delivery. Bringing ART to anatomically privileged tissues can be visualized and confirmed through single photon emission computed tomography (SPECT) imaging facilitated by multimodal antiretroviral drug (ARV) nanoprobes. To deploy such technologies, we have successfully placed rilpivirine into a theranostic nano system, taking advantage of state of the art physical and chemical properties of nano-sized particles for maximal biodistribution to viral sites. This allowed measurements of optimal antiretroviral responses. To achieve this outcome, we made particles with combinations of bioimaging detectors and ARV deliverers. This platform, in future studies, will utilize LASER ART and HIV-1 excision payloads (for example, CRISPR Cas9) for the inevitable elimination of viral infection. Our overall goal is to facilitate long-acting slow effective release antiretroviral therapy (LASER ART) development. To this end, in a first step analysis we created “multimodal imaging theranostic nanoprobes” with the hydrophobic antiretroviral drug rilpivirine (RPV). These unique nanoprobes allowed combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. Combination of SPECT/CT and MR imaging modalities resulted in a highly accurate and sensitive nanoprobe. Because of this combination, the imaging data acquired from these nanoprobes after administration in mice proved predictive of future drug pharmacokinetics and biodistribution. METHODS: 111Indium (111In) and Europium (Eu3+)-doped cobalt ferrite (CF) rilpivirine (RPV)-loaded (111InEuCF-RPV) nanoparticles were synthesized then fully characterized based on their size, shape and stability. The particles were tested in vitro for uptake, retention and antiretroviral efficacy in human monocyte-derived macrophages (MDMs) along with the intracellular location of particles. These were then used as platforms for nanoformulated drug biodistribution. For multimodal imaging and biodistribution studies; 111InEuCF-RPV, ultra-small lipid coated 177LuEuCF and NRPV particles were injected intravenously into mice at various concentrations of drug or radioisotope. One group was treated with ultra-small lipid-coated 177LuEuCF particles at âˆŒâ€Ż74 MBq (2000â€ŻÎŒCi) to assess the effect of particle size on biodistribution. Drug levels were quantified in plasma and tissues by UPLC-MS/MS and cobalt levels were quantified by ICP-MS. Pearson’s correlations were used to assess the predicative potential of imaging data and future ARV biodistribution and pharmacokinetics. RESULTS: 111InEuCF-RPV particles were synthesized and were shown to be of consistent size and were stable in a variety of different media conditions for over a week. Physiochemical characterizations and TEM imaging confirmed the structure and components of the system were correct. Formed theranostic particles were shown to be non-toxic to MDMs and at high concentrations were much less cytotoxic than native RPV. Particles demonstrated excellent intracellular relaxivity values of r2 = 732.8 mM-1s-1 and thus served as excellent MRI contrast agents. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses similar to nanoformulated RPV. After administration to Balb/c mice particles could be localized to the spleen, liver, as well as popliteal and axillary lymph nodes. Imaging showed that nanoparticles accumulated in the spleen over 5 days and gradually left the liver as confirmed by ex vivo autoradiographic imaging and gamma scintillation spectrometry. Imaging data acquired up to 5 days proved predicative of drug biodistribution and pharmacokinetics up to 28 days post administration. CONCLUSIONS: We conclude that this novel nano system can be used broadly for theranostic antiretroviral drug biodistribution. In particular, in the not so distant future, it will enable the merger of LASER ART with detection methods to realize the long term goal of improving patient outcomes by assessing where and to what levels antiretroviral drugs are delivered into viral compartments. The long term goals are to best prevent new infections, achieve viral elimination, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs

