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THE SYNTHESIS AND CHARACTERIZATION OF MULTIFUCNTIONAL 

NANOPARTICLES OF ELASTIN-LIKE POLYPETIDES FOR THERANOSTIC 

APPLICATIONS 

JAMES T. COLE 

ABSTRACT 

 Theranostics is a promising field that aims to combine therapeutics and 

diagnostics into single multifunctional formulations. This field is driven by advancements 

in nanotechnology and specifically in the creation of multifunctional nanoparticles 

capable of providing the necessary functionalities. Elastin-like polypeptides (ELPs) are a 

class of environmentally responsive biopolymers that are known to undergo a transition 

in response to various stimuli. The organic nature of ELPs along with the ability to 

control their design at the gene level and the aforementioned responsive behavior make 

them a promising candidate for use in theranostic systems. The system presented here is 

one of the first examples of using ELPs as the base for multifunctional theranostic 

nanoparticles.  

 Presented in this study is a fully protein based self-assembling nanoparticle 

system based on micelles of ELPs for use in theranostic applications. Micelle forming 

ELP constructs have been modified through the fusion of the protein based MRI contrast 

agent CA1.CD2 to the C terminal of existing protein constructs. Micelles were then 

crosslinked into stable nanoparticles that relied only on changes in temperature to drive 

the transition. In addition to that, a targeting peptide has been added to the system as well 

to provide active targeting to cancer cells. As a contrast agent the system has been shown 
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to bind and retain gadolinium while effectively providing contrast in T1 weighted 

imaging and having higher relaxivity values than clinical contrast agents.  Modification 

of the architecture of the construct through changes of the tail length, and through 

creation of mixtures did not drastically affect the behavior of the system demonstrating 

its flexibility. Here I detail, the design, synthesis of the expression, purification and 

characterization of all the required properties of the constructs. 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

(Modified from publication with N.B. Holland, Drug Delivery and Translational Research, 5, 
2015, 295-309) 

1.1. Multifunctional nanoparticle theranostic systems 

Cancer is the second leading cause of death in the United States with projections 

estimating 1,665,540 new cases occurring with 588,720 deaths or 1,600 deaths per day1. 

Despite advances in treatment, diagnosis and prevention options, cancer mortality rates 

however have only dropped 1.6%, which given the total number of cases, is not a 

significant improvement2. These statistics indicate that there is a pressing need to develop 

novel treatments and approaches that will enhance the survival rates.    

Chemotherapeutics, although successful in reducing deaths directly related to 

cancer, suffer from very poor pharmacokinetic profiles as well as non-specific 

mechanisms of action, which in turn leads to a tremendous amount of systemic toxicity 

for the patient. These drugs also are known to target any highly proliferative cell, not just 
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cancer, and the non-specific mechanism of action exposes all of these cells to the drug 

and causes damage to these as well, such as hair follicles, stomach lining and bone 

marrow3. The non-specific mechanism of action also reduces the amount of drug that is 

actually delivered to the cells of interest, which results in the need for higher and 

continuous doses.  

In recent years nanoscale materials have been developed for a wide range of 

purposes related to drug delivery, cancer treatment and diagnosis. These materials present 

numerous opportunities to improve the current state of cancer diagnosis and treatment 

available to patients. Currently there are numerous clinically approved formulations that 

are comprised of nanoparticle drug delivery systems which have been shown to reduce 

the toxic side effects associated with traditional chemotherapy regimens4. These 

therapeutic loaded nanoparticles have displayed limited long-term success clinically, 

which has led to the need to attempt to develop new strategies to improve the efficacy of 

nanoscale treatments through addition of numerous functional elements. Active targeting 

enhancements as well as imaging modalities have been imparted into the nanoparticles to 

create truly multifunctional formulations.  

 Theranostic nanoparticles represents the culmination of all the strategies that have 

been imparted onto multifunctional nanoparticles into one package. The traditional 

definition of theranostics is that they are a therapeutic (Thera-) and diagnostic (nostic) in 

the same formulation5. In order to achieve this multi-functionality typically 4 components 

are include in the formulation (Figure 1-1).  

1) Nanoparticle base  

2) Diagnostic imaging domain  
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3) Targeting ligand   

4) Therapeutic  

Once the interplay between all of the components has been optimized the field of 

theranostics holds the ability to potentially drive the field of nano-medicine into the area 

of “personalized medicine”6. The concept of personalized medicine is to attempt to tailor 

medicinal regiments and treatments to the specific characteristics of each individual 

patient7 due to the idea that no single individual undergoes the same response to any 

therapeutic agent. This therapy may aid in reducing undesirable side effects of treatment 

and potentially produce better results.  

 The diagnostic imaging domain component can be utilized before starting 

treatments, which can potentially allow for the exact nature, phenotype and stage of the 

disease state to aid in guiding treatment. This capability allows theranostic compound to 

act as a guided biomarker to support the treatment regimen chosen, the efficacy of the 

dosage as it’s delivered or predict the response to treatment8. In theory this powerful 

technique can help to maximize drug efficacy and reduce the guesswork associated with 

development of cancer treatments. In order to take advantage of these techniques 

however, it is necessary for a sufficient amount of contrast to accumulate in the region of 

interest. The usage of the nanoparticle platform becomes quite advantageous in this 

regard because of the ability to decorate or functionalize the surface of the particles with 

these domains. Commonly included imaging modalities include magnetic resonance 

imaging (MRI), computed tomography (CT), optical imaging (fluorescence and 

bioluminescence) and radionuclide imaging (PET and SPECT).  
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There are a large number of nanoparticle formulations that can be used as the base 

for a theranostic system, and these include both organic and inorganic nanoparticles. 

Common materials used to synthesize or form nanoparticle systems include proteins, 

polymers, lipids, gold and iron oxides. Each class of particles will have a size of less than 

150 nm in diameter, with highly heterogeneous particle distributions and sufficient 

stability in vivo. Further these particles must be able to be functionalized with imaging, 

therapeutic cargo and targeting elements while retaining their nanoparticle nature upon 

the addition of components. The use of targeting ligands decorated on the surface of the 

theranostic nanoparticles, allows for direct binding of the system to receptors that are 

overexpressed on tumors. Finally therapeutics can be encapsulated within these particles 

and be designed to either have slow release properties, which is typical of most 

therapeutic drug combinations or designed to have triggered release capabilities, such that 

upon endocytosis of the nanoparticle release occurs due to change in the environment. 

What follows are examples of possibilities for the different components in a theranostic 

system as well as useful examples.  
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Figure 1.1. Schematic of theranostic nanoparticle. Included in a single system is a 

nanoparticle, an imaging component, a targeting moiety and a therapeutic component.  

1.1.2. Components of multifunctional nanoparticle systems  

Nanoparticle drug delivery vehicle 

 The nanoparticle forming material that is used for the base of the theranostic 

particle delivery vehicles can vary in composition, size, shape, charge and 

hydrophobicity. Using any composition of nanoparticles as the drug delivery vehicle can 

overcome the following series of limitations associated with traditional drug 

administration routes. The first is the problem of solubility of the therapeutic which 

occurs due to the fact that most chemotherapeutics are hydrophobic and subsequently 

require the use of solubilization agents such as Cremophor EL, which has been associated 

with hypersensitivity reactions9. The use of nanoparticles such as polymeric micelles, or 

liposomes can provide both a hydrophobic and hydrophilic environment which can 

enhance solubility10. The second is burst release upon administration, which can cause 
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significant damage to surrounding tissues or rapid degradation of the drug in vivo. To be 

considered a successful drug carrier nanoparticle drug delivery vehicles must stably 

encapsulate the therapeutic, which has the effect of delaying the release of in the body 

and protecting the payload from environmental effects in vivo11. The third limitation is 

traditional drug delivery routes have unfavorable pharmacokinetic profiles due to rapid 

clearance, which subsequently requires repeated high dosages. This is overcome using 

nanoparticles, which provide slower drug release, and a lower overall dosage to achieve a 

greater effect of the therapeutic12. Poor bio-distribution also occurs in these systems due 

to the non-specific nature of the formulation. Due to the ability to control the design of 

the particles either from the gene level, or through chemical reactions, targeting elements 

can be decorated on the surface on the nanoparticles, reducing systemic toxicity and 

enhancing the delivery of therapeutic at the site of interest13. It is clear that the use of 

nanoparticles as drug delivery systems offer an enormous amount of advantages as well 

as great potential for the future.  

1.1.3. Compositions of nanoparticles  

 The physiochemical properties of the nanoparticles used for theranostic 

applications plays a very important role in determining the success of the uptake and 

interaction with cancer cells14. Factors that play a role in the ultimate success of the 

theranostic system include size, shape, charge, hydrophobic / hydrophilic character, and 

surface chemistry. The size of the nanoparticles is directly related to the cellular uptake 

rate of the nanoparticles15 and is related to time the nanoparticle remains in circulation. 

The mechanism of uptake is known as pinocytosis16 and can occur in two ways; the first 

is through passive targeting or adsorptive mechanisms and the second is through active 
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targeting and receptor-mediated endocytosis. In order for the particles to undergo cellular 

internalization it has been found that particles of the size 40 to 50 nm have maximum 

uptake in vitro17, while a general range of 10 to 100 nm has been established for in vivo 

applications18. Smaller nanoparticles, such as those less than 10 nm in size, are cleared 

via glomerular filtration in the kidneys19. Larger particles are cleared through the Kupffer 

cells of the liver and through the spleen20. When targeting to solid tumors for the purpose 

of nanoparticle accumulation the size ranges are between 70 to 200 nm for passive 

targeting purposes21, while anything larger than 400 nm is considered too large14. While 

these general size ranges have been established, there are also examples of contradictory 

reports and each class of nanoparticle and cell type interaction appears to needs to be 

investigated individually. 

The shape of the nanoparticles also plays a critical role in the internalization interaction 

between the particles and cells. Due to the role of hydrodynamic forces in the transport of 

nanoparticles, the symmetry of the particles dictates the trajectory as they travel through 

the body22. Shapes that can accommodate cellular membrane wrapping are most effective 

at cellular uptake and between rods and spheres, spheres are more effectively taken up23. 

Spheres are symmetrical in shape and because of this the distribution of forces acting on 

it are constant, which will allow them to remain in the center of the blood vessel as they 

circulate24. Rods, which are asymmetrical in shape are susceptible to drag forces and 

torques as they circulate, which leads to alteration of the particle motion and a propensity 

to head towards and accumulate at the vessel walls25. Shape also plays a role in the 

circulation time and bio-distribution of the particles. It has been reported that spherical 

particles have shorter circulation times than non-spherical particles26. 
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 The charge on the surface of the nanoparticles plays a role in whether or not the 

particles bind to the target of interest or undergo non-specific binding elsewhere while in 

circulation. Cationic nanoparticles will interact with negatively charged proteins, glycans, 

and phospholipid head groups on the surface of cells27, which will in turn enhance 

nanoparticle uptake due to increased cellular binding. Anionic particles have been shown 

to display enhanced uptake compared to neutral particles28. The charge further plays a 

role in the mechanism of uptake that takes place with negatively charged particles being 

internalized in a dynamin independent manner and positively charged particles being 

internalized using dynamin and F-actin29. Positively charged particles will be cleared via 

the mononuclear phagocyte system and suffer from short half-life due to interactions with 

blood proteins. When these interactions occur, it activates the complement pathway30. If 

the designed nanoparticles are more hydrophobic than the cell surface they are binding to, 

there is an enhancement of uptake27, as well as experiencing an enhancement of protein 

adsorption on their surfaces31. Hydrophilic nanoparticles on the other hand, will attract 

fewer of these proteins. For this reason nanoparticles are often PEGylated, which is the 

process of coating the surface of the particles with polyethylene glycol (PEG)32, a highly 

hydrophilic polymer coating that increases in vivo circulation and half-life times. The 

optimal level of PEGylation, such as the thickness of the coating, the coverage 

configuration and the chain length has yet to have been established and is an important 

factor to investigate in each nanoparticle cell pairing.  

 Clearly there are many factors that interplay in the design of the nanoparticles for 

use in theranostic systems. Despite the wealth of information available and reported, 

there is no way to predict the interactions that may take place in a given system. 
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Therefore, it is critical to determine each of these factors experimentally for a given 

system. 

Polymers 

 Polymeric nanoparticles are comprised of a broad class of materials that are 

characterized by shapes that are either nanospeheres or nanocapsules and are composed 

of a backbone that is polymeric in nature with a biodegradable monomer33. The most 

common materials used to make polymeric nanoparticles are poly(lactic acid) / 

poly(lactic-co-glycolic acid) PLA/PGLA, block copolymers, and chitosan. Chitosan are 

semi-synthetic polysaccharides that have been used extensively as multi-functional 

nanoparticle systems, and especially in gene delivery applications34 due to their strong 

polycationic properties. PLA / PLGA is an attractive polymer for encapsulating 

hydrophobic and hydrophilic drugs without degradation35 and providing a mechanism for 

their release into the target of interest. The manner through which the drugs are loaded 

into the particles greatly affect the rate of release. PLGA nanoparticles undergo 

hydrolysis of ester linkages throughout its matrix and advantageously the resulting by 

products are easily cleared from the body. Tunability of these nanoparticles can be 

achieved via changing the ratios of lactic and glycolic acid in the synthesis36. Overall 

polymeric nanoparticles offer a great deal of advantages including biocompatibility, low 

clearance in the body and ease of customization.  

Liposome 

 Liposomes are concentric closed bilayer membranes of water-insoluble polar 

lipids, which are an important structural component of the cell membrane. Liposomes are 

amphiphillic in nature, due to being composed of both hydrophobic and hydrophilic 
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components which leads to the self-assembly into the bi-layer structures37. These 

materials possess many advantages for use as drug delivery systems the first of which is 

that the surface properties can be easily modified to suit the needs of the system being 

developed through the addition of targeting functionalization38 and their size can be 

precisely controlled39. They can also stably encapsulate and protect both water soluble or 

insoluble therapeutics in the core40. Finally due to their organic nature, liposomes are 

generally biocompatible. Despite these advantages there are drawbacks to using 

liposomes, including poor stability, low loading efficiency, and poor release profiles.  

Dendrimers 

 Dendrimers41 are spherical, synthetic structures that are typically composed of a 

core molecule that branches out into tree like extensions with terminal ends that are 

available for functionalization. In terms of diameter, dendrimers are the smallest 

nanoparticle system42 with radius ranging from 2.5 to 8 nm. Due to the nature of their 

synthesis, dendrimers offer a high level of control of their branching, molecular weight, 

charge and functionalization. This allows for drugs to be attached to the branches via the 

functional groups, can fill in the void spaces between the branches or can be encapsulated 

in the core presuming it is hydrophobic. Targeting or imaging domains can be attached to 

the ends through the functionalized groups and because of the shape of the dendrimers 

these are highly available. These highly customizable features are the most desirable 

properties of using dendrimers as drug delivery vehicles.  
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Polymeric Micelle 

Nanoparticle micelles are colloids consisting of amphiphillic macromolecules 

with both hydrophobic and hydrophilic segments43. The segments lead to a distinct 

segmentation of the particles into two regions, a hydrophobic core consisting of polymer 

tails and a hydrophilic headgroup. Typically the micelles are formed through a process of 

self-assembly that occurs in a concentration dependent manner known as a critical 

micelle concentration (CMC). Below this concentration micelles exist as monomers in 

solution. Micelle nanoparticles typically have a size that ranges from 5-100 nm in 

diameter. As drug delivery vehicles there are numerous advantages to using micelles as 

the base particle. Chemotherapeutics can be encapsulated in micelles in multiple ways, 

including during self-assembly for hydrophobic drugs in aqueous solution, or self-

assembly of hydrophilic drugs in non-aqueous solutions. This core shell structure is 

highly advantageous for using micelles in drug delivery, due to the hydrophobic core 

which solubilizes drugs and the hydrophilic shell which protects the particles as they 

travel through the body. Addition of targeting fragments or imaging domains is 

achievable using micelles, and various studies have shown that micelles are endocytosed 

via EPR effect or through receptor mediated interactions. Micelles are generally 

composed of biocompatible materials, which aids in their presence and eventual 

clearance in the body.  
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Figure 1.2. Multifunctional nanoparticles used in theranostic systems. A) liposome B) 

dendrimer C) functionalized polymer D) micelle   

1.2. Nanoparticle Drug Delivery Systems 

1.2.1. Chemotherapeutics  

 Choice of the therapeutic agent used plays a very large role in the development of 

multifunctional nanoparticle systems. A large amount of the design in encapsulating the 

compound depends on the solubility of the therapeutic, which can either need to be 

protected or need to have its solubility enhanced. Two of the most common therapeutics 

that have been encapsulated into micelles are doxorubicin and paclitaxel.  

Doxorubicin which is commercially available in a PEGylated liposomal form44 is 

a chemotherapeutic drug used in numerous forms of cancer chemotherapy. Due to its 

wide range of indications, it is one of the most widely used anti-cancer drugs on the 

market. However, even though it is approved for usage there are a number of adverse side 

effects associated with its administration. These include common symptoms such as hair 

loss and vomiting as well as hand- foot syndrome45 and cardiomyopathy46. Doxorubicin’s 

mechanism of action is through interaction with DNA via intercalation47. Once this 

process is initiated the progression of the enzyme topoisomerase, which is necessary to 

allow DNA to undergo transcription. Through further stabilizing interactions with 
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topoisomerase II complex, the DNA double helix can’t be resealed and thus replication is 

halted48. 

Paclitaxel belongs to the taxane family of drugs, along with Docetaxel and is 

derived from the bark of the pacific yew tree49. A formulation of paclitaxel that is FDA 

approved and readily available is known as Abraxane, which is an albumin bound 

nanoparticle designed to overcome solubility issues with the free drug. Typically the drug 

is used to treat breast, lung, ovarian and head and neck cancers. Due to solubility 

concerns mentioned earlier, paclitaxel is an excellent choice for a therapeutic that would 

benefit from being encapsulated in nanoparticle drug delivery systems. Paclitaxel targets 

and stabilizes and protects cellular microtubules, which leads to prevention of the normal 

breakdown of these during the cell division process. Specifically this prevents the 

progression of mitosis and causes reversion back to the G-phase of the cell cycle50. Side 

effects of administration of paclitaxel directly are related to the use of solubilization 

agents and typically include nausea, vomiting, rashes and even female infertility9.     

 

Figure 1.3. Chemical structures of doxorubicin (a) and paclitaxel (b). 

 Nucleic acid based therapies such as those utilizing small interfering RNA 

(siRNA) and mircroRNAs (miRNA) have gained traction in treatment of various forms of 

cancers. These are known as non-coding RNAs51, and can be used in theranostic systems. 

A B 
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The miRNAs are conserved single stranded RNAs of 19-25 nucleotides that are 

transcribed by RNA polymerase II52 and their abnormal expression is linked to various 

tumors such as leukemia53 and lung cancer54. They can be used as therapeutic targets 

since they have been shown to play a role in increasing chemo-resistance of both breast 

cancer cells55 and prostate cancer cells56. To utilize miRNA as a therapeutic agent two 

strategies have been employed the first is to block tumor suppressor miRNA and the 

other is to target the genes involved in their transcription. For utilization in theranostic 

systems the miRNA can be delivered to target cells by targeted nanoparticle systems, 

such as using targeted liposomes for delivery of miR-34a into metastatic melanoma57 and 

using gold nanoparticles loaded with miR-29b for delivery into HeLa cells58. 

Small interfering RNA (siRNA) is a class of double stranded RNA that is also 

being utilized in the treatment of cancers. These RNA are typically 20-25 nucleotides in 

length and are known to interfere with the expression of a gene that shares a 

complementary sequence with the double stranded DNA59. Liposomes decorated with 

monoclonal antibodies were utilized to deliver siRNA specific to cyclin CD-1 in vivo and 

were shown to silence the target in leukocytes60. Polymer nanoparticles decorated with 

the integrin ligand RGD have been utilized to deliver siRNA to endothelial cells during 

angiogenesis61. 

 1.2.2. FDA approved Nanoparticle drug carrier systems  

One of the most common and important examples of a FDA approved and widely 

available nanoparticle drug formulation is Doxil, approved for clinical use in 1995 and 

made by Jansen biotech. This drug is a polyethylene glycosylated liposome drug carrier 

loaded with the chemotherapeutic doxorubicin used to treat ovarian cancer and 
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sarcoma62. Doxil, unlike the free drug, has been shown to be generally localized to the 

blood pool, except for at site of increased vascular permeability like the liver, spleen and 

within tumors. Due to these reasons Doxil has a circulation half-life that is reported to be 

100 times longer than free doxorubicin while carrying a risk of cardio toxicity that is 

seven fold lower63. DaunoXome is a formulation of liposomal danorubicin to treat 

sarcoma that was approved in 199664. Another example of a successful FDA approved 

formulations is Abraxane, which is albumin bound paclitaxel and used for the treatment 

of metastatic breast cancer, lung cancer and pancreatic cancer65. A list of nanoparticle 

based formulations that have been approved by the FDA are listed in Table 1.1.  

Drug Name Formulation Usage Year Approved 

Abraxane Albumin bound 
paclitaxel Breast cancer 2005 

Cimzia PEGylated fragment of 
anti-TNF-α antibody 

Chron’s disease and 
arthritis 2008 

Doxil PEGylated liposomal 
doxorubicin 

Ovarian cancer and 
sarcoma 1995 

DaunoXome Liposomal danorubicin Sarcoma 1996 

Eligard PLGH-polymer and 
leuoprolide formulation 

Late-stage prostate 
cancer 2002 

Oncaspar PEG-L-asparagine Acute lymphoblastic 
leukemia 2006 

Genexol-PM PLA-PEG micelle with 
paclitaxel 

Metastatic breast 
cancer 2007 

Table 1.1. Nanoparticle formulations that are FDA approved for clinical use. 

For micelle-based system, numerous candidates are currently in clinical trials, and 

these are listed in Table 1.2. Genexol-PM is a micelle based nanoparticle that was 

approved by the FDA in 2007 and is polyethylene glycol poly-lactic acid micelle which 

has indications for use in breast and lung cancer66. The micelles that compose the 

formulation are a range of 20-50 nm in size. Genexol was designed to overcome one of 
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the major limitations of using paclitaxel as a therapeutic, which is the need for 

Cremophor-EL, a surfactant solubilization agent used to dissolve the paclitaxel in Taxol9. 

This agent has been linked to hypersensitivity reactions and requires pre-medication for 

administration. In the case of Genexol-PM, the paclitaxel is encapsulated and protected 

within the hydrophobic core of the micelle and solubility is maintained through the 

hydrophilic shell of the micelle. In a phase I study involving this formulation it was found 

that hypersensitivity reactions were not observed and that the formulation had linear 

pharmacokinetics66.  

 Name Composition / diameter 
(nm) 

Therapeutic         Usage Stage  

NK105 PEG-P(aspartate)  85 Paclitaxel Stomach Cancer III 

NK012 PEG-PGlu(SN-38) ~20 SN-38 Breast Cancer II 

NC-6004 PEG-PGlu(cisplatin) 30 Cisplatin Solid Tumors II 

SPIO49C  Pluronic L61 and F127 ~25 Doxorubicin Adenocarcinoma III 

NK9111 PEG-pAsp ~40 Doxorubicin Broad I 

Table 1.2. Micelles currently in clinical trials. 

 

1.3. Targeting Strategies 

1.3.1. Passive Targeting 

As of now, all clinically administered and approved nanoparticle formulations are 

delivered to the site of interest in the body through passive targeting via the enhanced 

permeability and retention (EPR) effect14. This phenomenon was developed by Maeda et 
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al. after observing a higher concentration of colloidal particle drug conjugate in tumor 

tissue as compared to free drug67 which was described as being due to irregularities in the 

tumor tissues themselves. These irregularities include a highly leaky vasculature which 

allows particles to enter into tumor from surrounding tissues68 and the lymphatic drainage 

system is ineffective which leads to an entrapment of particles and prevents their 

clearance. Various classes of nanoparticles, most effective when the size is between 10-

100 nm in diameter, have had their tumor interaction behavior described via the EPR 

effect including, micelles21, liposomes69 and polymer nanoparticles70 and nanosized 

materials up to 400 nm in diameter. Various studies in animal models have shown that 

the EPR effect can lead to a 50 fold accumulation in tumors compared to healthy tissues4 

and further the greater the circulation time of the particles the greater the accumulation. 

However there are drawbacks to solely relying on the EPR effect for passive targeting, 

such as the fact that many large tumors are known to be heterogeneous in nature, which 

prevents the particles from accumulating throughout the tumor. Further the EPR effect is 

negated in the central regions of the tumors which further reduces the accumulation of the 

particles71. Also the negative pressure gradient that exists in the tumoral interstitial space 

has the potential to limit the movement from the intravascular to extravascular space, thus 

negating the advantages of the leaky tumor vasculature72. Another drawback is that not 

every type of tumor will allow for accumulation via the EPR effect, including gastric and 

pancreatic cancers73.  
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Figure 1.4. Passive targeting via the EPR effect.  

1.3.2. Active Targeting  

As an alternative strategy to relying solely on passive targeting through the EPR 

is to use active targeting strategies that rely on affinity ligands which will directly bind 

nanoparticles to the over-expressed receptors on tumor surfaces74. This is achieved by 

decorating the surface of the nanoparticles with these targeting elements. The origins of 

active targeting are derived from modification of the surfaces of liposomes with 

monoclonal antibodies that were designed to recognize antigens present on target cells75 

and there are over 30 of these compounds approved to date. The most recognizable of 

these is known as Herceptin (trastuzumab), which is used in the treatment of breast 

cancer through the biding of the HER2/neu antigen76. Many types of targeting ligands 

have been developed including antibodies, peptide fragments, nucleic acid ligands and 

biomarkers. Short peptide fragments possess advantages over larger antibody fragments 
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due to the fact they are inherently smaller, less immunogenic, possess more stability and 

are far less complicated to manufacture77. Although peptide targeting tends to have lower 

affinity for the target cells than antibodies, this issue is overcome by the fact that the 

nanoparticle surface is entirely decorated with the peptide targeting fragments, which 

leads to a situation where the peptides can achieve avidity. The development of a wide 

library of peptides has been facilitated through the use of phage display78.  

 

Figure 1.5. Internalization of nanoparticles via receptor-mediated endocytosis.  

Despite the advantages of active targeting, there are only 6 known targeting 

nanoparticles that have advanced to the state of reaching clinical trials, three of which are 

polymers79 and three are liposomes80. Each of these compositions has demonstrated thus 

far an enhancement in activity as compared to non-targeted versions. These are presented 

in Table 1.3. 
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Code Targeting 
fragment 

Particle 
Composition 

Usage Therapeutic Phase 

MBP-426 Transferrin Liposome Gastric, 
adenocarcinoma Oxaliplatin II 

SGT-53 Antibody 
tumor antigen 

transferrin 
Liposome Tumors P53 Ib 

MCC-465 Antibody 
fragment Liposome Stomach cancer Doxorubicin I 

SEL-068 Antigen Polymeric Nicotine antigen, 
TLR agonist  I 

Bind-014 PSMA Polymeric Solid tumors Docetaxel I 

CALAA-01 Transferrin Polymeric Solid tumors siRNA I 

Table 1.3. Active targeted nanoparticles in clinical trials 

1.3.3. Types of targeting ligands 

Antibody 

 This class of targeting ligand is the only that is currently clinically available and 

has consistently demonstrated increased cellular uptake as compared to non-targeted 

particles. This is most like due to the fact that antibodies have two epitope binding sites 

on the same molecule, which offers high selectivity and affinity towards the target81. 

Clinically available AB targeted nanoparticles include, Rituximab for lymphoma82, 

Trastuzumab for breast cancer treatment76, Bevacizumab used to inhibit angiogenesis83 

and Cetuximab for the treatment of advanced colorectal cancer84. These large monoclonal 

antibodies however, have drawbacks that limit their desirable use in the laboratory. These 

include their large size which can affect particle diameter, instability in solution making 

self-assembly processes difficult, batch to batch variations and immunogenicity concerns. 

To overcome these limitations, small fragments of antibodies have been utilized, known 
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as affibodies that are used in combination with phage display to target specific cell 

markers85. 

Folate Receptor 

 The folic acid receptor (FR) is overexpressed in many kinds of cancer cells 

including breast, bone, lung, head neck and brain and is one of the most studied receptors 

in active targeting86. Folic acid is a vitamin that is necessary for cell function and 

provides required components for the synthesis of DNA. Although the FR is present on 

normal healthy cells, it presents low affinity for nanoparticles carrying folic acid 

conjugates87. An example of the efficacy of the targeting is demonstrated by Lacroix et 

al. who conjugated folate onto poly(L-lysine) polymers with encapsulated doxorubicin88 

and showed enhanced toxicity compared to non-targeted nanoparticles. Using folate as 

the targeting ligand has numerous advantages including the fact that it is easily 

conjugated to particles and has high binding affinity for the folate receptor. Further it is 

inexpensive, non-immunogenic, readily available and conjugation chemistry is simple.  

Transferrin   

 Transferrin is an antibody that operates via transferrin receptor mediated 

endocytosis, through the binding of iron and transportation into cells. Cancer cells, being 

highly proliferative, have a need for tremendous amounts of iron during their growth 

periods which leads to an overexpression of the transferrin receptor89. These receptors are 

overexpressed on tumor and metastasizing cells by approximately 2 to 10 fold compared 

to healthy cells90. Labhasetwar et al. used the transferrin receptor to decorate particles 

with transferrin and loaded with paclitaxel to demonstrate an increase in an anti-

proliferative activity91.  The advantages of using transferrin are that it is completely 
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biocompatible due to non-immunogenicity, can be easily conjugated to many particles 

and drugs and the acquisition is easy.  

Peptides 

 Peptide targeting fragments are molecules that range in size from 2 to 50 amino 

acids linked by peptide bonds92. There are numerous peptide receptors overexpressed in 

tumor cells, which gives a large variation in the targets that are available and these 

include luteinizing hormone-releasing hormone (LHRH), bombesin receptor, and 

somatostatin. Peptides are also used as ligands to target integrins, which are 

transmembrane receptors, whose role is vital in the adhesion between cells and 

surrounding tissues. These are commonly overexpressed in tumor neo-vasculature93. The 

most common of these integrin receptors that is targeted is αvβ3, which is overexpressed 

on endothelium of cancerous tissues and is selectively targeted by the peptide RGD94.  

Zhan et al. used PEG-PLA micelles conjugated with cyclic RGD and loaded with 

paclitaxel to show an enhanced anti-glioblastoma effect by 2.5 times compared to non-

targeted micelles95. Peptides as targeting ligands possess many desirable features 

including the fact that they small in size, can be excreted through normal pathways, have 

high binding affinity and their small size enhances the avidity effect on surface on 

nanoparticles, they have high stability and are easy to reproduce.    

1.3.4. Targeting ligands for Prostate Cancer  

 Prostate cancer is one of the most diagnosed cancers in males with an estimated 

233000 new cases being estimated for 2014 or 27% of new cases with 29,480 deaths 

resulting from it (~ 8%)1. Prostate cancer incident rates however have been declining, and 

this is partly due to early detection improvement, but it is still the second leading cause of 
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cancer death among males behind lung cancer1. When detected early there are a number 

of treatment options which can include radiation therapy or removal of the tumor. 

However, once the cancer has begun to metastasize it becomes resistant to removal and 

becomes incurable96.  Currently there is a need for treatment options that will enhance the 

efficacy of care for late-stage prostate cancer. Unfortunately prostate cancer is a difficult 

disease and no wide reaching strategies have proven successful, mostly due to the fact 

that the tumors themselves display a high level of heterogeneity67. This however, presents 

an opportunity for theranostic formulations to provide personalized treatment regimens to 

enhance the chances for success.  

Active targeting strategies  

Two clinical trials have been performed in the last few years on actively targeted 

nanoparticles for the treatment of prostate cancer, SGN-15 and ASG-5ME. SGN-15 is an 

antibody conjugated nanoparticle loaded with doxorubicin and Docetaxel which was 

completed in October 201197. ASG-5ME targets a transmembrane antigen and delivers an 

anti-microtubulin drug known as MMAE. This study was completed in June 201398. As 

of the publication of this thesis these are the only two targeted nanoparticle studies on 

record, indicating that there is a pressing need for new strategies. What follows is a list of 

possible targeting strategies to guide theranostic formulations in the future including a 

table listing all the options (Table 1.4).  

Prostate Specific Membrane Antigen  

The prostate specific membrane antigen (PSMA) is a glycoprotein type II integral 

membrane that is a common biomarker for prostate cancer multifunctional nanoparticle 

studies99. The common usage of this target is due to it possessing highly elevated 
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expression levels in a wide range of prostate cancer tumors as well as a high level of 

internalization when targeted to100. When a PSMA antibody complex is formed it has 

been shown that it will be internalized, eventually ending up in the lysosomes via the 

clathrin coated pits route101. Xu et al. used unimolecular micelles conjugated with 

aptamers targeting PSMA, composed of a PLA-PEG core and loaded with doxorubicin. 

These micelles demonstrated a higher level of cytotoxicity than non-targeted 

constructs102.  

Six-Transmembrane Epithelial Antigen 

Six-transmembrane epithelial antigen (STEAP) is a transmembrane protein that is 

primarily expressed in the tissue of the prostate103. This antigen is also highly over-

expressed in a variety of tissues including prostate cancer, lung, colon and bladder while 

there is restricted expression in healthy tissues. Further the overexpression has been 

shown to exist in metastases of prostate cancer in lymph nodes and in bone104. These 

reasons make it an attractive target for prostate cancer treatments in the future. Currently 

there is an ongoing clinical trial in phase I, using STEAP I as the targeting ligand to 

measure the treatments effectiveness in dealing with metastatic castration resistant 

prostate cancer105.  

Gastrin-release peptide receptor 

The gastrin-release peptide receptor (GRPR) is a glycosylated, 7-transmembrane 

G-protein coupled receptor which belongs to the family of bombesin receptors106. It is 

targeted to by the gastrin-release peptide, a bombesin analogue. This receptor has a broad 

range of biological functions including exocrine secretion of gastro-intestinal organs and 

stimulation of smooth muscle contraction. Also, once activated, the receptor stimulates 
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cell growth and proliferation through activation of several protein and signaling 

pathways. GRPR is overexpressed in prostate cancer as well as in a variety of other 

tumors including breast and pancreas107. It has been shown that the rate of GRPR 

expression varies from 63% to 100% in prostate cancer tumors106. A recent study was 

conducted to determine the expression levels and profile of GRPR in the various stages of 

prostate cancer, including healthy tissue, primary cancer following excision, castration 

resistant prostate cancer (CRPC) and prostate cancer metastases108. This study was 

conducted from a group of 530 patients and the findings were rather enlightening. GRPR 

was strongly up-regulated in prostate cancers, especially of lower grade. Further 

progressed prostate cancer tumors had a tendency to be closer to GRPR negative, while 

metastases and CRPC displayed lower levels of GRPR expression. These findings are 

rather important in demonstrating the potential to use GRPR for use in theranostic 

applications, especially as an early detection and treatment method.  

The gastrin release peptide (GRP) is the mammalian counterpart of bombesin and 

was named for its first known activity of inducing gastrin secretion from G cells in the 

gastrin antrum122. There is a strong similarity between the sequence of GRP and 

bombesin including an amidated methionine at the C terminal. The 27 amino acid 

sequence is represented as follows:  

V-P-L-P-A-G-G-G-T-V-L-T-K-M-Y-P-R-G-N-H-W-A-V-G-H-L-M-NH2 

The 10 amino acid C terminal fragment is identified as the most similar to bombesin and 

is used as the targeting fragment for active targeted prostate cancer applications  

                               G-N-H-W-A-V-G-H-L-M-NH2 (GRP)  
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 Glu-Gln-Arg-Leu-G-N-Q-W-A-V-G-H-L-M-NH2 (Bombesin) 

Two examples of using the gastrin release peptide targeting fragment are 

presented. Steinmetz et al. demonstrated active targeting utilizing the GRP peptide 

fragment with viral nanoparticles of tobacco mosaic virus109. This system demonstrated 

enhanced binding to GRPR positive pC3 cells compared to non-targeted nanoparticles. 

Hosta-Rigau et al. used gold nanoparticles functionalized with GRP to demonstrate 

enhanced binding and uptake in GRPR positive HeLa cells as compared to the non-

targeted version110. These results lay the groundwork for the active targeting strategies 

used in this work.  

 

Table 1.4. Active targeting strategies for multifunctional nanoparticles.  

Type Ligand Receptor Indications 

Peptides Gastrin release peptide Gastrin release peptide 
receptor Prostate 

 

NGR APN / CD13 Angiogenic endothelial 
cells 

RGD αvβ3 integrin 
Melanoma, breast, 
prostate, ovarian, 

glioblastoma 
VEGF VEGF receptor Endothelial cells 

Antibodies Mab A7 Antigen A7 Colorectal 

 Anti-HER2 scFv ErbB2  Breast, ovarian, stomach, 
uterine 

 
Small Molecule 

Folate Folate receptor Ovarian, renal, lung, 
breast, brain, pancreatic 

 Galactose  Asialoglycoprotein 
receptor (ASGP-R) liver 

Protein Transferrin Transferrin receptor Colon, breast, kidney, 
lung, stomach ovary 

 PSMA Solid Prostate 

 EGF EGFR Lung, anal, glioblastoma, 
NSCLC 
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1.4. Imaging Techniques 

In order to effectively utilize the theranostic nanoparticles for diagnostic purposes 

molecular imaging is required to characterize biological processes at the cellular and 

subcellular levels.  Utilizing disease state specific targeting these modalities aided by 

contrast agents or molecular probes can help to detect different disease states at various 

stages of progression or be utilized to evaluate the efficacy of treatments. In order for the 

imaging modalities to be utilized in theranostic systems they must not interfere with 

nanoparticle self-assembly or alter the nanoparticle scale of existing particle systems 

upon their inclusion. The successful utilization of these modalities requires there to be a 

sufficient accumulation of the contrast agents, which is aided by both the nanoparticle 

size and the disease state specific targeting.  

1.4.1. Optical Imaging 

Optical imaging utilizes photons emitted from bioluminescent or fluorescent probes to 

detect disease states. It is considered to be an attractive option for imaging due to its high 

sensitivity, lack of nonionizing radiation, ability to image the spectrum from visible to 

near-infrared, ability to image in real time and it is inexpensive to detect the photons111. 

Disadvantages of using optical imaging techniques are poor tissue penetration, 

susceptibility to noise due to scattering, and potential auto-fluorescence112. Probes used 

for this imaging include synthetic fluorophores, semiconductor fluorescent crystals, and 

lanthanide based probes. Choi et al. utilized PEGylated hyaluronic acid nanoparticles 

with a near-infrared fluorescent dye (Cy 5.5) loaded with irinotecan as a theranostic 

agent113. This system was able to selectively target, treat, and image colon cancer tumors 

in vivo.  
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 A common probe used in optical imaging is quantum dots which have the 

advantage of being able to have their fluorescent properties tuned in any number of 

ways114. Tan et al. used quantum dots as a contrast agent encapsulated in chitosan 

nanoparticles that utilized HER2/neu siRNA for targeted delivery to HER2 

overexpressing SKBR3 cancer cell lines and demonstrated the ability to specifically 

target these cells as well as gene silencing behavior that was monitored via the quantum 

dots115. Despite the advantages their utility may be hampered by cytotoxicity concerns116.  

1.4.2. Computed Tomography 

Computed tomography (CT) is used to primarily provide anatomical information which is 

provided due to the differences in X-ray attenuation of different biological components 

such as bone, muscle, fat, water, and air. CT scans can provide very good spatial 

resolution while producing a 3-D image of an area of interest in great detail, with less 

radiation present than other techniques117. When utilized in conjunction with a 

nanoparticle platform clearance rates are reduced while allowing the system remain in the 

blood for a longer period of time, without releasing high doses of the contrast agent prior 

to clearance118. Materials used as the nanoparticle platform include core-shell, liposome, 

gold, dendrimer, and bismuth. Zhu et al. recently synthesized multifunctional dendrimer 

entrapped gold nanoparticles linked with alpha-tocopheryl succinate and folic acid as a 

theranostic agent utilizing CT as the contrast agent119.  Targeting CT imaging of cancer 

cells was demonstrated both in vivo and in vitro while the system displayed therapeutic 

efficacy. Rabin et al. demonstrated the use of long circulating bismuth nanoparticles as an 

injectable CT contrast agent120. This system showed high stability at high concentrations, 

a prolonged circulation time and the ability to image mice in vivo. 
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1.4.3. Radionuclide Imaging (PET / SPECT) 

 For molecular imaging purposes radionuclide-based techniques are utilized, such 

as positron emission tomography (PET) and single photon emission computed 

tomography (SPECT). SPECT utilizes a camera to detect a dosage of γ radiation that is 

emitted from the tissue of interest upon administration. Radionuclides such as Tc-99m, I-

131 and Ga-67 are typically administered and left to circulate in the blood121. Attaching 

these radionuclides to a nanoparticle platform with both targeting ligands and drug for 

use as a theranostic platform aids in directing it to appropriate tissue areas. After the 

nanoparticle platform has accumulated gamma detectors are employed and rotated around 

the body, which can aid in pin-pointing the location that is emitting the largest 

concentration of γ rays. Further this can provide a 360 degree image and combinations of 

these images can produce three-dimensional images of the area122. Advantages of using 

SPECT include the fact that it is quantitative which allows for precise measurements, 

little background interference, require no signal amplification, less expensive than PET, 

long half-lifes of radionuclides, multiple radionuclides can be detected at once, and has 

high sensitivity123. Disadvantages include a low spatial resolution in comparison to other 

techniques, high costs, and use of radiation and relatively cumbersome size of detection 

equipment122. Using SPECT as a contrast agent in theranostic nanoparticles has been 

achieved by Kao et al.124. Gold nanoparticles were labeled with I-131, conjugated with 

epidermal growth factor receptor to target specifically to A549 human lung cancer cells 

and C225 monoclonal antibody. The specific binding and uptake of the particles was 

confirmed as well as the therapeutic activity of the theranostic in mice models. 