    Theranostic nanoparticles enhance the response of glioblastomas to radiation

    Get PDF
    YesDespite considerable progress with our understanding of glioblastoma multiforme (GBM) and the precise delivery of radiotherapy, the prognosis for GBM patients is still unfavorable with tumor recurrence due to radioresistance being a major concern. We recently developed a cross-linked iron oxide nanoparticle conjugated to azademethylcolchicine (CLIO-ICT) to target and eradicate a subpopulation of quiescent cells, glioblastoma initiating cells (GICs), which could be a reason for radioresistance and tumor relapse. The purpose of our study was to investigate if CLIO-ICT has an additive therapeutic effect to enhance the response of GBMs to ionizing radiation. Methods: NSGℱ mice bearing human GBMs and C57BL/6J mice bearing murine GBMs received CLIO-ICT, radiation, or combination treatment. The mice underwent pre- and post-treatment magnetic resonance imaging (MRI) scans, bioluminescence imaging (BLI), and histological analysis. Tumor nanoparticle enhancement, tumor flux, microvessel density, GIC, and apoptosis markers were compared between different groups using a one-way ANOVA and two-tailed Mann-Whitney test. Additional NSGℱ mice underwent survival analyses with Kaplan–Meier curves and a log rank (Mantel–Cox) test. Results: At 2 weeks post-treatment, BLI and MRI scans revealed significant reduction in tumor size for CLIO-ICT plus radiation treated tumors compared to monotherapy or vehicle-treated tumors. Combining CLIO-ICT with radiation therapy significantly decreased microvessel density, decreased GICs, increased caspase-3 expression, and prolonged the survival of GBM-bearing mice. CLIO-ICT delivery to GBM could be monitored with MRI. and was not significantly different before and after radiation. There was no significant caspase-3 expression in normal brain at therapeutic doses of CLIO-ICT administered. Conclusion: Our data shows additive anti-tumor effects of CLIO-ICT nanoparticles in combination with radiotherapy. The combination therapy proposed here could potentially be a clinically translatable strategy for treating GBMs

    Nanomedical Theranostics in Cardiovascular Disease

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. New diagnostic and therapeutic strategies are needed to mitigate this public health issue. Advances in nanotechnology have generated innovative strategies for diagnosis and therapy in a variety of diseases, foremost in cancer. Based on these studies, a novel concept referred to as nanomedical theranostics, or the combinatory application of nanoparticulate agents to allow diagnostic therapy, is being explored to enable image-guided, personalized, or targeted treatment. Preclinically, theranostics have been gradually applied to CVD with several interesting and encouraging findings. This article summarizes studies and challenges of nanotheranostic strategies in CVD. It also evaluates nanotheranostic strategies that may potentially be utilized to benefit patients

    Integrated photodynamic Raman theranostic system for cancer diagnosis, treatment, and post-treatment molecular monitoring

    Get PDF
    Theranostics, the combination of diagnosis and therapy, has long held promise as a means to achieving personalised precision cancer treatments. However, despite its potential, theranostics has yet to realise significant clinical translation, largely due the complexity and overriding toxicity concerns of existing theranostic nanoparticle strategies. / Methods: Here, we present an alternative nanoparticle-free theranostic approach based on simultaneous Raman spectroscopy and photodynamic therapy (PDT) in an integrated clinical platform for cancer theranostics. / Results: We detail the compatibility of Raman spectroscopy and PDT for cancer theranostics, whereby Raman spectroscopic diagnosis can be performed on PDT photosensitiser-positive cells and tissues without inadvertent photosensitiser activation/photobleaching or impaired diagnostic capacity. We further demonstrate that our theranostic platform enables in vivo tumour diagnosis, treatment, and post-treatment molecular monitoring in real-time. / Conclusion: This system thus achieves effective theranostic performance, providing a promising new avenue towards the clinical realisation of theranostics

    X-ray and MR contrast bearing nanoparticles enhance the therapeutic response of image-guided radiation therapy for oral cancer