Significant accumulation of the contrast agent was also visible in the mouse model. 
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 Positron emission tomography (PET) also utilizes radionuclides and their emitted 

γ rays to produce images. Radionuclides utilized include In-111, Cu-64, and F-18, which 

are more expensive to produce and have a shorter half-life125. In contrast to SPECT, the 

radionuclide emits a positron that travels a short distance to interact with an electron 

before producing two γ rays which are then detected by two cameras in opposite 

directions which are set to specific time intervals126.  An advantage of using PET over 

SPECT is that it directly produces a three-dimensional image, has higher sensitivity than 

SPECT and requires low concentration of radionuclides to produce an image. 

Disadvantages of using PET include spatial resolution limitations, cost of the equipment, 

can only image one radionuclide at a time, and radiation concerns are present127. Chen et 

al. synthesized biocompatible mesoporous silica nanoparticles for use a PET contrast 

agent128. These PEGylated particles were 80 nm in diameter and targeted to breast cancer 

tumors using a TRC105 antibody which effectively accumulated in the tumor in vivo. 

This system also delivered doxorubicin effectively and was able to monitor the progress 

of the system.    

1.4.4. MRI Imaging 

Magnetic resonance imaging is a prevalent diagnostic imaging technique that is 

used primarily for acquiring high resolution anatomical images in the body while 

providing excellent contrast with sub-millimeter resolution. It is also used for the 

determination of physio-chemical states and functional MRI can give detailed 

neurological information.  MRI has many advantages over other imaging techniques such 

as X-ray and computed tomography, including the fact that it is non-invasive and uses 

non-ionizing radiation to acquire images. The image produced is 3 dimensional and 
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acquired through differing relaxation times between physiological tissues. The 

differences in these relaxation times can be either longitudinal (T1) or transverse (T2) and 

are used primarily for the purposes of generating a large amount of image contrast.  

 MRI relies on the magnetic properties of the hydrogen atoms present in water 

molecules, which have one proton and possess non-zero spin and is abundant in the body 

with a large magnetic moment. Hydrogen atoms can then interact and be influenced by 

external magnetic fields and radio waves. In a normal situation hydrogen atoms have no 

net magnetization, due to the low energy state and exist in a completely random 

orientation. Upon the application of a strong magnetic field, such as those present in MRI 

systems, the hydrogen protons will obtain a new orientation and orientation that can be 

parallel or anti-parallel. This magnetic field imposes torque on the magnetic moments of 

the nuclei, which forces them to remain at these angles proportional to the magnetic field 

B0. The magnetic moments of the nuclei wobble around the axis with a given frequency, 

which is known as precessional motion and the frequency is called the Larmor frequency 

(ω). This equation is represented by:  

ω = B0γ 

 When a radiofrequency pulse is applied by the instrument perpendicular to the 

magnetic field the water protons transition between high and low energy levels and this 

causes the water protons will deviate from their orientation with B0. The radiofrequency 

pulse is then removed and the aligned water protons will return to their original 

orientation with the magnetic field, which is known as relaxation. This phenomenon is 

the driving force behind MRI creating useful images and MRI signals are controlled by 

the rates these protons return to equilibrium. After this process is completed protons relax 
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through two simultaneous mechanisms, spin-lattice or longitudinal relaxation (r1) and 

spin-spin or transverse relaxation (r2). Longitudinal relaxation, T1, time is the recovery 

of net magnetization along the z-axis after the removal of the radiofrequency pulse. This 

is a first order process and the T1 is the time required to recover ~63% of the net 

magnetization of M0 and is represented in the following equation: 

𝑀 =	𝑀$(1 − 𝑒
) *
+,	) 

The transverse relaxation (T2) is the loss of transverse magnetization, measures 

the time it takes for a nucleus to go from high to low energy state and is a much weaker 

signal than T1. The T2 is the sum of the magnetic moments of many nuclei as they 

precess, which eventually cancel each other out. The T2 is the time required for 37% of 

the transverse magnetization to decay from its original value I0 and is represented by the 

following equation:  

𝐼 = 	𝐼$(1 − 𝑒
) *
+/	) 

T1 weighted contrast is the primary mechanism of acquiring images with positive 

contrast in MRI. Factors that control this are the repetition time (TR), which is the time 

interval that exists between two successive excitation pulses. In order to generate T1 

weighted contrast, a short TR is required, which allows tissues with short T1 to relax 

quickly before the next radiofrequency pulse and give large signal intensities. Tissues 

that have long T1 times will therefore undergo a small amount of relaxation during this 

time and give little to no signal intensity.  

Pulse sequences in MRI are a very important part of MRI and are typically 

applied in specific order that are vital in generating an image. There are two main 
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methods used to obtain MRI images known as gradient echo and spin echo. Gradient 

echo sequence is the simplest type of MRI sequence available and consists of series of 

excitation pulses, which are separated by a repetition time known as TR. The data is 

acquired after the excitation pulses which is a time known as the echo time or TE, and is 

the time between the mid-point of the pulse and the mid-point of the data acquisition. The 

amount of contrast in the image can be altered through changing the TE and the TR times. 

Advantages of the gradient echo sequence are fast image acquisition, a low flip angle and 

requires less radiofrequency power. Disadvantages of using gradient echo are that it is 

difficult to generate T2 contrast and is sensitive to susceptibility effects.  The spin echo 

sequence is very similar to the gradient echo, except for the fact that there is a 180 pulse 

applied at TE / 2.  The advantages of using spin echo are that it is useful for T2 

weighting, has high signal to noise ratios and minimal susceptibility effects. 

Disadvantages include ling scan times, which are costly and it requires more 

radiofrequency power.  

In order to actually determine the T1 pulse sequences are utilized, such as 

inversion recovery, saturation recovery and the null method. The inversion recovery 

pulse sequence is the most frequently used method to determine T1. For the purposes of 

the work presented here, gradient echo sequences only were used due to the short scan 

time and high contrast provided in T1 weighted imaging. Fat has a short T1 due to its 

slow tumbling rate and gives very bright images in T1 weighted images. Water on the 

other hand has a long T1 and appears dark on T1 weighted images. If a short TR is 

applied there will be sufficient difference in contrast between the two, while in the case 
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of a long TR they will both be recovered before the next pule and there will be no 

differentiation in contrast. 

Table 1.5. Common imaging techniques with targeted nanoparticle platforms  

																																																													
1	RGD:	Arginine-Gylcine-Aspartic	Acid,	LCP:	lung	cancer	targeting	peptide,	CANF:	natriuretic	peptide	
clearance	recepetor,	GRP:	gastrin-release	peptide,	CPP:	cell	penetrating	peptide		

Type Probe Sensitivity111  Nanoparticle Partner Targeting Ligand1 

Magnetic Resonance 
Imaging (MRI) 

Gadolinium 
(DTPA / 
DOTA) 

10-3-10-5 

Iron Oxide 
Nanoparticles GD2 Antibody 

Lipid Folic Acid 

Dendrimer Folic Acid 

Micelle LCP 

Nuclear Imaging 
(PET / SPECT) 

   
 
 Radionuclides          
   F-18, In-111,           10-10-10-12 
        Cu-64 

Micelle (SPECT) Folic Acid 

Gold (SPECT) RGD 

Silica (SPECT) RGD 

Gold (PET) CANF 

 Silica (PET)              RGD 

Computed 
Tomography (CT)        Iodine                 Unspecified 

Gold GRP 

Gold Aptamer 

Dendrimer Folic Acid 

Bismuth Peptide 

Optical Techniques- 
Biolumescence and 

Fluorescence 

Fluorescent dyes 
Quantum Dots 

 

Fluorescence 
10-15-10-17 

Bioluminescence 
10-9-10-12 

Quantum Dot Aptamer 

Quantum Dot RGD 

Polymer Chlorotoxin Peptide 

PEG Hyaluronic Acid 

Dendrimer CPP 
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1.5. Gadolinium based contrast agents  

Due to the relatively low sensitivity offered by MRI, contrast agents are needed to aid 

in distinguishing between healthy and diseased tissues. The water protons in the body 

have a very high tumbling rate, which gives very poor relaxation rates and weak MRI 

signals. MRI contrast agents catalytically reduce the rate of relaxation of surrounding 

water molecules by altering the T1 and T2, both of which greatly affect the contrast of an 

image, while reducing the signal to noise ratio. This effect is known as the relaxivity of 

the contrast agent, or its ability to change the hydrogen proton relaxation, and is in 

general the strongest indicator of how successful the contrast agent is. Typically contrast 

agents are composed of paramagnetic substances, usually of the lanthanide series. 

However, at the dosage amounts required to induce contrast in the tissues, these 

paramagnetic ions are toxic to the body. Thus they must be chelated to form both 

thermodynamically and kinetically stable complexes to ensure they remain intact in the 

body. Therefore the design of any MRI contrast agents includes two parts 1) the actual 

paramagnetic center (i.e. gadolinium) 2) chelating ligand. Of the various lanthanide 

elements, gadolinium (or Gd3+) is the most commonly used as a paramagnetic center. 

This is due to the following advantageous features:  

1) 7 unpaired electrons in the 3+ state, which imparts a high magnetic moment 

2) A longer electronic relaxation time than other lanthanides 

3) Exerts the strongest effect on T1 

The chelating ligand itself must have a few important characteristics to from a 

successful contrast agent. The first is that it must be water soluble, for obvious reasons. 

The second is that they form kinetically stable complexes with gadolinium that are not 
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susceptible to transmetellation via other metals present in the body. The final is that after 

chelation occurs the ligand must have positions open for water exchange, which is one of 

the crucial factors for relaxivity.  

1.5.1. Factors affecting relaxivity 

There are 4 main factors that affect the relaxivity of MRI contrast agents which 

are based on the Solomon-Bloembergen-Morgan theory129 and are represented in Figure 

1-4.  They are  

1) number of coordinated water molecules  

2) radial distance  

3) Rotational correlation time and molecular diffusion  

4) Water exchange rate.  

 

Figure 1.6. Solomon-Bloembergen-Morgan theory of relaxivity. Reprinted with 

permission from130. Copyright 2010. 
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Number of coordinated water molecules (q) 

In the presence of gadolinium there are 3 types of water molecules are associated 

with the paramagnetic center as represented in figure 1-. These are as follows: 1) inner 

sphere water molecules that directly interact with the gadolinium. 2) second sphere 

waters that are bound to the chelating ligand through weak interactions 3) outer sphere 

water that interacts with the gadolinium due to the tumbling motion of both the water 

molecules and the ligand / Gd complex. All 3 of these water molecules are necessary to 

impart the relaxivity offered by the Gd magnetic moment to the surrounding water 

protons in the environment. Therefore when we discuss the relaxivity of an MRI contrast 

agent, it is really a combination of the inner sphere and outer sphere water effects. 

Modification of the binding ligand itself can lead to direct changes in the inner sphere 

water molecules, as it is directly related to the number of water molecules bound to the 

gadolinium itself. This is achieved by increasing the hydration number, known as q, 

which is most commonly a value of 1. Achieving multiple coordination sites on the 

gadolinium to interact with inner sphere water is a difficult task, however it can greatly 

increase relaxivity. This is possible because in aqueous form Gd3+ can have 8 water 

molecules coordinated in its first sphere, and while chelated by a ligand those 8 sites are 

coordinated leaving one free for water molecule binding. Altering the design of the 

contrast agent allows for alteration of q.   

Radial distance 

The distance between the paramagnetic center and the bound water molecule 

plays an important role in the relaxivity of a contrast agent. The relaxivity is proportional 

to 1/r6 (with r being the distance) so any increase in distance between the two will 
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decrease the relaxivity, while a decrease will increase the relaxivity. It has been found 

that the distance between Gd and water is in the range of 2.5-3.3 Angstroms131. If the 

distance between the  

Rotational correlation time (τR) and Molecular Diffusion (τD) 

The rotational correlation time is the time it takes for a molecule to rotate one 

radian, which is a process that takes picoseconds. This parameter has important 

implications in relaxivity because it affects the dipole-dipole interactions between the 

gadolinium and water protons. Increasing the τR will have the effect of increasing 

relaxivity, however at low magnetic field strengths decreased τR will affect relaxivity 

more132. τR is also affected by the molecular tumbling rate with lower tumbling rates 

leading to increased relaxivities. There are numerous ways to increase the τR but the most 

important is through attaching the contrast agent to a protein or macromolecular based 

carrier with high molecular weight. It was found that increasing that with increasing 

generations of a dendrimers-Gd complex the relaxivity increased correspondingly133.  

Water Exchange Rate 

Water exchange between the chelated gadolinium in the ligand and the 

surrounding water molecules needs to be a fast process due to the fact that the effect of 

the relaxation is transferred from the gadolinium center to the surrounding water protons. 

Water exchange that is too fast is actually a detriment to creating high relaxivity contrast 

agents, because the water protons will experience a short residence lifetime in the 

gadolinium bound to the ligand. This means that it does not actually get relaxed, which 
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will mean no relaxivity occurs. Conversely if the water exchange is too slow, not enough 

of the water protons will experience the effect of the gadolinium.  

In summary for the design of a good contrast agent with high relaxivity, the 

contrast agent should have fast water exchange, molecular correlation time must be 

optimized depending on field strength and the hydration number should be as high as it 

can be designed without sacrificing stability of the contrast agent.  

1.5.2. Clinically approved MRI contrast agents 

Currently all clinical gadolinium contrast agents used for T1 weighted imaging 

are based on either of the two following organic ligands. The first is based on 

diethylenetriamine derivatives, known as gadopentetic acid with the chemical formula 

(C14H18N3O10). This was used to create the first MRI contrast agent in 1988134 and these 

contrast agents form linear structures. Upon complexation with hydrated gadolinium ions, 

the ligand is very flexible and rapidly wraps around the Gd3+ ion and leaves only a single 

inner sphere water molecule. The complexation reaction is very quick and the stable 

product is formed in seconds.  

 The others are based on 1,4,7,7-tetraazacyclododecane-1,4,7,10-tetraacetic acid, 

which is commonly known as DOTA and has the formula (CH2CH2NCH2CO2H)4. This 

compound is a twelve membered tetraazamacrocyclic derivative and contrast agents 

formed from these are macrocyclic structures. When Gd3+ is complexed to the ligand 

there is an intermediate formed first with 4 to 5 water molecules remaining in the inner 

sphere, but this ligand is more rigid and thus takes much more time to form the final 

complex.  
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Another class of contrast agent are blood pool agents which are magnetic 

resonance angiography contrast agents. These agents reversibly bind with circulating 

albumin in the blood which affords them higher molecular weight and higher relaxivities 

due to shorter T1 relaxation times. Their primary advantage is that they don’t diffuse 

through the vascular system which allows them to stay in the blood for a longer period of 

time and allow for longer imaging windows, which in turn can result in better signal to 

noise ratio. One example of a FDA approved agent is known as Vasovist (or MS-325), 

which binds to human serum albumin and has been shown to effectively enhance blood 

vessels135.  

Both of these ligands have several chelating arms and have an octadentate 

orientation of the ligands as well as coordination numbers of 9 with Gd ions with the last 

coordination site being occupied by a single water molecule (q=1), which is vital for 

creating contrast. These contrast agents, although widespread in use and applications 

have a number of drawbacks. One of the main ones is that upon intravenous injection 

they tend to diffuse to the extravenous area due to their low molecular weight.  Another 

issue is that they are non-specific and are rapidly cleared via renal excretion. These 

contrast agents also have maximized relaxivities around 5 mM-1s-1 and require high 

dosages to have effective contrast.   A list of FDA approved contrast agents is presented 

in Table 1.6. 
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Trademark 
Name 

Active 
Component Structure R1 (mm-1s-

1) USage 

Dotarem Gd-DOTA Macrocyclic 4.2 Extracellular 

ProHance Gd-HP-DO3A Macrocyclic 4.4 Extracellular 

Gadavist Gd-BT-DO3A Macrocyclic 5.3 Extracellular 

MultiHance Gd-BOTPA Linear 6.7 Extracellular 

Optimark Gd-DTPA-BMEA Linear 5.2 Extracellular 

Magnevist Gd-DTPA Linear 4.3 Extracellular 

Omniscan Gd-DTPA-BMA Linear 4.6 Extracellular 

Vasovist MS-325 Linear 19 Blood-pool 

Primovist Gd-EOB-DTPA Linear 7.3 Liver 

Table 1.6. List of FDA approved MRI contrast agents. Also presented are their 

relaxivities (mM-1s-1) and location of action. 
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Figure 1.7. Structures of FDA approved MRI contrast agents.  

1.5.3. Protein Based MRI contrast agent CA1.CD2 

Due to the limitations with FDA approved MRI contrast agents much focus has 

been given to developing new and improved versions of contrast agents. Requirements 

for a contrast agent design are to create ligands that have high relaxivity values, low 

dosage requirements, display high affinity for gadolinium over physiological metals, 

present no toxicity issues, long retention times in the body which reduces the need for 

repeated dosage and finally the ability to be cleared through the bodies normal 

mechanisms. In order to design new contrast typically the factors that affect relaxivity (as 

discussed in section 1.) are altered with the most common being the number of hydrated 
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waters and the τR. Strategies that alter the τR are most commonly to conjugate chelating 

ligands to protein complexes, which has the effect of increasing molecular weight and 

subsequently relaxivity. An alternative method of designing MRI contrast agents was 

presented by Yang et al.136 which was to design a gadolinium binding domain directly 

into a protein host. This protein based MRI contrast agent was known as CA1.CD2 or as 

it is known now, ProCA1. The host protein scaffold was chosen to be domain 1 of rate 

CD2, which is a cell adhesion protein found on the surface of T-cells, which is part of the 

signal transduction pathway. Its structure is composed of 9 β-strands, which forms two 

layers and has a common immunoglobin fold137. This host was chosen due to a variety of 

features which include; wide range of stability across pH and salt concentrations, and is 

very resistant to mutations. The chelating ligand was designed into CD2 by addition of a 

group of carboxyl side chains from the differing β-sheets present as the following amino 

acid changes from the host CD2 sequence: E15, E56, D58, D62, D64. Further one 

position of the metal binding site was left open to allow for fast water exchange between 

the gadolinium bound to the ligand and the bulk water, leading to high relaxivity values 

(Figure 1-6).  

 

Figure 1.8. Structure of CA1.CD2 protein based MRI contrast agent. Reprinted with 

permission from 136. Copyright 2008 American Chemical Society.  
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Also the designed binding site has very little internal flexibility due to the design 

being from rigid stretches. The end result of this design is that the protein based MRI 

contrast agent CA1.CD2 exhibited a per gadolinium relaxivity of 117 mM-1s-1 which is 

20 fold greater than Gd-DTPA contrast agents. The τR was found to be ~10ns. Also this 

domain displayed very strong selectivity for Gd3+ over physiologic metals as well as no 

acute toxicity to cells with a Kd of 7.0 x 10-13 for Gd3+. Contrast was maintained in 

animal models for a prolonged period of time, which has the effect of using this contrast 

agent for long procedures without the need for repeated injections. Enhanced contrast to 

noise ratio was also achieved at a 35 lower dosage than Gd-DTPA. Finally the contrast 

agent was cleared through the kidneys.  

This domain has been modified extensively for enhancing its functionality. A 

HER-2 affibody138 was fused to the C-terminal of ProCA1 and the results showed that 

this construct was able to impart significant contrast enhancement on SKOV-3 tumors at 

a 100 fold lower dose. Also the targeted construct was able to cross the endothelial 

boundary and had an even tissue distribution with problem retention time in tumor 

models.  Another modification showed that by adding various sizes of PEG chains to the 

contrast agent the bio-distribution and blood retention times {157}}. These results taken 

as a whole show that the protein based MRI contrast agent ProCA1 is amenable to 

modification and maintains its excellent contrast agent properties through a variety of 

changes.  

1.6. Nanoparticle based MRI Contrast Agents 

Using MRI for accurate diagnosis of disease and as a biomarker is often 

challenging due to some of the limitations of the MRI modality.  One of the first issues is 
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that diseased tissues have similar T1 times to healthy tissues and thus the need for 

contrast agents to enhance signal differentiation. The use of nanoparticles as platforms 

for MRI contrast has opened up numerous avenues for future contrast agent design. Using 

a nanoparticle base that is less than 150 nm in size will allow for many different things to 

be loaded into the core or attached to the surface of the particles. Using Gd3+ loaded or 

chelated nanoparticles combined with targeting motifs can help to ensure that disease 

detection can be done in a quicker and more accurate manner, with a reduced dosage 

requirement and be a vehicle to overcome any limitations that exist with MRI for 

diagnostic applications. As discussed earlier a reduced molecular tumbling rate will result 

in an increased relaxivity, and one of the best ways to achieve that is to attach or 

conjugate the Gd chelating ligand to a nanoparticle host. When a nanoparticle is used as 

the base platform for MRI the following advantages are found139: 

1) Bio-distribution can be improved through surface modification or changing the 

nanoparticle composition 

2)  Relaxivity is increased due to a reduction of the tumbling rate 

3) The nanoparticles can be modified through the addition of targeting ligands or 

peptides 

4) The nanoparticles can have a large amount of gadolinium present in a small 

volume which will lead to a reduced dose required for contrast as well as 

reduction in possible toxic side effects due to free gadolinium  

1.6.1. Examples of nanoparticle MRI contrast agents 

There are a vast number of nanoparticle platforms available for the design of MRI 

contrast agents. The overall goal is to enhance the positive properties of the imaging 
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technique while not causing undue damage to the body. Factors that are important to 

consider with each class of nanoparticle are biocompatibility, relaxivity values, targeting 

properties and tenability of the response.  What follows is some examples of nanoparticle 

platforms used as MRI contrast agents.  

Liposomal Contrast Agents 

 Liposomes are defined as spherical vesicles composed of a bilayer of 

phospholipids that enclose a hydrophilic core and hydrophobic tails. Liposomes have 

many advantageous properties including biocompatibility, ease of production, prolonged 

stability, protection of cargo and their size can easily be controlled. However due to the 

need for water exchange in contrast agents, Gd chelators in the core of liposomes have 

limited success due to poor permeability140. To overcome this Gd chelators have been 

linked to the surface of the liposomes by linking them to the hydrophobic chains, which 

would put them on the outside after self-assembly. Kielar et al. synthesized liposomes 

with a DOTA complex functionalized with two hydrophobic chains to allow for self-

assembly141. The liposomes were prepared with PEGylation and their diameters were 

between 45-60nm with r1 values were between 17 and 40 mM-1s-1 at 25°C.   

Dendrimer Based Contrast Agents 

  Dendrimers are synthetic semi-biocompatible macromolecules that are well 

defined, hyperbranched and mono-disperse. They possess multiple free amino acids on 

their surface which leads to the ability to impart high surface functionality. Various 

families of dendrimers are used including polylysines, polypropyleneimines and 

polamidoamines (PAMAM). An easy way to characterize dendrimers is to count the 

number of tree branches that extend from the central core, known as generations. With 
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each increase of generation, molecular weight and particle diameter are increased, 

however this number can’t be greater than 10 due to solubility concerns142. Also the size 

of the dendrimer is directly related to the route of clearance, as increased size changes the 

route from kidney to liver and spleen. Huang et al.143 developed PAMAM Gd conjugates 

that were cross-linked to form clusters that contained biodegradable poly-disulfide 

linkages. This construct had an extended half-life of ~1.5 hour in animal models and high 

relaxivity of 11.7 mM-1s-1 per Gd3+.  

Iron Oxide Nanoparticles 

Superparamagnetic iron oxide nanoparticles (SPIONs) are contrast agents used in 

MRI for T2 weighted imaging by providing high quantities of r2 relaxivity. Images 

produced by SPIONs are negative contrast. SPIONs have an iron oxide core, which is 

usually magnetitie Fe3O4 or mehemite γ-Fe2O3 and a polymer coating. One of the major 

advantages that SPION have is that they have much larger magnetic moments compared 

to Gd3+.  Also they have many unique properties such as a large surface area, quantum 

effects and ease of modification through surface chemistry144.  There are generally two 

main classes first is SPIO and the second is ultra-small SPIO (USPIO). Size of size of 

SPION’s range from between 10-40 nm for USPIO and 40-150 nm for SPION, with 

mono-dispersity. Various surface modifications of SPION enhance their ability to be 

tailored at the nanoscale level while enhancing their bio-availability and limiting any 

potential in vivo toxicity potential. Examples of coatings for SPIONs include dextran145, 

chitosan146, PAMAM dendrimer147, PEG148 and PLGA149.   

Smejkalova et al. prepared a hyaluronan acid polymeric micelles encapsulating 

oleic acid coated SPIONs150. The micelles had a size of approximately 100 nm and were 
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able to be loaded with 1-2 wt% SPION. These constructs were able to cluster inside the 

core of the micelles with high r2 values at low concentrations. Further when injected into 

tumor cells the micelles accumulated and displayed contrast enhancement. The 

combination of micelles and SPION can provide powerful contrast agents, with the 

potential for multi-functionality.  

Micelle Based MRI Contrast nanoparticles 

 Micelles are amphiphillic spherical structures composed of hydrophobic chains 

and hydrophilic head groups that form in a core-shell manner. They are widely used due 

to the fact that they are easily prepared, can form uniform size structures, are easily 

tunable using a variety of methods and are generally biocompatible151. Responsive 

behavior is one of the most attractive features of using micelles as contrast agents, and 

polymers such Poly(N-isopropylacrylamidee)152 or PNIPA and Elastin-like polypeptides 

(ELPs) make attractive candidates for these carriers. The composition of the hydrophobic 

tail, size and charge of the hydrophilic headgroups and the conditions used to promote 

self-assembly determine the size, morphology and the surface properties of the micelles. 

Typically micelles for nanoparticle contrast agents are synthesized by binding the Gd 

chelating agent to the polymer prior to formation and designed in such a way that during 

self-assembly the contrast agent is located on the hydrophilic heads of the micelle so it is 

accessible. Due to this formation water exchange between the chelators and the bulk 

water is not an issue. Another advantage of this formation process is the macromolecular 

structure formed in this assembly is extremely rigid. The combination of the high 

molecular weight which reduces molecular tumbling rate and the ridged structure 
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increases rotational correlation time, both serve to help increase the relaxivity of the 

constructs.  

An example of a micelle based contrast agent used as a blood pool agent come 

from Grogna et al.153. Micellar contrast agents were developed by forming 

poly(ethyleneoxide)-b-poly(ε-caprolactone) (PEO-b-PCL) with PEG stealth and a Gd-

DTPA contrast agent combination. This construct formed micelles between 14-40 nm 

with relaxivities of 12 mM-1s-1 which is 3 times higher than Gd-DTPA alone. Further the 

PEG allowed the construct to remain in circulation longer than free Gd-DTPA, which 

makes it a good candidate for a blood pool agent. Jeong et al154 synthesized 

Biocompatible poly-[N-(2-hydroxyethyl)-D, L-aspartamide]- 

methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C-16) conjugated with 

1,4,7,10-tetraazacyclododecan- 1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) for use 

as micelle based contrast agents. These micelles had higher relaxivity values than 

Omniscan and prolonged circulation time and contrast enhancement in rabbit liver 

models demonstrating potential for use as a liver disease detection platform.  

Shiraishi et al.155 synthesized macromolecular magnetic resonance imaging (MRI) 

contrast agents that were composed of poly(ethylene glycol)-b-poly(L-lysine) block 

copolymer (PEG-P(Lys)) chelated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-

tetraacetic acid (DOTA) to create Gd-DOTA micelle contrast agents. These are an 

example of using oppositely charged blocks that became neutral upon mixing. When the 

charge changed in solution, there was a noticeable change in the relaxivity of the 

constructs. Overall the constructs displayed high relaxivity values and enhanced tumor 

contrast in animal models. Kim et al.156 recently developed a pH responsive micelle 
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contrast agent that demonstrated enhanced activity upon a change of pH in solution. 

Amphiphillic block co-polymers were synthesized out of methoxy poly(ethylene glycol)-

b-poly(L-histidine)(PEG-p(L-His)) and methoxy poly(ethylene glycol)b-poly(L-lactic 

acid)-dietheylenetriaminopentaacetic acid dianhydrdide-gadolinium chelate (PEG-p(L-

LA)-DTPA-Gd). At physiological pH the micelles have a spherical shape of ~40nm and 

r1 value of 8.56 mM-1s-1. When the pH drops to an acidic value of 6.5, which is 

representative of the intertumoral environment, the micelles dissociate into positively 

charge water soluble polymers with an increase of the r1 value to 12 mM-1s-1. These 

results were confirmed through positive contrast enhancement in tumor bearing mice. 

These two studies show the flexibility of using the micelle platform for contrast agents, 

with both demonstrating multifold enhancement in relaxivity compared to free 

gadolinium, as well as the ability to impart responsive behavior.  
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Figure 1.9.  Scheme of pH responsive micelle based MRI contrast agents. As the pH 

drops the micelles dissociate leading to an enhancement of MRI signal. Reprinted with 

permission from 156. Copyright 2014 

1.7. Examples of micelle based theranostic systems  

For the purposes of applicability to the system being presented in this work, this 

section will focus on examples of micelle based theranostic multi-functional 

nanoparticles. Liu et al. developed a novel micelle that was a pH sensitive β-cyclodextrin 

star copolymer functionalized with folic acid for active targeting, DOTA for Gd imaging 

and loaded with doxorubicin157(Figure 1.8).  This system underwent a process of self-

assembly into ~26 nm micelles at pH 7.4 and had an in vitro doxorubicin release profile 
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that decreased with decreasing pH, accompanied by disintegration of the micelles. The 

system displayed effective ability to undergo endocytosis and provide cytotoxicity to 

HeLa cells and had a T1 relaxivity of 11.4 mM-1s-1. When incubated into tumor positive 

rats, there was a large amount of accumulation of the particles into the liver and kidney of 

the mice, and positive contrast enhancement in the organs. Overall, this system is a 

powerful example of how powerful micelle based theranostics can be.   

 

Figure 1.10. Self-assembling micelle for theranostic applications. Reprinted with 

permission from reference157. Copyright 2012 Elsevier.   

Another example of a micelle based theranostic formulation was developed by 

Rowe et al.158. These micelles were composed of poly(N-isopropylacrylamide)-co-

poly(N-acryloxysuccinimide)-co-poly(fluorescein O-methacrylate), functionalized with 

an RGD targeting peptide and loaded with methotrexate. These particles were shown to 
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be biocompatible, provide active targeting, imaging capabilities with a T1 relaxivity of 

33.4 mM-1s-1 and cytotoxic effects comparable to the free drug.  

Yongjun at al. recently developed a system for combined MRI and treatment of 

hecpatocellular carcinoma159. This system was composed of PLA-PEG-PLL-DTPA, with 

the DTPA being used to bind gadolinium ions. Paclitaxel was encapsulated into the cores 

of the micelles and biotinylated alpha-fetoprotein antibodies were linked to the micelle 

surface. The particles demonstrated uniform size, positive zeta potential and high 

encapsulation efficiency as well as a T1 relaxivity of 21.6 mM-1s-1 and superior cytoxicity 

to controls. These examples show that using micelles for theranostic applications allows 

for a level of superior control over size, shape, release properties and tunable properties.  

1.8. Elastin-like Polypeptides as multifunctional nanoparticle systems  

From the previous sections it is clear that the following properties are desirable in 

choosing a material to use as the base for multifunctional nanoparticle design:  

1) Biocompatibility and ability to be cleared by the body’s normal mechanisms 

2) Control over size, charge, physical properties and assembly mechanism 

3) Ability to store, protect and release cargo 

4) Ease of modification to include targeting ligands, stealth properties or attachment 

of functional groups 

5) Ability to impart responsive behavior to tune response of the nanoparticle  

One material that allows for all of these desirable properties to be met is a class of 

responsive bio-polymers known as elastin-like polypeptides (ELPs). These responsive 

biopolymers are derived from repetitive hydrophobic human tropo-elastin160. ELPs 
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consist of a repeated sequence of amino acids (GVGXP)n, with the X position being 

occupied by any of the 20 amino acids except proline161 and n being the number of 

pentapeptide repeats. One of the most critical and important features of ELPs, especially 

as it relates to developing multifunctional nanoparticle systems is the temperature 

responsive behavior these systems are known to exhibit. This behavior is a 

thermodynamic inverse phase transition in solution at a specific temperature known as 

the transition temperature (Tt). Below this temperature ELPs exist as soluble protein 

chains in solution while above this temperature ELPs are insoluble and eventually form a 

protein rich phase known as a coacervate. The Tt can be described as a lower critical 

solution temperature (LCST) and the process is rapid and entirely reversible. Besides 

temperature, other stimuli can trigger the Tt including solutes162, pH163 and light164.  

The use of ELPs has been rather wide spread mainly due to the fact that the 

behavior of the proteins can be tuned to specific stimuli. In ELP design the Tt can be 

specifically controlled through design of the system. The concentration of protein, length 

of protein chains, molecular weight of the ELP and nature of the guest residue can all be 

controlled to alter the Tt. Salt has a distinct effect on Tt and follows the Hoffmeister 

series primarily to salt out or reduce the Tt
165 and is also dependent on the concentration 

of the salt. Molecular weight of the ELP, which is primarily a function of chain length, is 

inversely proportional to the Tt, so when the molecular weight of the system is increased 

the Tt will decrease166. Also the concentration of the protein follows the same pattern, 

such that more highly concentrated ELP solutions will have a lower Tt {209}}. When 

ELPs are designed with specific guest residues that are sensitive to pH, changes in the pH 

can also alter the Tt
167. Besides, pH guest residue substitution can alter the 
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hydrophobicity and hydrophillicity of the system which have dramatic effects on Tt. 

Substituting guest resides with side chains amiable to functionalization allows for 

conjugation of various entities to ELPs. With the ease of synthesis due to molecular 

biology techniques used and the 19 available substitution partners, the number of 

combinations possible to design a system to meet a specific Tt or Tt stimulus is endless. 

These combination of factors allow the ELP to be designed to meet specific needs of 

design for any number of conditions. As mentioned earlier for the design of 

multifunctional nanoparticle systems a number of requirements must be met. What 

follows is a breakdown of how ELPs are a suitable candidate. 

1) Biocompatiblity:  The first requirement is biocompatibility and normal 

clearance ability. ELPs are considered to be generally biocompatible while inducing 

minimal inflammatory response and immune effects through numerous studies in animal 

models168. Crosslinked ELP materials were implanted in 18 rabbits and their immune 

response measured at various time points168. It was found that the implants were 

completely biocompatible with no immune response or inflammation and was stable for a 

6 week period. Studies on the degradation properties of ELPs have also been undertaken. 

Due to the organic, entirely amino acid based composition of ELPs, it has been thought 

that degradation should proceed without issue to break them down into individual amino 

acids to be cleared through the body. Numerous studies have been performed to support 

that assumption and show that ELPs are degraded by the body in a normal fashion169. It 

was found that ELPs of 59.4 kDa degraded at a rate of 2.5 wt%/day after intravenous 

administration, which means the ELP will not degrade too rapidly to deliver cargo, but 

will eventually be degraded for full removal.   
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2) Control over nanoparticle formation and properties: The second requirement 

is to be able to control the size, shape, charge and other physical properties of the 

nanoparticles. ELP nanoparticles are designed entirely at the gene level through the use 

of molecular biology techniques. This gives a level of complete control over the factors 

mentioned above. ELP nanoparticles are synthesized in many different fashions. The first 

and most prevalent way to self-assemble ELP nanoparticles is through the use of block 

co-polymers composed of alternating hydrophobic and hydrophilic blocks. Below the Tt 

these structures exist as soluble monomers while above the Tt the hydrophobic segments 

of the ELP become dehydrated and drives the structure into micelle self-assembly. These 

self-assembled micelle are composed of this hydrophobic segment as the core, with the 

hydrophilic segment staying hydrated and forms the micelle corona170. Variations in the 

ratios of blocks, as well as altering the Tt of the individual blocks has been found to 

influence the size and shape of the self-assembled micelles.  

Another method to form ELP nanoparticles is to fuse a hydrophobic entity to one 

end of the ELP. This was first displayed with a hydrophilic segment with attached 

doxorubicin through a conjugation site at the C terminal171. This construct formed stable 

40nm particles that were driven by the number of doxorubicin molecules attached and 

proved to exhibit success as a drug carrier in mouse models. This method is driven by the 

hydrophobicity of whatever is attached to the system. A study was undertaken to 

determine how the LogD of the molecules attached affected nanoparticle self-assembly172 

and it was found that a value of less than 1.5 did not induce formation and a value greater 

than 1.5 does. Therefore the efficacy of the system can be pre-determined by the 

hydrophobicity of the drug.  
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Utilization of the protein rich coacervate phase can also form ELP nanoparticles 

that serve as stable drug depots for large periods of time. The sequence GVGAP was 

utilized to form a coacervate into slightly larger nanoparticles, however when loaded with 

bone morphogenic proteins there was a delayed release lasting 14 days173. This shows 

how changing the guest residue changes the nature and characteristics of the particle 

formed.  

Cross-linking of ELP nanoparticles is another way to control the nanoparticles, 

through stabilization of the structure. Numerous methods have been used to achieve this 

including chemical174, photo induced175 and enzyme induced176 are available to 

demonstrate the wide ranges of options available. The degree of cross-linking and density 

are related directly to ELP design, which can be controlled through amino acid 

substitution either by the site of crosslinking or the number of crosslinking residues 

present in the gene. One example of sequence specific crosslinking of ELP comes from 

Chung et al.177 where tetrakis(hydroxymethyl) phosphonium chloride (THPC) as a 

covalent crosslinking agent to react with primary and secondary amines. It was found that 

lysine provided the best crosslink efficiency in the presence of THPC acid, and thus the 

ELP was designed to have specific reaction sites. This study demonstrated this chemical 

as a sequence specific enhancer of hydrogel properties and also showed cytocompatiblity. 

Lim et al. demonstrated the same principle with THPP acid as well178. Glutaraldehyde 

used as the crosslinking agent was also achieved in a sequence specific manner by 

Benitez et al.179.  This ELP was designed again with lysine reactive sites and it was found 

that after crosslinking of the fibers the sequence specificity of the gene design preserved 

the position of the targeting residues and provided stable native like mechanics. The 
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process proceeded in a two-step manner, with the first being a vapor phase initiation in 

glutaraldehyde followed by a quenching step in concentrated sodium chloride buffer 

without any glutaraldehyde to complete the reaction.  

3) Ability to store and release drug: ELPs are excellent materials to be used as 

drug delivery vehicles. The first generation of ELP drug delivery vehicles centered on 

exploiting the thermal behavior of the proteins as a triggering mechanism for release. The 

idea is to use targeted hypothermia to heat a tumor (40-44°C) to cause the ELP to localize 

and aggregate at the site of interest using techniques such as ultrasound. The ELP can be 

designed to have a Tt between body temperature and the heating temperature180 which 

will enhance this aggregation behavior. Dreher et al. demonstrated the efficacy of this 

method through the use of temperature cycling the system181. When the ELP aggregates 

in the tumor vasculature due to focused hypothermia, the local concentration of ELP is 

increased, and when that temperature is removed the aggregates dissolve into the tumor. 

This cycling caused the effect of creating a concentration gradient that drove the ELP into 

the extravascular space of the tumor. Further this cycling cause an increase in the rate of 

extravasation into the tumor space. This method provides an excellent way of using ELP 

as delivery vehicles through the use of passive targeting. This method has been proven to 

also enhance delivery of therapeutic loaded ELP nanoparticles. Doxorubicin loaded ELPs 

through hypothermia enhanced methods have been shown to have in vivo efficacy against 

tumor models, with prolonged circulation time, enhanced drug accumulation in the tumor 

and dose reduction182.  

ELPs are also capable of presenting a dual way of storing therapeutic cargo, with 

both encapsulation in the micelle core and therapeutic bound to the surface functionalized 
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corona of the micelles183. This sample demonstrated a dual mode drug release pattern 

with a burst release stage with a half-life of 1.9 hours of the encapsulated drug while the 

drug that was bound to the functionalized surface displayed a half-life of 57.8 hours. In 

vivo efficacy was also shown through a reduction in size of tumor growth in animal 

models as well as a reduction in toxicity as compared to the free drug.  

4) Functionalization with targeting ligands: One advantage of the method of 

constructing ELP multifunctional nanoparticle systems is the ease of which 

functionalities can be added to the system. Through the use of molecular biology any 

number of targeting ligands can be added in a seamless fashion. One peptide that was 

used to demonstrate enhanced uptake of ELPs is known as cell penetrating peptides 

(CPP), which are non-specific and promote endocytosis. The addition of the SYN-B1 

penetrating peptide to an ELP-paclitaxel conjugate that contained an acid sensitive linker 

was demonstrated by Moktan et al.184. This system was able to inhibit cell proliferation in 

a paclitaxel resistant cell line.  

Active targeting peptide mechanisms have also been investigated. Simick et al. 

used the RGD peptide to target the αvβ3 integrin to demonstrate the combination of 

focused thermal targeting and high-avidity of targeting ELP nanoparticles185. This system 

showed a 14 fold increase cellular uptake compared to non-targeted ELPs as well as 

greater uptake in the micelle form compared to unimer form. Self-assembling micelles 

from block copolymers decorated with NGR tri-peptide ligand were developed as well to 

further demonstrate active targeting of ELPs186. Self-assembly of the micelles enhanced 

the availability of the NGR peptide to selectively targeted tumor vasculature in vivo 

along with greater retention and extravascular accumulation.  Hassouneh et al. showed 
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multivalent effects of using fibronectin type III domain as a targeting mechanism to the 

integrin187 in combination with thioredoxin. The fibronectin type III domain is a 10 kDa 

100 amino acid long protein domain that after attachment to the C terminus of ELPs did 

not disrupt the formation of micelles, which existed between 24 and 37 nm diameter.  

This system again enhanced cellular uptake and binding in cells that over express the αvβ3 

integrin when the temperature was above the critical micelle temperature.  

5) Design the nanoparticle to have responsive behavior: One of the most 

attractive feature of ELPs as a class of proteins is the responsive behavior that they are 

known for. The stimuli responsive nature of the Tt mechanics can be driven by be 

triggered by a number of stimuli other than temperature including light164, pH167 or 

solution conditions. In order to change the nature of the stimulus usually, the most 

common method is to change the guest residue in the GVGXP sequence. For instance a 

model was developed to quantify the Tt as a function of pH, with one group being 

stimulated in highly basic conditions and the other in highly acidic conditions188. Using 

this knowledge a pH responsive ELP micelle system was developed by Callahan et al.189. 