    Get PDF
    INTRODUCTION: Radiation therapy for head and neck squamous cell carcinoma is constrained by radiotoxicity to normal tissue. We demonstrate 100 nm theranostic nanoparticles for image-guided radiation therapy planning and enhancement in rat head and neck squamous cell carcinoma models. METHODS: PEG conjugated theranostic nanoparticles comprising of Au nanorods coated with Gadolinium oxide layers were tested for radiation therapy enhancement in 2D cultures of OSC-19-GFP-luc cells, and orthotopic tongue xenografts in male immunocompromised Salt sensitive or SS rats via both intratumoral and intravenous delivery. The radiation therapy enhancement mechanism was investigated. RESULTS: Theranostic nanoparticles demonstrated both X-ray/magnetic resonance contrast in a dose-dependent manner. Magnetic resonance images depicted optimal tumor-to-background uptake at 4 h post injection. Theranostic nanoparticle + Radiation treated rats experienced reduced tumor growth compared to controls, and reduction in lung metastasis. CONCLUSIONS: Theranostic nanoparticles enable preprocedure radiotherapy planning, as well as enhance radiation treatment efficacy for head and neck tumors

    The Synthesis and Characterization of Multifunctional Nanoparticles of Elastin-Like Polypeptides for Theranostic Applications

    Get PDF
    Theranostics is a promising field that aims to combine therapeutics and diagnostics into single multifunctional formulations. This field is driven by advancements in nanotechnology and specifically in the creation of multifunctional nanoparticles capable of providing the necessary functionalities. Elastin-like polypeptides (ELPs) are a class of environmentally responsive biopolymers that are known to undergo a transition in response to various stimuli. The organic nature of ELPs along with the ability to control their design at the gene level and the aforementioned responsive behavior make them a promising candidate for use in theranostic systems. The system presented here is one of the first examples of using ELPs as the base for multifunctional theranostic nanoparticles. Presented in this study is a fully protein based self-assembling nanoparticle system based on micelles of ELPs for use in theranostic applications. Micelle forming ELP constructs have been modified through the fusion of the protein based MRI contrast agent CA1.CD2 to the C terminal of existing protein constructs. Micelles were then crosslinked into stable nanoparticles that relied only on changes in temperature to drive the transition. In addition to that, a targeting peptide has been added to the system as well to provide active targeting to cancer cells. As a contrast agent the system has been shown to bind and retain gadolinium while effectively providing contrast in T1 weighted imaging and having higher relaxivity values than clinical contrast agents. Modification of the architecture of the construct through changes of the tail length, and through creation of mixtures did not drastically affect the behavior of the system demonstrating its flexibility. Here I detail, the design, synthesis of the expression, purification and characterization of all the required properties of the constructs

    The Synthesis and Characterization of Multifunctional Nanoparticles of Elastin-Like Polypeptides for Theranostic Applications

    Get PDF
    Theranostics is a promising field that aims to combine therapeutics and diagnostics into single multifunctional formulations. This field is driven by advancements in nanotechnology and specifically in the creation of multifunctional nanoparticles capable of providing the necessary functionalities. Elastin-like polypeptides (ELPs) are a class of environmentally responsive biopolymers that are known to undergo a transition in response to various stimuli. The organic nature of ELPs along with the ability to control their design at the gene level and the aforementioned responsive behavior make them a promising candidate for use in theranostic systems. The system presented here is one of the first examples of using ELPs as the base for multifunctional theranostic nanoparticles. Presented in this study is a fully protein based self-assembling nanoparticle system based on micelles of ELPs for use in theranostic applications. Micelle forming ELP constructs have been modified through the fusion of the protein based MRI contrast agent CA1.CD2 to the C terminal of existing protein constructs. Micelles were then crosslinked into stable nanoparticles that relied only on changes in temperature to drive the transition. In addition to that, a targeting peptide has been added to the system as well to provide active targeting to cancer cells. As a contrast agent the system has been shown to bind and retain gadolinium while effectively providing contrast in T1 weighted imaging and having higher relaxivity values than clinical contrast agents. Modification of the architecture of the construct through changes of the tail length, and through creation of mixtures did not drastically affect the behavior of the system demonstrating its flexibility. Here I detail, the design, synthesis of the expression, purification and characterization of all the required properties of the constructs
    • 

    corecore