 Another example of using the triggered response of ELP for in vivo drug delivery 

applications comes from Hassouneh et al who developed a system that formed spherical 

micelles in the range of 50 nm in the presence of calcium190. A calcium binding sequence 

was inserted into ELP block copolymers that were calcium insensitive, such that when 

calcium was present in the system in the range of 50-500 mM it drove assembly. This 

study was motivated by the large difference in calcium concentrations between the 

intracellular and extracellular spaces.    
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 Thus it is clear that ELPs offer numerous advantages that make them desirable 

candidates for use as multifunctional nanoparticle systems. Further there are numerous 

examples of ways to create these systems and how to exploit the advantages offered by 

ELPs.  

1.8.1. Alternative approaches to modify ELPs 

Our labs approach to making new ELP constructs was not based on methods that 

have been reported before. Stemming from the theory of ELP transition behavior new 

constructs were designed. It is thought that as ELPs go through their thermal transition 

behavior they move from a random coil state, to three associated chains that then take on 

the form of type II β-turns. Once an appropriate concentration of β-turns exists in solution 

they assembled into β-spirals that are stabilized by internal hydrophobic contacts. As 

more water is removed from the system they take on the form of fibers, which are 

composed of long triple stranded β-spirals. Eventually if held above Tt long enough these 

triple stranded ELPs settle into an aggregated phase separated system. This process of 

dehydration, folding and aggregation (Figure 1-10) is completely reversible and mediated 

by chain length, concentration and solution properties.  

 

Figure 1.11. Representation of the ELP Tt mechanism as the temperature is raised.  
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In an attempt to influence the rate at which this transition process occurred an 

oligomerization domain known as foldon191, a 27 amino acid globular domain located on 

the C terminus of T4 fibritin, was attached to the C terminus of ELPs of varying length. 

This oligomerization domain is a natural trimerizing domain, that has been shown to 

stabilize collagen triple helices as well as reduce their concentration dependence192. 

When attached to ELPs foldon was found to reduce the Tt of ELP constructs over a range 

of chain lengths, ELP concentration and solution conditions as compared to linear 

structures, which was the basis of my thesis work.  

Further investigation of the ELP-foldon construct showed that at low salt and high 

pH conditions above the Tt, this system self-assembles into spherical micelles193. These 

micelles ranged in size from 25 to 30 nm in salt conditions less than 15 mM. As the salt 

concentration increased between 15 and 45 mM, the size of the particles increases to a 

diameter of 60-65 nm. Beyond a salt concentration of 45 mM the constructs aggregate 

and fall out of solution, the range of particle size is represented in Figure 1-11.  

 

 

Figure 1.12. Schematic of ELP-foldon micelle formation b) representation of particle 

size as a function of salt concentration. 3 distinct regions are found.  

a 
b 
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The formation of these micelles can be described in the following ways. The 

foldon domain carries a net negative charge and acts as a hydrophilic head group in this 

system. When the Tt is passed the hydrophobic chains separate into the interior of the 

micelle while the foldon domain forms the corona of the micelle. The effect of salt on the 

micelles can be explained by the fact that as the salt increases the size of the foldon 

domain becomes smaller while the length of the ELP chains in the core increases. This is 

supported by a large increase in molecular weight as the salt increases to the second 

regime194. The pH of the solution must be kept high to allow for micelle self-assembly 

due to the fact that at pH above 9.6 it is above the pKa of N-terminal amines. At pH 

values below the pKa there is a net charge on the ELP core, which prevents micelle 

formation. Also below these pKa values there are end charges which prevent the arms 

from folding together, thus extending the chains further and disrupting particle formation. 

Further it was found that as the salt increased the micelles changed from a spherical 

shape to a cylindrical shape. These studies have shown our labs ability to create self-

assembling micelles, wherein the size and shape can be controlled by changing the 

parameters of the environment.   

 

 1.9. Scope of the Project  

The scope of this dissertation is to use elastin-like polypeptides as the basis for 

creating a multifunctional theranostic nanoparticle system. To create a theranostic system 

a step-wise approach was undertaken. The first step was to add a imaging modality to the 

base (GVGVP)40-foldon nanoparticle system that we have fully designed, developed, and 

characterized. The protein based MRI contrast agent CA1.CD2 was chosen as the fusion 
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partner for a number of reasons. These include the fact that it is entirely protein based, 

has a similar protein structure, has defined hydrophilic character, and is amenable to 

alteration and resistant to change in solution. The first part of this work discusses the 

process of fusion of this domain to ELP-foldon using molecular biology techniques, 

followed by its expression and purification, as discussed in chapter II. After the 

successful fusion of the protein, the activity of both components was investigated and 

both domains retained their individual properties. This showed the fusion of these two 

components created a successful nanoparticle based MRI contrast agent that displayed 

higher relaxivity values on a per Gd3+ basis than clinical MRI contrast agents and 

displayed temperature responsive behavior, as discussed in chapter III.  

The next step in creating the theranostic system was to introduce targeting ligands for 

site-specific localization of the contrast agent and particles, as discussed in chapter IV. 

Gastrin release peptide was chosen as the targeting peptide for this part of the study. 

Once this was incorporated the new ELP was characterized as well as its MRI activity to 

compare to non-targeted versions. To demonstrate the efficacy of the targeting peptide, 

three cancer cell lines were chosen with varying levels of receptor expression. After 

incubation of the targeted protein with cancer cells specific targeting and cellular 

localization was demonstrated using fluorescent microscopy and MRI. The final step was 

to demonstrate the ability to load therapeutic into the core of the nanoparticles and 

characterize the release properties as well as the cytotoxic effects of the constructs. 

 The final chapter discusses efforts made to modify the molecular architecture of the 

construct through substitution of different chain lengths as well modification of the guest 
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residues. Finally there are recommendations as to how to improve the construct for future 

use to overcome some of the limitations present.  

 This system displays and demonstrates many of the desirable feature of ELPs 

including 1) general biocompatibility 2) control over size shape and charge of particles 3) 

ability to store and release a therapeutic cargo 4) simple method to modify the system to 

include various functionalities 5) responsive behavior. Taken as a whole these steps 

represent the construction of fully protein based responsive nanoparticle for use in 

theranostic applications.   

 

Figure: 1.13. ELP-foldon nanoparticle formation. Schematic showing how ELP-foldon-

CA1.CD2 undergoes nanoparticle formation.  
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CHAPTER II 

DESIGN, SYNTHESIS, EXPRESSION AND CHARACTERIZATION OF 

PROTEINS 

2.1. Introduction 

The scope of this work is to use elastin-like polypeptides as the basis for creating 

a multifunctional theranostic nanoparticle system (Figure 2.1). To create a theranostic 

system a step-wise approach was undertaken with the first step being the design of the 

system. Following this is a detailed explanation of the expression and purification 

methods as well as their relative levels of success. After this, an explanation of the 

characterization methods used to test protein purity and activity, gadolinium binding 

levels, and therapeutic protein interactions. Finally detailed explanations of cell culture 

protocols and images are presented. A summary of the constructs created and their 

properties can be found in Table 2.1.  
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Figure 2.1. Final theranostic nanoparticle form. Schematic of final nanoparticle product 

produced from individual components used in this study.  
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Construct Name Sequence Molecular 
Weight (kDa) 

Tt 25 µM 
PBS (°C) 

ELP-IMG MGH(GVGVP)40-foldon-CA1.CD2 31.2 31.7 

ELP-SPACER-IMG MGH(GVGVP)40-SPACER-foldon-
CA1.CD2 

33.4 31.5 

E-ELP-SPACER-
IMG 

MGHGVGVPGEVGVP(GVGVP)4

1-SPACER-foldon-CA1.CD2 
34.2 30.8 

10ELP-IMG MGH(GVGVP)10-CA1.CD2 15.9 >70 

20ELP-IMG MGH(GVGVP)20-CA1.CD2 19.6 52.5 

40ELP-IMG MGH(GVGVP)40-CA1.CD2 28.3 40.5 

40c20ELP-IMG MGHGVGVP41GCGVP(GVGVP)2

1-CA1.CD2 
36.4 28.3 

ELP-NS-THO MGH(GVGVP)40-foldon-
CA1.CD2-GRP 

32.4 31.4 

ELP-THO MGH(GVGVP)40-foldon-
CA1.CD2-SPACER-GRP 

35.3 30.7 

Table 2.1.  Summary of the constructs created in this study. Presented are their respective 

molecular weights and transition temperatures (Tt).  

2.2. Use of molecular biology to design new protein constructs  

The design and synthesis of protein based polymers and other protein constructs 

requires the use of various molecular biology techniques. Through years of research I 

have acquired extensive experience making ELP genes of varying length, composition, 

and with various fusion proteins present utilizing these techniques. What follows is a 

brief explanation of some of the underlying principles used in the synthesis of the 

constructs used in this study.  

The basic process of DNA cloning is the primary mechanism used to synthesize 

the constructs used in this study, wherein a large number of identical DNA molecules are 



	 69	

prepared. The key to utilizing this process is to have the DNA fragment in a vector that 

can replicate within a host cell. This recombinant DNA, which consists of the vector plus 

inserted DNA fragment, is placed in the host cell (E.coli.) it can replicate and generate a 

large number of copies.  

In order to isolate specific sequences of DNA that constitute specific genes, the 

sequence must be able to be cleaved at distinct locations in its genome. This is achieved 

with the process of restriction enzyme digestion, which allows DNA molecules to be cut 

into small fragments. Restriction enzymes recognize specific sequences of base pairs that 

are typically 4 to 8 base pairs in length and called restriction sites. Upon recognition the 

enzymes will cleave both strands of DNA at this site and can leave staggered cuts (Figure 

2.2). These cuts generate single stranded fragments at both tails, which are 

complimentary to those on fragments generated by the same restriction enzyme. These 

single stranded regions are called sticky ends and will base pair with those on the other 

DNA fragments with the same restriction enzyme site. These cut DNA fragments can 

then be inserted into vector DNA with the aid of enzyme ligases that covalently link the 

cut DNA fragment into a vector DNA with complimentary sticky ends. The process of 

linkage comes via a 3’ to 5’ phospho-diester bond between the 3’ hydroxyl end of one 

restriction enzyme fragment and the 5’ phosphate end of the other fragment. When DNA 

ligase supplemented with ATP is added to a reaction containing restriction enzyme 

digested fragments with compatible sticky ends, the pieces are covalently ligated 

together.   
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Figure 2.2.  Restriction enzyme digestion producing sticky ends. 

Now the fragment of interest is located within bacterial plasmid DNA. These 

plasmids are used as cloning vectors and are closed circular molecules of double stranded 

DNA that range in size from 1-200 kb and are capable of autonomous replication in a 

cell195. The most commonly used plasmids in recombinant DNA techniques are able to 

replicate in Escherichia coli (E. coli). One such vector is the one used in this study, 

pET20b, a common expression vector that contains the following sections: a replication 

origin, a drug resistant gene and a region where DNA fragments can be inserted (Figure 

2.3).  

 

Figure 2.3. pET20b vector map. Highlighted replication region, insertion region and 

antibiotic resistant region.  
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The replication origin is a specific DNA sequence of 50-100 base pairs present in 

plasmids which replication of the DNA to be inserted is initiated. Once the DNA 

replication is initiated it continues around the circular plasmid regardless of the DNA 

sequence and thus any DNA inserted is replicated along with the plasmid DNA. The 

antibiotic resistant region in the plasmid encodes the enzyme β-lactamase, which gives 

antibiotic resistance, in this case ampicillin, to bacteria carrying them. The presences of 

these antibiotic resistant genes on plasmids allow isolation of bacteria containing the 

plasmid from those that do not by growing them on agar plates containing ampicillin 

where they survive and form colonies.  

 The process of transformation allows foreign DNA to be inserted into a cell. 

When E.coli cells are mixed with recombinant DNA a small fraction of the cells will take 

up the plasmid DNA. In order to facilitate this process the cells must be made competent 

through the use of “competent cells” containing Calcium chloride (CaCl2). The CaCl2 

ions neutralize the repulsion between the cell membranes and the DNA. After heat 

shocking the competent cells a thermal gradient is created that allows the DNA to enter 

the cells.  Placing the transformed mixture of cells on agar plates containing ampicillin, 

only cells containing the drug resistant gene in the plasmid will survive while those that 

do not take up the plasmid will die. Thus DNA fragments to be cloned can be inserted 

into plasmid vectors containing an ampicillin resistant gene. When this mixture of 

plasmid, E.coli and competent cells undergoes the transformation process the resulting 

cells contain the same inserted sequence of DNA but multiplied into many copies (Figure 

2.4).  
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Figure 2.4. DNA cloning process. 

2.3. Synthesis of ELP CA1.CD2 fusion protein  

The base structure for these studies is (GVGVP)40-foldon (Figure 2.5) and the 

gene encoding the ELP-foldon structure was synthesized as reported193. The amino acid 

structure for the foldon domain is GYIPEAPRDGQAYVRKDGEWVLLSTFL191 and is 3 

kDa in weight.   



	 73	

 

Figure 2.5. GVGVP40-Foldon Micelle. Representation of three-armed star micelle 

formed by GVGVP40-foldon. 

To complete this work this all structures had to have an imaging domain fused to the 

ELP-foldon, which in this case is the 99 amino acid CA1.CD2 protein based MRI 

contrast agent136. This protein domain is encoded by the following amino acid sequence:  

RDSGTVWGALGHGIELNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGAFEIDANG

DLDIKNLTRDDSGTYNVTVYSTNGTRILDKALDLRILE 

A schematic representation of the design of the design of ELP-foldon + imaging domain 

structure is presented in Figure 2.6.  
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Figure 2.6. GVGVP40-foldon CA1.CD2 micelle. Representation of three-armed star 

micelle formed by the fusion of GVGVP40-foldon and the CA1.CD2 protein domain.  

To utilize this domain with the base structure of ELP-foldon and to use the molecular 

biology techniques compatible with my previous work there were three main 

requirements:  

1) Encode as a single domain that would be able to be ligated into a GVGVP40-

foldon vector  

2) Contain recognition sites for NdeI, PflmI and BglI restriction enzymes with 

correct sticky ends 

3) Contain no internal recognition sites for these restriction enzymes ensuring no 

digestion takes place internally 

The first step was to create a series of overlapping oligonucleotides196(Figure 2.7), which 

would encode the 99 amino acid CA1.CD2 domain and provide the necessary enzyme 

digestion sites to fulfill the requirements.  
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Figure 2.7. Alignment of designed oligonucleotides. Representation of the alignment of 

the oligonucleotides used to encode the CA1.CD2 gene 

DNA Sequence Oligo Name 

CGTGACTCTGGTACCGTTTGGGGTGCGCTGGGTCACGGTATCGAACTGAACAT Gad1 

CCCGAACTTCCAGATGACCG Gad1b 

ACGACATCGACGAAGTTCGTTGGGAACGTGGTTCTACTCTGGTTGCGGAATTT Gad2 

AAACGTAAAATGAAACCGTT Gad2b 

CCTGAAATCTGGTGCGTTCGAAATCGACGCGAACGGTGACCTGGACATCAAAAACC Gad3 

TGACCCGTGACGACTCTGGT Gad3b 

ACCTACAACGTTACCGTTTACTCTACCAACGGTACCCGTATCCTGGACAAAGCGCT Gad4 

GGACCTGCGTATCCTGGAA Gad4b 

TTCCAGGATACGCAGGTCCAGCGCTTTGTCCAGGATA Gad5 

CGGGTACCGTTGGTAGAGTA Gad5b 

AACGGTAACGTTGTAGGTACCAGAGTCGTCACGGGTCAGGTTTTTGATGTCCAGGT Gad6 

CACCGTTCGCGTCGATTTCG Gad6b 

AACGCACCAGATTTCAGGAACGGTTTCATTTTACGTTTAAATTCCGCAACCAGAGT Gad7 

AGAACCACGTTCCCAAC Gad7b 

GAACTTCGTCGATGTCGTCGGTCATCTGGAAGTTCGGGATGTTCAGTTCGATACCG Gad8 

TGACCCAGCGCACCCCAAACGGTACCAGAGTCACG Gad8b 

AATTTACATATGGGCCACGGCGTGGGTCGTGACTCTGGTACCGTTTGG GadN Primer 

ATTTATGGCCGGCCCGGCCTCATTATTCCAGGATACGCAGGTCCAG GadC Primer 

Table 2.2. Oligonucleotides used to encode the CA1.CD2 gene.  
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When the oligonucleotides are assembled and the sequence checked, they encode 

the correct amino acid sequence. Further inserting the sequence into the New England 

BioLabs “cutter tool” allows for the visualization and location of the restriction enzyme 

sites that are present. Assembly of these oligonucleotides to prepare them for insertion 

into a compatible pET20b vector required five steps. The first step in the process is to 

mix each of the 16 oligonucleotides, excluding the N-terminal and C-terminal primers, 

together in equi-molar ratios of 10 pmol. This was followed by phosphorylation with T4 

poly-nucleotide kinase (New England Biolabs). T4 PNK is used to catalyze the transfer 

and exchange of the phosphate from ATP to the free hydroxyl end of the 5’ RNA. To 

utilized T4 PNK combine 160 pmol of DNA (approximately 25µl) with 5µl 10x reaction 

buffer, 5µl 1x T4 DNA ligase, 1µl T4 PNK and 14 µl nuclease free water. This mixture 

was incubated at 37°C for 30 in a water bath. Following this the reaction was heat 

inactivated at 65 °C for 20 minutes. Thermo-annealing then took place using a thermo-

cycler (Thermo-Scientific PCRSprint). The annealing procedure was a process of heating 

to 95 °C. This annealed product was then run on agarose gel, extracted, and purified 

using a gel extraction kit (Qiagen). This product was annealed together after this using 

E.coli DNA ligase (New England BioLabs), which is used to catalyze the formation of 

phospho-diester bonds between 5’ phosphate and 3’ hydroxyl termini in DNA with 

cohesive ends. The E. coli DNA ligase reaction was composed of 21 µl of DNA from 

step 3, 21 µl of E. coli ligase buffer and 2 µl E. coli ligase. The mixture was held at 16 °C 

for 30 minutes, followed by heat inactivation by incubating at 65 °C for 20 minutes. 

Finally, the resulting annealed DNA is used as the template DNA in a 100 µl PCR 

reaction involving the N-terminal and C-terminal primers shown in Table 1. The reaction 
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was composed of 5 µl of the ligated product from previous step, 5 µl forward primer 

(Gad N primer), 5 µl reverse primer (Gad C primer), 50 µl of PCR master mix and 35 µl 

nuclease free water. PCR reaction took place and the end product was the final gene. 

At this point the CA1.CD2 gene was fully constructed and compatible with our 

labs molecular biology methods. This DNA was digested with the two restriction 

enzymes NdeI and BglI to allow it to be inserted into a pET20b vector (Novagen), which 

contained complimentary sticky ends from an enzyme digestion with NdeI and SfiI 

restriction enzymes. The procedures for these reactions are as follows. In a 40 µl reaction 

I combined 15 µl of DNA template, 4 µl of buffer 4, .4 µl of BSA, 2 µl of NdeI, 2 µl of 

SfiI and 16.6 µl of nuclease free water. The reaction was then incubated for 3 hours at 

37°C and followed by agarose gel running and purification. For a NdeI and BglI 

restriction enzyme digestion, I combined 15 µl of DNA template, 4 µl of buffer 3, 2 µl of 

NdeI, 2 µl of BglI and 17 µl of nuclease free water, which was then incubated for 3 hours 

at 37°C and followedd with agarose gel running and purification. Finally, a NdeI and 

PflmI restriction enzyme digestion combines 15 µl of DNA template with 4 µl of buffer 

2, .4 µl of BSA, 2 µl of NdeI, 2 µl of PflMI and 16.6 µl of nuclease free water. The 

reaction was incubated for 3 hours at 37°C and proceed with agarose gel running, 

extraction and purification.  

After gel purification, the insert and vector were ligated together using a quick 

ligation kit (New England BioLabs), which enables the ligation of cohesive or blunt ends 

of DNA fragments. The protocol for a quick ligation reaction is to combine 1µl (amounts 

can vary) of vector (pET20b DD with NdeI and SfiI), 4-9 µl of insert (CA1.CD2 PCR 

product from step 5) with nuclease free water up to 10 µl, 10 µl quick ligase buffer and 1 
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µl of quick ligase in a centrifuge tube. These components were combined, given a pulse 

in a micro centrifuge and allowed to sit at room temperature for 5 minutes, then chilled 

on ice before transforming.  

 To transform the plasmid the following protocol was utilized. First competent 

cells are removed from the -80°C freezer and thawed on ice. Next, 10 µl of the reaction 

mixture was chilled in a 1.5 ml microcentrifuge tube. A volume of 50 µl of competent 

cells is added to the DNA and mixed by gentle pipetting up and down. This mixture is 

placed on ice for 30 minutes, followed by a heat shock at 42 °C for 30 seconds. LB media 

without ampicillin is then added in a volume of 950 µl. This mixture is then held at 37°C 

for one hour. After one hour, 300 µl is spread onto pre-warmed agar plates and incubated 

overnight. Resulting colonies are picked and grown overnight in LB media with 

ampicillin at 37°C and 300 RPM shaking. Overnight cultures were mini-prepped 

according to standard protocols and were screened using PCR techniques, with T7 

forward and T7 reverse as the forward and reverse primers for a pET20b vector. To 

perform a PCR 1 µl of template DNA, extracted from colonies on agarose plates, 2.5 µl 

forward primer, 2.5 µl reverse primer, 12.5 µl PCR master mix and 6.5 µl of nuclease 

free water are combined and placed in the thermo-cycler where a standard PCR protocol 

is applied.  

The resulting gene contained 105 amino acids (green highlight CA1.CD2, blue 

highlight ELP overhang) and the sequence was verified by DNA sequencing (Cleveland 

Clinic Genomics Core), and is: 

MGHGVGRDSGTVWGALGHGIELNIPNFQMTDDIDEVRWERGSTLVAEFKRKMK

PFLKSGAFEIDANGDLDIKNLTRDDSGTYNVTVYSTNGTRILDKALDLRILE 
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After checking the sequence on the NEB cutter tool the correct restriction enzyme 

digestion sites were present. 

The results of this confirmed that the pET20b-CA1.CD2 construct was now ready 

to be modified in many ways, including through the addition of the GVGVP40-foldon 

structure from Figure 2.5. To achieve the construct described in Figure 2.6, the pET20b-

CA1.CD2 construct was double digested with NdeI and PflMI restriction enzymes to 

create a vector (3), while the GVGVP40-foldon construct was double digested with NdeI 

and BglI (4). Ligation and transformation of 3 and 4 yielded the final construct for ELP-

IMG (Figure 2.8).  

 

Figure 2.8. Design of ELP-IMG fusion protein. Schematic detailing the construction of 

the ELP-CA1.CD2 fusion protein. The step-by-step nature of the construction is clear, 

and the final construct retains the necessary cut-sites to use the system in a modular 

fashion.  
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This final construct, which is the base structure for this work, contains 

GVGVP40foldon-CA1.CD2 (ELP-IMG), and the sequence was verified using DNA 

sequencing and the final construct contained the following: 

MGHGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVG

VPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVP

GVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGV

GVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGYIPE

APRDGQAYVRKDGEWVLLSTFLGPGVGRDSGTVWGALGHGIELNIPNFQMTDDI

DEVRWERGSTLVAEFKRKMKPFLKSGAFEIDANGDLDIKNLTRDDSGTYNVTVY

STNGTRILDKALDLRILE 

Blue regions represent ELP, green represents the foldon domain, and the yellow 

represents the CA1.CD2 domain.  

2.4. Synthesis of ELP-CA1.CD2 fusion protein variations 

One of the main objectives of this work was to create a flexible system that would 

be able to undergo modification in a simple manner utilizing only molecular biology. 

After the successful synthesis of ELP-IMG, variations were synthesized to determine the 

effects. The first variation was to create a spacing element between the foldon 

headgroups and the CA1.CD2 domain. Also, it has been theorized that in ELP-fusion 

proteins, a peptide spacer element may help retain the functional activity of the targeting 

protein197. The design of the spacing element was chosen so that it would be expected to 

have little effect on ELP properties due to neutral charge and balance of hydrophobic / 

hydrophilic amino acids. It is represented by the sequence: 
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WTSTGPQSSNTGNPSTSGQNNVPGVG 

This sequence was inserted into a pET20b (previous work) vector and can be double 

digested digested with NdeI and BglI to allow it be inserted into another compatible 

vector. After digesting the pET20b-CA1.CD2 vector with NdeI and PflmI restriction 

enzymes, the two components were compatible and after ligation, transformation, and 

screening the new construct was sequenced as follows with the red highlights being the 

spacer element, and the yellow highlights being the CA1.CD2 domain.   

MGHGVGWTSTGPQSSNTGNPSTSGQNNVPGVGRDSGTVWGALGHGIELNIPN

FQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGAFEIDANGDLDIKNLTRDDSG

TYNVTVYSTNGTRILDKALDLRILE   

 

This construct was then digested with NdeI and PflMI to allow a GVGVP40-foldon insert 

double digested with NdeI and BglI to be ligated into it. After completion DNA 

sequencing confirmed the construct, which we call ELP-SPACER-IMG: Blue highlights 

are ELP portions, green highlights are the foldon domain, red is the spacer element, and 

yellow is the CA1.CD2 domain.  

MGHGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVG

VPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVP

GVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGV

GVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGYIPE

APRDGQAYVRKDGEWVLLSTFLWTSTGPQSSNTGNPSTSGQNNVPGVGRDSG
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TVWGALGHGIELNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGAFEID

ANGDLDIKNLTRDDSGTYNVTVYSTNGTRILDKALDLRILE   

 

The next variation that was created was to add a glutamic acid to the N-terminus 

in order to eliminate the pH dependence of the micelle formation. A construct was 

created separately with the sequence: MGHGVGVPGEGVP (VEV), inserted into a 

pET20b vector. This was accomplished in the same manner as described earlier with the 

ELP-SPACER-IMG construct being digested with NdeI and pflMI and the VEV digested 

with NdeI and BglI. The same process as described earlier was applied for ligation, 

transformation and screening and after DNA sequencing this construct was obtained. This 

construct is known as E-ELP-SPACER-IMG and the grey region is the glutamic acid 

containing portion, blue highlight regions represent ELP, green is the foldon domain, red 

is the spacer and yellow is the CA1.CD2 domain. 

MGHGVGVPGEGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVG

VPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVP

GVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGV

GVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGVPGVGV

PGVGVPGVGVPGYIPEAPRDGQAYVRKDGEWVLLSTFLWTSTGPQSSNTGNPS

TSGQNNVPGVGRDSGTVWGALGHGIELNIPNFQMTDDIDEVRWERGSTLVAEF

KRKMKPFLKSGAFEIDANGDLDIKNLTRDDSGTYNVTVYSTNGTRILDKALDLRI

LE 

Constructs were also made that did not contain the foldon domain, in order to compare 

the behavior of the CA1.CD2 attached to monomeric ELP to the behavior of the 
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CA1.CD2 domain to the trimeric ELP. The process was the same as described previously 

however, instead of a GVGP40-foldon used as the insert varying lengths of GVGVP were 

inserted into the vector. Lengths chosen were based on number repeats of GVGVP and 

were 10, 20 and 40 repeats, as well as a construct of the form 41-C-21GVGVP.   

2-5. Construction of ELP-THO targeted construct 

The genes that encode the ELP-THO structure (GVGVP40-foldon-CA1.CD2-

Spacer-GRP) were synthesized as discussed in previous sections. The C terminal 

fragment of the gastrin release peptide is represented by the amino acid sequence: 

GNHWAVGHLM. To modify the structure of ELP-IMG to allow for addition of gastrin 

release peptide a new set of oligonucleotides were created as well as a new primer (Table 

2-3). There were two variations, one that included a flexible spacer between the head-

groups and targeting element and one that did not. Also, the CA1.CD2 domain needed to 

be modified to remove the stop codon that was present in it, in order to add these 

elements after the CA1.CD2 to make a new C terminus.   

 

 

 

 

 

 



	 84	

Table 2.3. Oligonucleotides used to encode GRP and spacer element. 

Upon receipt of the GRP forward and reverse oligonucleotides they were 

annealed in the thermo cycler as described previously. The annealed GRP primers were 

inserted into a pET20b vector that had been double digested with NdeI and PflMI. These 

constructs were ligated together and transformed to give a new vector pET20b-GRP, 

which had the amino acid sequence: MGHGVGGNHWAVGHLM. The second variation 

of the construct that was created included the spacer element before the gastrin release 

peptide fragment. To achieve this the pET20-GRP vector was modified through the 

addition of the spacer element. The pET20b-GRP vector was double digested with NdeI 

DNA Sequence Primer Name 

  

TATGGGCCACGGCGTGGGTGGGAATCACTGGGCAGTGGGACACTTGATGTGAGCC

CGGTGGGC  

 

GRP Forward 

CACCGGGCTCACATCAAGTGTCCCACTGCCCAGTGATTCCCACCCACGCCGTGGCC

CA 

 

GRP Reverse 

TATGGGCCACGGCGTGGGTTGGACCTCTACTGGCCCGCAATCCTCTAACACTGGCA

ATCCGTCTACCTCTGGTCAAAATAACGTGCCGGGC 

 

Spacer Forward 

CGGCACGTTATTTTGACCAGAGGTAGACGGATTGCCAGTGTTAGAGGATTGCGGGC

CAGTAGAGGTCCAACCCACGCCGTGGCCCA 

Spacer Reverse 

CGTATCCTGGAAGAGCCCGGCTGGCCATTTTTT 

 

Gad No stop 

Forward 

AAAAAATGGCCAGCCGGGCTCTTCCAGGATACG 

 

Gad No stop 

Reverse 
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and PflMI, run on agarose gel and purified and the annealed spacer was ligated into this 

vector.  The resulting construct had the amino acid sequence 

MGHGVGWTSTGPQSSNTGNPSTSGQNNVPGVGGNHWAVGHLM. This 

sequence contains ELP overhangs as highlighted in yellow, spacer element highlighted in 

red and the gastrin release peptide fragment highlighted in pink. These constructs both 

contain the appropriate restriction enzyme digestion sites for further modification with 

ELP’s and also contain stop codons.  

In order to incorporate the CA1.CD2 domain into these vectors a set of primers 

were created that would remove the stop codon from the domain, so the expression would 

end at the GRP fragment and not after the CA1.CD2 domain. The primers were annealed 

together using the thermo cycler, then used in a PCR reaction with T7 forward primer and 

run on an agarose gel followed by extraction and purification. The purified product was 

double digested with NdeI and BglI, run on agarose gel, and purified. This was used as 

the insert in a ligation with both of the vectors described above that had been digested 

with NdeI and PflMI (Figure 2.9).  
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Figure 2.9. Design of ELP-THO protein. Schematic detailing the construction of the 

ELP-THO targeted protein. The step-by-step nature of the construction is clear, and the 

final construct retains the necessary cut-sites to use the system in a modular fashion.  

 

After PCR screening the DNA sequences were confirmed (Cleveland Clinic Genomics 

Core) and resulted in the following amino acid sequence:  

GVGVP40-foldon-CA1.CD2-GRP (ELP-NS-THO): 

MGH(GVGVP)40GYIPEAPRDGQAYVRKDGEWVLLSTFLGPGVGRDSGTVWGAL

GHGIELNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGAFEIDANGDLDI

KNLTRDDSGTYNVTVYSTNGTRILDKALDLRILEGNHWAVGHLM 
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GVGVP40-foldon-CA1.CD2-Spacer-GRP (ELP-THO): 

MGH(GVGVP)40GYIPEAPRDGQAYVRKDGEWVLLSTFLGPGVGRDSGTVWGAL

GHGIELNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGAFEIDANGDLDI

KNLTRDDSGTYNVTVYSTNGTRILDKALDLRILE 

GPGVGWTSTGPQSSNTGNPSTSGQNNVPGNHWAVGHLM 

2.6. Expression and Purification of ELPs 

Typically elastin-like polypeptides (ELPs) are purified using a process known as 

inverse transition cycling (ITC)198, which takes advantage of the inverse transition 

temperature (Tt) displayed by the proteins. ELP’s are highly soluble below their Tt, but 

will aggregate and come out of solution rapidly when the temperature is raised above Tt 

due to hydrophobic collapse and aggregation. This creates a separate ELP-rich phase. 

This entire process is reversible and the ELP-rich phase can be solubilized when the 

temperature is dropped below the Tt. Regardlesss of composition the Tt of ELPs is 

dependent upon the concentration of protein, in an inverse-log fashion199. 

The stimuli that drive the Tt of the solution, as mentioned previously, can be 

easily tuned to a desired temperature through many different methods. Two most 

common ways include changing the nature of the guest residue200 and changing the 

length of ELP chains through addition of pentapeptide repeats199. When different guest 

residues are introduced the balance of hydrophobic and hydrophilic components is 

altered. Hydrophobic guest residues have the effect of lowering the Tt and polar or 

charged residues raise the Tt. Longer ELP chains will have a lower Tt regardless of 

composition. The effect of salt on ELP Tt has been investigated thoroughly over the 

years. The type and concentration of salts are known to follow the Hofmeister series165 
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such that kosmotropes or Cl- and higher salts of the series will lower the Tt as well as an 

increase in the salt concentration will have a salting out effect. Salts that are lower on the 

series or chaotropes will have a salting in effect. NaCl is used extensively in ELP 

purification to drive the Tt and ease the purification process. Buffers used to re-suspend 

the ELP solution can vary depending upon the application and any specific characteristics 

of the fusion protein that are required. Proteins that are more hydrophobic tend to re-

suspend better in pure water, while PBS is widely used to investigate suitability in vivo.  

When a fusion protein is attached to an ELP construct, the ability to control the 

purification of the ELP through either gene design or addition of additives generally 

makes the purification of the target protein a simple process162. The thermal properties of 

the ELP are retained after the fusion201, although there can be a difference between the Tt 

of the pure ELP and the Tt of the ELP-fusion protein.  The fact that ELP can be 

genetically appended to its protein or peptide partner with precise control over the gene 

design of ELP fusion, such as the position of the fusion and that the thermal properties of 

the ELP tag can be easily tuned are considerations for the desirable use of ELPs for 

recombinant protein purification. If the ELP is used as a vehicle to purify protein targets 

that are otherwise difficult or require special methods, a protease site can be engineered 

between the target protein and the ELP gene.  Some examples of successful ELP fusion 

proteins include ELP-Thioredoxin202 purification, which was investigated as a function of 

ELP chain length. ELP was used to purify β-galactosidase, which is highly acidic and 

hydrophilic203. ELP-intein systems were used also to purify target proteins in conjunction 

with investigation of Hofmeister series to purify GFP and β-lactamase204.  
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Expression of proteins is carried out in growth media, either Luria-Bertani (LB) 

or terrific broth (TB) supplemented with ampicillin. Various additives have been 

investigated to enhance the expression levels of ELP due to depletion, and there are many 

options to create hyper-expressions205.  Starter cultures are prepared by either picking a 

fresh colony from an agar plate or taking a piece from glycerol frozen stocks in anywhere 

between 10-50 ml of volume and growing overnight at 37°C and 300 RPM shaking. After 

overnight growth, starter cultures were centrifuged at 3000 RCF (Dynac) to separate the 

soluble and insoluble part of the protein. The pellet was then re-suspended in fresh 

expression media from the flask for expression, and transferred to a 2 liter flask.  Growth 

then took place until the optical density at 600 nm (OD600) of the solution was between 

0.-9-1 as measured on a UV-vis spectrophotometer (Thermo-Scientific Biomate 3). When 

this level was reached the protein was induced using 1 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG), which is used to trigger the transcription of the lac operon, 

which induces expression of genes that are under control of the lac operon. After 

induction, the protein grew for another 5 to 5.5 hours. At the end of the growth period the 

media was centrifuged at 9000xg and 4°C, the supernatant was discarded and the pellets 

frozen for purification at a later time (Figure 2.10). 
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Figure 2.10. ELP expression process.  

To determine which expression media and amount of starter culture required, as 

well as to ensure that ELP-IMG did not have significant deviation from the typical 

expression rates of GVGVP constructs used in our lab, growth curves were constructed 

by monitoring OD600 at regular time intervals. The results are shown in Figure 2.11 and 

show the expression growth rate does not deviate from other constructs grown in the lab. 

It was also shown that the fastest growth rate was achieved using TB media and a 50 ml 

starter culture, which was then used as the standard for expression of ELP-IMG.  
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Fig 2.11. Growth rate curves for ELP-IMG. Growth rates of ELP-IMG in different media 

and varying volumes of starter culture compared to ELP-foldon. 

Purification of ELP’s using the ITC process, typically proceeds as follows. The 

cells contained in the frozen pellet are re-suspended in 10 ml of PBS per tube and 

combined into one. Sonication then took place with the tube an ice cold water bath and 

stored on ice for 1 hour after this to ensure complete cooling of the mixture. The protein 

is then centrifuged at 27,000xg at 4°C for 20 minutes to separate the soluble and 

insoluble fractions. The supernatant from this spin is kept due to the protein residing in 

the soluble fraction. The soluble portion is then heated above Tt in a centrifuge tube for at 

least 4 hours to allow the protein to aggregate out of solution. The aggregated proteins 

were centrifuged at 27,000xg at 40°C for 20 minutes. At the end of the centrifugation, the 

soluble and insoluble portions need to be separated immediately, with the protein now 

residing in the insoluble pellet. The process of hot and cold spins gets repeated 2.5 times 

total per purification and after the final cold spin, the purified protein resides in the 

soluble fraction (Figure 2.12).  
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Figure 2.12. ELP purification process. Process of purifying ELP proteins to reach the 

desired pure target protein at the end.  

2.6.1. Determination of soluble vs. insoluble content of ELP-IMG and ELP-THO 

Purifed elastin-like polypeptides typically reside in the soluble fraction and can be 

purified using only inverse transition cycling (ITC). However, occasionally the insoluble 

nature fusion protein drives the polypeptide into the insoluble fraction limiting 

purification through simple ITC. The purification of the CA1.CD2 protein domain206 was 

carried out using Glutathione Sepharose 4B beads207, on a size exclusion column, which 

indicated that the protein was insoluble. 

To determine the soluble or insoluble nature of the ELP-IMG / ELP-THO protein 

Bacterial Protein Extraction Reagent II was utilized (BPER II Pierce). BPER was 

designed to facilitate the extraction of soluble proteins from bacterial cells without the 

need for harsh chemicals, while being in a mild buffer of 20 mM Tris-HCL at pH 7.5. 
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Starting at the expression of the protein, every hour pre and post induction a 1ml sample 

was taken from the expression flask and centrifuged at 14,000xg on a micro-centrifuge 

(Eppendorf 5415C). The supernatant was removed and the pellet was frozen and stored 

for analysis (Figure 2.13).  

 

Figure 2.13. Determining soluble vs. insoluble content. Process of using BPER II to 

determine insoluble vs. soluble protein content.  

To analyze the frozen pellets the following protocol was applied. Thaw the pellets for 10 

minutes at room temperature and then re-suspend the cells in 150 µl of BPER II reagent 

by vigorous vortexing of the mixture until the cell suspension is homogeneous, then 

continue for one more minute. Following this centrifuge at 14,000 RPM for 5 minutes to 

separate the soluble proteins from the insoluble proteins. At the completion of this step 

separate the supernatant from the pellet. The supernatant contains the soluble fraction and 

will be used in SDS-PAGE analysis. Re-suspend the pellet in 150 µl of BPER II reagent, 

which contains the insoluble fraction for SDS-PAGE analysis. After the separation of the 

components run SDS-PAGE gel with 15 µl of each fraction to determine the solubility 

content.  

SDS-PAGE gels were run with 15 well 4-20% gradient Tris-HEPES-SDS gel (Pierce) 

and samples were prepared in 4X loading buffer containing 1% SDS and DTT and run in 
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Tris-HEPES loading buffer on a mini protean gel system (Bio-Rad). Sample volumes of 

15 µl were prepared and combined with 5 µl loading buffer and a full range rainbow 

molecular weight marker was used (GE healthcare). This is a representation of how the 

samples were loaded on the gel.  
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Figure 2.14.  SDS-PAGE to determine soluble vs. insoluble protein content. The ELP-

IMG protein was only visible in lanes 13 and 15, which are insoluble fractions 4 and 5 

hours post induction with IPTG.  

The results from this SDS-gel showed that the protein was in the insoluble fraction and 

thus standard ITC purification would most likely not be successful in purifying the 

protein.  
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2-6-2. Insoluble protein purification methods used to purify ELP-IMG and ELP-

THO 

There were five methods attempted to purify the fusion proteins. All methods 

require the purification to occur using the pellet from the first cold spin, which is where 

the insoluble protein is located. This is opposite to the regular purification procedure 

where the protein is purified from the supernatant. The first method was to follow the 

insoluble protein purification methods that are laid out with the BPER protocol, which is 

used for general inclusion body purification. The method was as follows:  

Method 1: BPER Purification 

After spinning the culture media down, the next step was to re-suspend the 1st cold 

pellet in 10 ml of BPER and vortex until the solution was homogeneous. This was 

followed by centrifugation for 25 minutes at 4°C and 27,000xg after which the 

supernatant was poured off and discarded. Then 200 µl of 10 mg/ml lysozyme stock 

solution was added to to the pellet followed by 19.8 ml of 1:20 diluted BPER II reagent. 

Once the pellet was re-suspended it was centrifuged for 25 minutes at 4°C and 27,000xg 

and the supernatant from this step was poured out. This process was repeated 2 more 

times then the final pellet was re-suspended in 2 ml of 6M Guanidine HCL. This solution 

gets diluted 20 fold using refolding buffer (50 mM K2PO4, 100 mM NaCl) and left to 

chill at 4°C for 48 hours. At the completion of the 48 hours the solution was centrifuged 

for 25 minutes at 4°C and 27,000xg and the resulting supernatant from this spin 

contained the final protein.  
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This protocol produced extremely poor yields of no more than 20 mg / L of culture, 

even after attempts at concentrating the solution using various methods. Particle 

formation was also non-existent. This can be explained, however, by the fact that the 

yield was never sufficient enough to keep the salt content low enough to be in the proper 

salt regime. It is believed that the extra steps in the BPER protocol were not necessary, 

and the excess centrifugation caused loss of protein.  

Method 2: Purification using pure GVGVP40-foldon  

The first step was to re-suspend the first cold pellet of both GVGVP40-foldon and 

ELP-IMG in 10 ml of 6M guanidine hydrochloride and combine the two. The solution 

was then vortexed until it was homogeneous followed by a dilution of the the solution 20 

fold through addition of 380 ml refolding buffer and finally left to sit for 72 hours at 4°C. 

Centrifugation followed for 25 minutes at 4°C and 14,000xg, after which the supernatant 

was poured into another tube as it contained the fusion protein in the soluble fraction. It 

was then incubated at 45°C and the purification proceeded with these 380 ml as the first 

hot spin in regular ELP purification 

This method produced yields between 30-40 mg / L of culture, which is far less than 

would be expected for GVGVP40-foldon alone (typically 80-100 mg /L). This yield is 

sufficient, however SDS-PAGE analysis showed an anomaly with the protein (Figure 

2.15). The multiple trimer domains that are present in this form of the construct caused 

issues with the self-assembly of nanoparticles leading to bi-modal distributions as the 

only particle populations that could be achieved. This is not optimal for use of the 

construct, so this method was not used. The next method skipped BPER and GVGVP40-
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foldon co-purification entirely and went directly to incubation in 6M guanidine 

hydrochloride.    

 

Figure 2.15. SDS-PAGE gel method 2. SDS-PAGE gel for purification using method 2, 

showing the multiple trimer domains as a result of the combination of proteins.  

Method 3: Purification using pure 6M Guanidine HCL 

The first cold pellet was re-suspended after sonication and centrifugation of ELP-

IMG in 10 ml of 6M guanidine hydrochloride. The solution was vortexed until 

homogeneous and let sit for at least 6 hours. Then it was diluted 20-fold through addition 

of 180 ml refolding buffer and let sit for 72 hours at 4°C. Followed by centrifuging for 25 

minutes at 4°C and 14,000xg and pouring off of the supernatant from this step. The 

supernatant was incubated at 45°C for 4 hours and centrifuged for 25 minutes at 40°C 

and 27,000xg. The supernatant from this spin was discarded and purification proceeded 

with the pellets. This yields 6 pellets in 6 tubes, which need to get purified individually. 

250 µl of 6M guanidine HCL was added to each pellet and stirred gently until 

homogeneous, then re-suspended 1:20 with 4.75 ml of refolding buffer, with the eventual 

combination of all 6 pellets. This solution was then centrifuged for 25 minutes at 4°C and 
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27,000xg. The supernatant was then used to proceed with hot spin and was incubated at 

45°C for 4 hours, followed by centrifuging for 25 minutes at 40°C and 27,000xg. At the 

conclusion of centrifuging the supernatant was discarded and purification proceeded with 

the pellet. The final pellet was re-suspended in 5 ml of appropriate solution and the 

concentration was measured.  

This method successfully purified the protein with yields of 20-25 mg / L of culture. 

Self-assembly of nanoparticles took place as expected, however, the yield was less than 

optimal and the solution tended to have a very slight cloudy appearance and would 

precipitate if stored for more than 30 days.  

 

Figure 2.16. SDS-PAGE gel method 3. SDS-PAGE gel resulting from the method 3 

purification schematic. Lanes with the + symbol indicate samples that were heated to 

100°C to denature the foldon domain, while lanes with the – symbol indicate samples that 

are at room temperature, which we expect to trimerize due to the activity of the foldon 

domain. Lanes 1 shows the monomer form as expected while lane 2 shows trimer 

formation.  
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 Method 4: Purification using pure 8M Urea and ITC:  

 

Figure 2.17. 8M urea + ITC purification method.  

The first step was to re-suspend the first cold pellet in 5 ml of 8 M Urea and vortex 

until the solution is homogeneous, followed by sitting for 6 hours at room temperature. 

Then it was dialyzed against 4 M urea for 24 hours using 3000 MWCO dialysis tubing 

(Spectra-Por), followed by dialysis against 2 M urea for 24 hours using 3000 MWCO 

dialysis tubing (Spectra-Por). This was then dialyzed again using 3000 MWCO dialysis 

tubing (Spectra-Por) against RO H2O for 2 hours with 3 changes of the water. Following 

this the solution was purified using the ITC method described earlier. 

This method has been used to successfully purify the protein with high purity (Figure 

2.18) and yields that are between 25 and 30 mg/L of culture. Self-assembly of 

nanoparticles took place as expected, however, a higher yield was desired. This method 

also eliminated the cloudiness as well as the precipitation problem.  
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Figure 2.18. SDS-PAGE gel method 4. Lanes with the + symbol indicate samples that 

were heated to 100°C to denature the foldon domain, while lanes with the – symbol 

indicate samples that are at room temperature, which we expect to trimerize due to the 

activity of the foldon domain. Lanes 1 and 2 are completely purified samples, while 3-4 

and 5-6 are samples that are no 100% purified and require another round of ITC.  

Method 5: Purification using pure 8M Urea Only: 

 

 

Figure 2.19. 8M urea only purification method. 
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The steps used in this method mirror the steps in method 4 up to the point of ITC 

purification. Instead of the usual 2.5 rounds of ITC, there was only one round of 

centrifugation at 27,000xg at 4° C. This was then followed by another round of dialysis in 

pure H20 for 24 hours. At the conclusion of this the purified protein was present and 

ready for use.  

This method has been used to successfully purify the protein with high purity (Figure 

2.20) and yields that are between 70-90 mg/L of culture. Self-assembly of nanoparticles 

took place as expected and the yield was 2-3 times more than the other methods (Table 

2.4), which makes this process ideal for sample preparation. This method also eliminated 

any cloudiness as well as the precipitation problem.  Purification of the protein is 

performed using this method.  

 

Figure 2.20. SDS-PAGE gel method 5. Lanes with the + symbol indicate samples that 

were heated to 100°C to denature the foldon domain, while lanes with the – symbol 

indicate samples that are at room temperature, which we expect to trimerize due to the 

activity of the foldon domain. High purity and yield are demonstrated in this gel.  
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Method Additive Nanoparticle 

formation 

Yields (mg /L of 

culture) 

1 BPER / lysozyme / GuHCL 6M No < 10 

2 GVGVP40-foldon Bi-modal 30-40 

3 6M GuHCL  + ITC Yes 20-25 

4 8M UREA + ITC Yes 25-30 

5 8M UREA No ITC Yes 70-90 

Table 2.4. Summary of purification methods and their associated yields. 

2.7. ELP-fusion protein characterization methods  

ELPs after purification are characterized by a number of general methods to 

ensure molecular weight, folding behavior, purity, transition temperature profiles and 

nanoparticle formation of samples.  

2.7.1. SDS-PAGE Gel 

Polyacrylamide gel electrophoresis (PAGE) using sodium dodecyl suflate (SDS) 

anionic detergent to impart negative charge to the proteins is used to separate proteins 

according to their electrophoretic mobility. This is primarily a function of their molecular 

weight, such that larger proteins will take a longer time to migrate through the gel, while 

smaller proteins will migrate faster. Thus the technique is used to ensure that the purified 

protein is of the proper molecular weight. Further depending on the conformation of the 

protein and buffer or temperature used proper folding can be visualized (i.e. dimer or 
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trimer formation). A generalized procedure for running SDS-PAGE follows. ELP 

samples were prepared for analysis in 15 µl aliquots (highly concentrated samples should 

be diluted with H2O, typically 5 µl sample + 10 µl H2O). Into these 5 µl of 4X DTT was 

added containing sample buffer dye. The sample was then heated to 100° C in a dry bath 

for at least 5 minutes and briefly pulsed in a micro centrifuge to collect condensation. 

Samples that need to visualize the trimer activity of foldon domain were not heated to 

ensure that the thermal stability limit of foldon is not passed.  The gel box was then 

assembled and filled with running buffer and securing the gel in place. Samples were 

then loaded into gels using gel loading pipette tips and run at 100 V until the dye reached 

the bottom of the gel. At the conclusion of this the voltage was stopped and the gel 

cassette was removed, transferred to a plastic holder and washed 3X with RO H2O. 

Comassie blue solution was added to the gel, covered and set on the shaker for at least 2 

hours followed by de-staining with H20 or de-staining solution (methanol/glacial acetic 

acid/H2O). 

2.7.2. UV-Vis Spectrophotometry 

A spectrophotometer is used to measure the amount of light that passes through a 

sample in relation to the initial amount of light. In the case of our ELP fusion proteins, 

this is used to measure the onset of turbidity of the solutions by measuring at a constant 

wavelength, with a computer controlled temperature ramp. A brief procedure follows for 

the use of the Shimadzu UV-1800 series. ELP solutions were prepared in desired buffers 

and checked to ensure that they were free of turbidity or precipitation. The software was 

initiated and the method in the TM-Analysis software was set to read at 350nm with a 

sweep from 20-60°C at 1°C/min (can change if desired). If no turbidity is observed at the 
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completion, the Tt can either be above the range measured or the sample may be forming 

nanoparticles. At the conclusion of the run the Tt was determined by plotting the 

absorbance @350 versus temperature and find the steepest part of the turbidity curve. 

The point of intersection was found and this corresponds to the Tt.  

2.7.3. Dynamic Light Scattering 

Fixed angle dynamic light scattering is used to investigate the formation of 

nanoparticles of ELP fusion protein samples. The hydrodynamic radii of nanoparticles 

can be studied through the use of dynamic light scattering (DLS) in which a beam of light 

passes through the aqueous sample. As it passes through the sample the light is scattered 

by the particles in different directions and parts of the light then pass through a detector. 

The Brownian motion of the particles results in constantly changing measured intensity 

that fluctuates with time giving distribution intensity. The intensity-time correlation 

functions are then analyzed by software using algorithms to calculate the hydrodynamic 

radius of the nanoparticles. To accomplish this a Brookhaven 90 plus particle size 

instrument is used. Samples were measured at 350 nm, typically at a temperature below 

Tt (~20°C) and above Tt (~45-50°C). A brief procedure follows. Samples were prepared 

in appropriate concentrations of protein and salt for nanoparticle formation (<150 µM 

protein and <50 µM salt). The samples were filtered directly into cuvettes using .22µM 

filters (Millipore) and placed into the cuvette holder. BPIC software was opened and 

analysis was performed in triplicate (3 runs of 3 x 1minute each = 9 total).   
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2.8. Characterization of gadolinium loaded fusion protein samples 

The ELP-IMG, ELP-IMG variations and ELP-THO proteins are defined by their 

fusion with the protein based MRI contrast agent CA1.CD2 domain. A critical 

component in determining the success of the fusion protein, and the construct as a whole 

is the successful binding and retention of gadolinium.  

2.8.1. Inductively coupled plasma optical emission spectroscopy 

Inductively couple plasma optical emission spectroscopy (ICP-OES) is an 

analytical technique used for the detection of relatively low amounts of metals in 

samples. This instrument uses argon gas to ignite a plasma torch that excites atoms and 

ions that will emit electromagnetic radiation at wavelengths that match those of the 

element of interest. Intensity of the emission recorded corresponds to the concentration of 

the element within the sample, based upon creation of calibration curves. The plasma 

reaches a temperature of ~ 7000 K, while a peristaltic pump delivers the sample into a 

nebulizer to be analyzed by turning the sample into mist inside the plasma flame. This 

process will break the sample down into only charge ions, which undergo a rapid 

collision process inside the chamber and give off radiation that corresponds to the 

characteristic wavelength.  

In designing the experiments to determine the Gd3+ content bound to the ELP fusion 

proteins there were some important considerations that took place. These were as 

follows:  

A. Samples must be clear: no turbid, precipitated or non-filtered protein samples  
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B. Choice of wavelength: For Gd3+ use multiple as there is confusion as to which 

would be the best, these include 342 and 376 nm 

C. Make sure 3 replicates are performed 

D. Use an internal standard to ensure that the protein is not interfering with the 

atomizing of the gadolinium à typical between 80-120% internal standard 

recovery is acceptable 

E. Add 2 ppm of rhenium to each sample as the internal standard 

F. After construction of calibration curve ensure that it has an R2 value of at least 

.999  

G. Measure blank sample of pure 2% nitric acid in h20 + internal standard and the 

lowest standard has to have an intensity of at least three times the blank for the 

measurement to be accurate 

When using the instrument the following steps took place. The argon flow was turned on 

from the wall, followed by switching on of the instrument. The computer was then turned 

on and the WinLab32 program was initiated followed by the opening of the “JCgd3+IS” 

method. When using the instrument, it was imperative to construct a new calibration 

curve each time to gauge instrument response (Figure 2.23). The inlet tubing was placed 

into the blank sample, held for 20 seconds then analyzed. After this, the inlet tubing was 

placed in a solution of 2% nitric acid for washing (after each run as well). For the running 

of each protein sample the same steps took place. Results were generated and the 

instrument was cleaned and shut down.  
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Figure 2.21. Calibration curves generated from ICP-OES analysis. 

2.8.2. Free gadolinium detection assays 

For any gadolinium chelating nanoparticle system there exists the possibility that 

unchelated gadolinium can exist in the formulation either due to instability of the soltion, 

excess gadolinium due to lack of available binding sites or precipitation. Free gadolinium 

is a known toxicant, which has been linked to nephrogenic systemic fibrosis in FDA 

approved MRI contrast agents208. For these reasons it is critical to have assays available 

to be able to detect whether or not there is free gadolinium present in the solution.  

Arsenazo III (C22H16As2Na2N4O14S2) is a bis-azo derivative of chromotropic acid 

(Figure 2.22) and is capable of forming stable complexes with a large number of ions209. 

Specifically it binds to metal ions forming a metal-ion complex but does not bind to 

complexed metal ions. This method allows for both a visual and numerical detection of 

this interaction. Visually there is a colorimetric interaction that occurs with a solution of 

pure aresenazo III appearing pinkish in color, as well as in solutions with little to no free 

gadolinium present. As the amount of free gadolinium increases the color shifts from 

pink to purple to finally green when there is an excess of free gadolonium in 

solution210(Figure 2.23). These color shifts are also represented in a shift of the 



	 108	

abosrbance spectrum. When the dye is free in solution there is a strong absorption peak at 

548 nm and when complexed with metals there is a peak absorption at 652 nm (Figure 

2.24).   

 

Figure 2.22. Chemical structure of Arsenazo III  

 

 

Figure 2.23. Examples of ELP-Gd3+ arsenzao III complexes. Sample 1: Free Arsenazo III 

(pink), sample 2: 40foldon-CA1.CD2 with 5 µM Gd3+ added drop-wise (all bound 

purple) sample 3: 40foldon-CA1.CD2 with 20 µM Gd3+ added drop-wise (all bound 

purple) Sample 4: 40foldon-CA1.CD2 with 250 µM Gd3+ added drop-wise (excess 

present as an intermediate orange) Sample 5: 40foldon with 5 µM Gd3+ added drop-wise 

(excess present green). 
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Figure 2.24. Absorption spectrum of Arsenazo III calibration standards.  

 

The first step undertaken to perform the assay used in this study is to make a 

series of standards, which leads to the creation of a calibration curve, which is then used 

to determine the concentration of free gadolinium. The presence and amount of free 

gadolinium in protein samples can then be quantified using Arsenazo III. To construct the 

calibration curve gadolinium chloride (MW 263.61, Acros) is dissolved in water at 

concentrations spanning 0-48 µg / ml or 0-182 µM. A 20 mg/ml solution (21.8 mg 

dissolved in 1 ml RO H2O) is made which is used a stock solution and then diluted to 2 

mg/ml in 1 ml which is used to make the calibration stocks (Table 2.5).   
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Table 2.5. . Calibration Standards for Arsenazo III. Calibration standard preparation table 

and their resulting absorbance measurements. 

To measure the calibration standards, which were made into 1 ml volumes, 100 µl 

of 0.2 mM Arsenazo III, 50 µl of calibration standard (represented as sample 1-8) and 

850 µl of water are mixed together. A blank is created composed of just 950 µl water and 

50 µl Arsenazo III. A UV-vis spectrophotometer (Thermo Scientific Bio-mate 3) was 

used to get the absorbance readings at 652 nm, using the Arsenazo III and water standard 

as the blank. A Beer’s law plot is constructed by plotting the absorbance at 652 nm 

versus Gd3+ concentration.  

 

Figure 2.25. Calibration curve of arsenazo III. Arsenazo III calibration curve constructed 

from a series of standards. The slope of the line represents the extinction coefficient used 

in this study.  

Sample Volume	of	stock Volume	h20 GdCl	H20 Gd	(µg/ml) Concentration	(µM) Absorbance

1 0 1000 0 0 0 0
2 1.55 998.45 3.39 2 7.59 0.026
3 3.1 996.9 6.78 4 15.17 0.06
4 6.22 993.78 13.56 8 30.35 0.135
5 12.43 987.57 27.12 16 60.70 0.306
6 18.66 981.34 40.68 24 91.04 0.48
7 27.98 972.02 61.02 36 136.57 0.728
8 37.32 962.68 81.36 48 182.09 0.93
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To determine the amount of free gadolinium present in a sample the same 

procedure is applied but instead of 50 µl calibration standard 50 µl of nanoparticle / Gd3+ 

conjugate is added. The mixture is composed of 850 µl water, 50 µl sample and 100 µl of 

Arsenazo III. The absorbance of the sample is then divided by the extinction coefficient 

as represented in equation  

𝑭𝒓𝒆𝒆	𝑮𝒅	(µ𝐠	/𝐦𝐥) = 	
𝐴𝑏𝑠	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒 + 0.01

0.02 ∗ 1000 

This assay covers a range of 0-182 µM of free gadolinium that may be present in 

the sample. As most of the samples presented in this study have a working range of 10-

150 µM gd3+ present, this represents an easy way to determine the amount free. For 

simplicity purposes and ease of facilitating a large number of samples, a microplate 

reader can be substituted for the UV reader. A Synergy H1 microplate reader (Biotek) 

with a 96 well plate was also used to process a series of samples (Figure 2.26). 

 

Figure 2.26. ELP samples in 96 well plate for microplate analysis. ELP-Gd3+ samples in 

96 well plate to test for amount of gadolinium present. Sample preparation also gives a 

visual representation of gadolinium present in excess.  
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Xylenol Orange Assay 

Another common indicator for presence of lanthanide ions is xylenol orange211, 

whose chemical structure is represented in Figure 2.27. The color of the solution of 

xylenol orange is largely dependent upon the pH; at acidic pH the solution is yellow, 

while at basic pH the solution is purple. The change in color is due to the de-protonation 

of the phenolic hydroxyl group, which in turn leads to an extended electronic de-

localization which then shifts the absorption wavelength to higher values212. This effect is 

the same in the presence of metal coordination. When a stable Gd chelate is present such 

as the one presented in this study or any of the many clinically available (Gd-DTPA, Gd-

DOTA and derivatives) the xylenol orange is not able to extract the metal ion from the 

chelate, thus any change in color or absorbance is only due to free metal ions.  

 

 

Figure 2.27. Chemical structure of xylenol orange 

Xylenol orange, like Arsenazo III, is able to provide both a visual and numerical 

representation of the free Gd3+ in a solution. Xylenol orange has two absorption maxima, 

at 433 and 573 nm, with the 433 being more intense. As free Gd3+ increases in the 

sample, the second band increases while the first one decreases (Figure 2.28).  
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Figure 2.28. Xylenol orange chemical shift determined spectrophotometrically a) Gd3+ 

content as determined spectro-photometrically. Increasing Gd3+ content causes the band 

at 573 nm to increase while the band at 433 nm decreases. Spectra was taken in acetic 

buffer solution pH 5.8 across a range of gadolinium from 0-50 µM. b) Samples of Gd3+ + 

xylenol orange with the visible shift in color upon addition of excess free gd3+.   

In order to obtain this spectrum a working sample of xylenol orange was first 

prepared by dissolving 3 mg of xylenol orange (Acros) in 250 ml acetate buffer at pH 5.8. 

This working stock was frozen in 50 ml aliquots and protected from air, to prevent any 

issues with the pH of the solution. When the curve was ready to be prepared this solution 
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was thawed and 2 ml transferred to a quartz cuvette. Each gadolinium standard was 

prepared from a 1 mM stock (made from dissolving 3.72 mg of GdCl3 (Acros) in RO 

H2O) and made in 10- 80 µM concentrations. A 200 µl of each standard was added to the 

quartz cuvette and vigorously shaken to ensure complete mixture. A wavelength scan was 

performed using UV probe software on a UV-vis spectrophotometer (Shimadzu UV-

1800) from 700 to 300 nm. The free Gd3+ content is proportional to the ratios of the 573 

and 433 nm wavelength absorbance and across a concentration range of free Gd3+ a linear 

relationship is observed (Figure 2.29).  

 

Figure 2.29. Calibration curve for xylenol orange. Calibration curve for xylenol orange / 

Gd3+ determined spectrophotometrically, as the ratio of two absorbance maxima.  

To measure the amount of free Gd3+ in an ELP nanoparticle / Gd chelate, we use 

the slope of this line as an extinction coefficient and divide the absorbance of the solution 

by it, represented in equation; 

𝑓𝑟𝑒𝑒	𝐺𝑑3 +	 µ𝑀 =	
𝑅𝑎𝑡𝑖𝑜	𝐴𝑏𝑠 573433 − 0.325	

0.016  
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Examples of solutions of ELP nanoparticle / Gd3+ chelate are presented with the 

color shift being rather visible (Figure 2.30). The orange to light purple solutions 

correspond to < 10% free gadolinium while the brighter purple solution on the left is 27% 

free gadolinium.  

 

Figure 2.30. ELP-Gd3+ xylenol orange complexes. Examples of ELP / Gd3+ chelates in 

presence of xylenol orange solution used to determine free Gd3+ content.  

Xylenol orange was also used to determine the saturation point at which addition 

of Gd3+ to ELP nanoparticle solutions exceeded the > 10% free Gd3+ limit (Figure 2.31). 

  

 

Figure 2.31. Using xylenol orange to determine excess amounts. Usage of xylenol 

orange to find point of gadolinium addition saturation. 

A cross-linked protein of 50 µM concentration is placed in a 5ml round bottom 

flask and gadolinium in citrate buffer is added in a step-wise manner of 10µM drops with 

constant stirring. Thirty-minute time points are taken between additions of more 
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gadolinium. Before the addition of the next amount of gadolinium 200 µl of sample is 

removed and added to 2ml of xylenol orange solution and absorbance spectrum is 

recorded. Using the equation and the spectrum recorded it was found that as long as the 

addition of gadolinium was in 1:1 molar ratio with the protein, there was less than 10% 

free gadolinium in the solution. As the 1:1 ratio was exceeded the amount of excess 

increased significantly (Figure 2.32).  

 

Figure 2.32. Gadolinium addition saturation point.  

2.8.3. ELP-IMG metal binding complexes 

 Terbium III (Fisher Scientific) was used as a probe to determine metal binding 

affinities of ELP-IMG fusion proteins as compared to ELP-foldon. A Hitachi 

fluourescent spectrophotomer was used with an excitation wavelength of 283 nm and 

emission wavelength of 545 nm. Constant protein concentration of 50 µM was used for 

both ELP-IMG and ELP-foldon and these solutions were loaded into a quartz cuvette. 

Terbium III was titrated into the cuvette and measurements were recorded as a function 

of absorbance. From figure 2.33 it is clear that ELP-IMG has a dramatic increase in 

absorbance as higher concentration of terbium III is added to the cuvette, while ELP-

foldon is virtually unaffected by the addition of the terbium.  
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Figure 2.33. Terbium III + ELP-IMG vs Terbium III  + ELP-Foldon. Comparison of 

ELP-IMG + Terbium III and ELP-Foldon + Terbium III showing that an increase in 

metal binding complex is seen for ELP-IMG, while ELP-Foldon has little to no effect on 

the terbium solution.   

2.9. Detailed Cell Culture Protocols  

 To investigate the active targeting properties of ELP-THO constructs cancer cell 

lines were obtained, cultured and passaged. Cells were cultured from storage in vapor 

phase of liquid nitrogen in the following manner:  

Culture protocol 

Vial obtained from ATCC was thawed in a heat bath at 37°C while keeping the O-ring 

and cap out of water to avoid contamination. Once this was completed, the tube was 

removed from water and sprayed with 70% ethanol to decontaminate the surface. The 

tube was then spun at 125xg for five to 7 minutes in a micro centrifuge. At the conclusion 

of centrifuging the media was aspirated and the pellet was re-suspended in an appropriate 

amount of pre-warmed fresh growth media and incubated at 37°C and 5% CO2.   
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Cell passage protocol  

Cells were checked at appropriate intervals under a microscope and when they reached 

approximately 75% confluence and are fully attached to flask surface they were ready for 

passage. The first step was to remove and discard the cell culture medium into a separate 

flask. Then between 2 and 10 ml of Trypsin-EDTA solution was added to the flask and 

incubated at 37°C and 5% CO2 for between 5 and 15 minutes. It is important to visually 

inspect the cells to ensure that they are detaching from the surface. At this point add 6 to 

8 ml of fresh media to flask and transfer all of the contents to a 15 ml centrifuge tube 

followed by centrifuging at 125xg for 10 minutes to remove any excess trypsin present. 

The media was the aspirated and the pellet re-suspended in 10 ml of fresh growth media. 

Finally an appropriate amount of growth media was added to the flask and incubated at 

37°C and 5% CO2.  

Well Seeding protocol 

To seed the wells, for further study, from passaged cells 100 µl of the re-suspended cells 

were first transferred to a hemocytometer in order to count the total amount of cells. Once 

cell count was determined the amount needed per well was calculated and the appropriate 

amount of cell pellet suspension was added to the well, followed by filling to volume 

with fresh growth media.  Once wells were seeded and filled they were incubated at 37°C 

and 5% CO2. After 16 hours of seeding wells were checked to ensure that attachment was 

taking place and 24 hours after experiments were able to begin. 
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Protein incubation study protocol 

To visualize proteins in cells they needed to be dyed with the use fluorescein 

isothiocyanate (FITC), which was dissolved in DMF at 10 mg/ml and mixed completely. 

Once the solution was mixed a 15-20 fold molar excess of FITC solution was added to 

the protein and immediately mixed. The solution was then incubated for 1 hour at room 

temperature, and wrapped in aluminum foil to protect from light.  Before use, the 

solutions need excess FITC to be removed either through dialysis or use of the dye 

removal columns. Finally, once they are ready, they can be incubated with cells in 

appropriate molar concentrations for desired time periods.  

Protein and cell interaction analysis—Cell fixation protocol 

After the desired incubation time of protein and cells is reached the first step is to aspirate 

the media from flask and then wash the cells with sterile ice-cold PBS 2 times, followed 

by removal of media and PBS. The cells were then washed with ice cold 4% 

paraformaldehyde (PFA) solution for 5 to 8 minutes, followed by removal of the PFA 

solution and a wash step with ice cold PBS for 5 more minutes. At this point DAPI 

solution is added to the well to stain the nuclei and let to sit for 5 minutes, after which 

inverted field microscopy was started.  

Antibody Detection protocol 

Level of gastrin-release pepetide receptor content was visualized using the following 

antibodies; Anti-gastrin release peptide primary antibody (Ab22623) and goat polyclonal 

secondary antibody to Rabbit IgG (compatible with primary) conjugated to Alexa flour 

488 (Ab 96883) were ordered from Abcam. U87 RFP and PC3 cells both overexpress 
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GRP in a high level and thus we expected positive results from the antibody test, while 

H441 expresses at an extremely low level (figure 2.34).  To perform these experiments 

the same fixation protocol was applied as discussed in step 5. After fixation with PFA, a 

solution composed of PBS containing 5% goat serum and .1% triton X-100 was added to 

the wells then allowed to sit for 20 minutes. The well was aspirated, then a solution 

containing 5% serum, .1% triton X-100 and 1% primary antibody and left to sit overnight 

at 4°C. Once this solution was removed the wells were washed 3 times with warm PBS 

for 5 minutes each time, to remove any unattached material. Next, while in the dark, the 

seconday antibody, which was contained in a solution composed PBS, 5% serum, .1% 

triton X-100 and .1% seconday antibody, was added to the well and left to sit 20 minutes 

in the dark. Finally DAPI is added to the well and imaged on the inverted field 

microscope.  
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A                                                                      B 

      

C 

 

Figure 2.34. Antibody staining test. A) PC3 cells B) U87 C) H441. The positive 

indication of GRPR is displayed by the large amounts of green staining in A and B, while 

no green staining is present in C, indicating GRPR negative.  

 

Live / Dead Assay Protocol 

To determine the overall vitality of the cell population a Live / Dead assay can be used 

(Life technologies). The first step is to take a fresh passage of cells and seed them in 

wells at appropriate concentrations for 24 hours for at least 24 hours. After ensuring 

attachment and health of the cells, the media is changed and left to incubate at 37°C and 
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5% CO2 for one hour. Protein samples at varying concentrations and for varying time 

points, are then incubated with the cells to determine the level of effect that they may be 

having on the cell population. Once incubation time has been completed, the media from 

the well is removed and 100-150 µl of live/dead media to the well, or enough to ensure 

complete coverage of the cells. All of these steps must be performed in the dark to ensure 

that the reagents are not activated by light. The combination of cells + proteins + live / 

dead assay mixtures is then incubated for at least 30 minutes at 37 °C 5% CO2. At the end 

of this period the cells can then be imaged with an inverted fluorescent microscope or 

covered with D-PBS and stored for later viewing.  

Imaging of Live/Dead results with ImageJ Software 

During imaging take at least one image at each point in the well of interest using the 

green wavelength channel, one at red wavelength channel then save the images, and label 

appropriately. Make sure to take 4 images per well, representing each corner of the well 

and getting a good representation of the population as a whole (figure 2.35).  It is also a 

good idea to take images using only the brightfield channel as a reference in case there is 

any auto-fluorescence. A second control that should be performed is to have one well that 

is left without any protein to represent an entirely alive population and to have a second 

well that is combined with a toxicant like 70% ethanol to represent an all dead population 

(figure 2.36). The next step is to open the ImageJ program and use the plugin called 

Shapelogic, which allows for counting of particles. Choose a region of interest and using 

the plugin count number of green and number of red particles. Using these numbers you 

can then make a ration of live to dead and find a survival percentage.   
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Figure 2.35. Live / Dead staining images with mixed populations.  

 

Figure 2.36. Live / Dead staining images with a) all live b) all dead. Live / Dead assay 

applied, to a sample as a positive control (all alive) A, and a negative control B (all dead).  

 

2.9.1. Examples of Cell images 

PC3 cells: The shape, spacing and homogeneity of the cells is a good indication they are 

healthy and growing well. As they grow more confluent than this they begin to cluster 

and will grow very rapidly. It is a good idea to keep the flask seeding density low if they 

are not planning on being used frequently (figure 2.37 A).   
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H441 cells: These cells tend to grow in a segregated and clustered manner. During 

growth it may appear that large quantities of the cells are not attaching, thus necessitating 

media changes that are not part of passaging. Also they may take longer time than the 

other two cell lines between passages and grow in lower number, so that must be planned 

accordingly when attempting to match up cell based experiments (figure 2.37 B).  

U-87 RFP: These cells have been spliced with red fluorescent protein and thus they can 

be imaged in fluorescent microscope without the addition of dyes using the red 

wavelength channel. These cells are a nueroglioblastoma and grow in a branching 

manner out from a central area (figure 2.37 C).  

          	

Figure 2.37. Images of healthy growth of cell lines. Bright field image of A) U-87RFP 

B) H441 C) PC3 cells taken as an example of healthy cell growth.  
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CHAPTER III  

MRI ACTIVITY OF SELF-ASSEMBLING NANOPARTICLES OF ELASTIN-

LIKE POLYPEPTIDES 

 

3.1. Abstract  

Presented is a fully protein based self-assembling nanoparticle system for use as 

an MRI contrast agent. These particles are formed using the thermally responsive 

behavior of elastin-like polypeptides (ELP’s), which comprise the core of the particle. 

We have previously reported thermo reversible micelle formation of ELP’s and have 

modified the system by fusing the protein based MRI contrast agent, CA1.CD2 to the C 

terminus of ELP-foldon to create a new system (ELP-IMG). Micelles formed by ELP-

IMG are cross-linked to form stable nanoparticles. These nanoparticles are 

environmentally responsive, effectively bind and retain gadolinium while effectively 

providing contrast in T1 weighted imaging with higher relaxivity than clinical contrast 

agents. This fusion protein is entirely protein based and was designed using molecular 
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biology techniques that allow for effortless expansion and modification of the construct. 

Due to these reasons this fusion protein serves as an excellent platform for the creation of 

a class of protein based theranostic nanoparticles. Here we detail the design, synthesis, 

expression, purification and characterization of the system.  

3.2. Introduction 

Soft material nanoparticles formed by self-assembly of polymer macromolecules 

is an area of great interest in cancer diagnostics and imaging111. Nanoparticles less than 

150 nm in diameter generally avoid rapid clearance by the body213, possess the ability to 

extravasate into the tumor vasculature and be retained there due to the enhanced 

permeability and retention effect (EPR)67. They can also utilize targeting ligands to allow 

them to be targeted to specific disease states14. The base platform for theranostic systems 

is a nanoparticle structure often composed of inorganic materials such as gold 

nanoparticles214, magnetic iron oxide144 or organic materials such as liposomes215, 

polymer macromolecules216 and polymeric micelles217. Multifunctional theranostic 

(therapeutics + diagnostics) nanoparticles are gaining traction in nano-materials research 

and can be described as materials that aim to combine these features into a single 

package218. These agents are capable of delivering a therapeutic dose to a molecular 

target and providing diagnostic imaging at the same time5. 

Magnetic resonance imaging (MRI) is a technique used to acquire images of the 

body that are of high resolution and depict the anatomy clearly. In order to use MRI for 

disease detection however, there needs to be a significant enhancement of signal due to 

diseased tissues and healthy tissues having similar signal intensity139. An approach to 

enhance the signal is to use paramagnetic lanthanide ions such as gadolinium as contrast 
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agents, which interact with water protons and lead to a decrease in T1 relaxation time219. 

The most common MRI contrast agent clinically approved for use are gadolinium-DTPA 

(diethylene triamine pentaacetic acid) or gadolinium-DOTA (1,4,7,10-tetraazacyclo-

dodecane-1,4,7,10-tetraacetic acid). These contrast agents are limited by their relatively 

low relaxivities (~ 4-5 mM-1s-1), low rotational correlation time, limited number of 

coordinated water molecules and short tissues retention times137. A protein based MRI 

contrast agent, CA1.CD2136 is a novel gadolinium chelating protein that was rationally 

designed to overcome these limitations and was chosen as the diagnostic imaging 

component of this nanoparticle based MRI contrast agent. CA1.CD2 is derived from 

domain 1 of rat CD2 and was rationally designed to contain a high coordination Gd3+ 

binding site. This domain displays large r1 relaxivity values (~120 mM-1s-1), excellent 

contrast in T1 weighted imaging, a hydration number q of 2, strong selectivity for Gd3+ 

over physiologic metals and enhanced tissue retention time3-136. Other features that made 

this a desirable fusion partner is that it is entirely protein based which is encoded using 

only oligonucleotides, is composed of β sheet architecture and has strong stability against 

pH changes. Further the domain displays no acute toxicity in vivo and was shown to be 

cleared through the kidneys14. 

We have previously reported the self-assembly of ELP micelles through the 

addition of a negatively charged trimer forming oligomerization domain193 known as 

foldon191. These particles are temperature, pH and salt dependent and are some of the 

smallest ELP particles reported in literature41. Elastin-like polypeptides are part of a class 

of environmentally responsive biopolymers found in nature that are based on a repetitive 

peptide sequence of GαGβP161. The α position can consist of any amino acid and β 
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position can be any amino acid except for proline161. A distinct feature of ELP’s is that 

they undergo a sharp phase transition above a specific transition temperature (Tt), known 

as a lower critical solution temperature (LCST)220. Transition from above and below the 

Tt is a reversible process which is dependent on the length, concentration and amino acid 

composition of the  polypeptides, and can be triggered by many different stimuli 

including pH189, light221 and ionic strength222.  Due to their responsive nature, 

biocompatibility and specific control potential of Tt, ELP’s have been used as the 

platform for many ideas including drug delivery223, tissue engineering224, microfluidics225 

and hydrogels226. Using molecular biology techniques we were able to synthesize this 

system in a manner that allows for seamless integration of other domains227.  

ELP’s used as the platform for protein based nanoparticle MRI contrast agents 

possess many distinct advantages. These include the ability to control the size of the 

particles, precise tuning of the transition temperature and mechanism of stimulus. 

Modification of the amino acid sequence using modular molecular biology techniques 

allows for any number of targeting ligands or motifs to be included in the system which 

will allow result in an accumulation of contrast agent at a site of interest and 

subsequently increasing local concentration139, reducing dosage requirements228 and 

avoiding potential side effects related to excess gadolinium208.  

This paper will detail the process of incorporating the protein based MRI contrast 

agent CA1.CD2 with the three armed star elastin like polypeptide micelles to form a new 

MRI active multifunctional nanoparticle system (ELP-IMG). We show that the fusion 

protein of CA1.CD2 and ELP micelles maintain their individual properties. The ability to 

combine multiple functional properties in a single peptide provides a simpler approach to 
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form theranostic nanoparticles, compared to other multi-step synthetic methods. In 

addition, it provides a modular approach for designing particles with different properties 

without the need for post-translational modification. Thus this new fusion protein can 

serve as a modular platform for use in environmentally responsive organic theranostic 

systems.  

3.3 Materials and methods  

3.3.1. Gene Design and Preparation 

The gene encoding the ELP-foldon structure was synthesized as reported 

previously193,229. The base structure for the formation of particles has the amino acid 

sequence MGH(GVGVP)40-GYIPEAPRDGQAYVRKDGEWVLLSTFL. The use of 

directional ligation makes the process modular, allowing for simple incorporation of 

other domains.  

To synthesize the DNA that encoded the 99 amino acid CA1.CD2 gene, 18 

oligonucleotides were synthetically assembled including an N-terminal and C-terminal 

primer196. A detailed explanation of the process can be found in the materials and 

methods section.   
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Figure 3.1. Schematic detailing the construction of the ELP-IMG fusion protein. Any 

variation of ELP can be used as the base component at the N terminal and peptide 

targeting sequences as well as spacing elements can be implemented at the C terminal.  

3.3.2. Expression and Purification of Fusion Proteins  

Starter cultures were prepared from frozen stocks in 10ml LB media supplement 

with 100 mg/L ampicillin at 37°C. The starter cultures were then added to 1 L of LB 

medium and shaken at 300 rpm and 37°C. OD600 readings were taken until the mixture 

reached a level between 0.9-1.0 at which time 240 mg of IPTG was added for induction. 

After 5 hours of shaking the cells were collected by centrifuging at 7000xg for 30 

minutes. The cells were then lysed after being re-suspended in 30 ml of PBS using a 

sonic dismembrator. The soluble and insoluble fractions were separated by centrifugation 

at 4°C and 19000xg.  ELP-IMG was determined to be in the insoluble fraction through 

SDS-PAGE analysis and thus the cold pellet contained the protein. It was then re-

suspended in 10 ml of denaturing agent for 1 hour after which 190 ml of PBS was added 

and left to sit overnight. Centrifugation at 4°C and 7000xg followed and the protein was 

then present in the soluble fraction. Supernatant was collected and heated to 40°C at 

which point ELP-IMG precipitated out of solution followed by centrifugation at 17000xg 
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and 40°C. Two more rounds of the thermal cycling process were the performed and the 

final pellet was re-suspended in PBS.  

3.3.3. Characterization of Proteins 

Protein purity, trimer formation and molecular weight confirmation was 

performed using SDS-PAGE with 4-20% gradient Tris-HEPES-SDS gel. Samples were 

prepared in loading buffer containing 1% SDS and either heated above the denaturing 

temperature of the foldon domain230 (>70°C) for 5 minutes or left at room temperature to 

confirm the association of foldon.  Molar concentrations of the purified proteins were 

determined based on calculated extinction coefficients231 and absorbance at 280 nm 

measured on a Biomate 3 (Thermo Scientific).  

The transition temperature of the fusion protein was determined by measuring the 

UV-absorbance of solutions at 350 nm on a Shimadzu 1800 UV-vis spectrophotometer 

with an attached temperature control cell. 25 µM protein samples were made in PBS at 

neutral pH. Temperature ramp was done at 1°C / min across a range of 20-55° 

 Particle sizing was performed on a 90 plus Brookhaven particle size analyzer 

(Brookhaven Instruments). This unit is a fixed angle dynamic light scattering system with 

a Peltier temperature control system. Samples were made as 25 µM solutions in 1X PBS 

at varying pH conditions. The solutions were filtered using a .22 µM filter (Millipore) 

and loaded into quartz cuvettes. The pH was adjusted through the addition of filtered 1N 

NaOH.  

Measurements were performed in triplicate and made in 2-minute long runs. The 

results were analyzed by the BIC software, which utilized a non-negatively constrained 
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least squares algorithm (Brookhaven Instruments) and were reported as mean diameter of 

multimodal size distribution (MSD). 

3.3.4. Crosslinking of Nanoparticles 

Protein samples of varying concentrations were diluted in filtered H2O and had 

the pH adjusted to 10.2-10.4 using 1N NaOH. Stir bars were added to the sample and 

they were heated to 55°C with constant stirring for 1 hour. After 1 hour 10% 

glutaraldehyde was added to the solution to facilitate cross-linking of the micelles. 

Samples were kept in this state for at least 18 hours after which they were filtered using a 

.22 µM filter (Millipore). Samples were then dialyzed using 1000 Da MWCO 7 dialysis 

membranes (Spectra-Por) against PBS overnight. To test stability a sample of crosslinked 

particles was analyzed over a course of 44 days both above and below the Tt. Particle size 

measurements of the cross-linked micelles were then analyzed as described.  

3.3.5. Gadolinium Binding and Characterization 

Gadolinium chloride in citrate buffer at pH 4 was added to protein samples in 

appropriate molar concentrations with constant stirring overnight. Samples were then 

dialyzed at 4°C against PBS for at least 6 hours. After the addition of Gd3+ to protein 

solutions the samples were dialyzed to remove any potential excess Gd3+ and tested using 

the xylenol orange232 and Arsenazo III233 assays to ensure there was no free gadolinium 

present.  Confirmation of the amount of gadolinium bound to fusion protein samples was 

determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) 

[Perkins-Elmer] after the samples were diluted 300 times in 2% nitric acid.  
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T1 Relaxivity Measurements 

Aliquots of varying concentrations of Gd3+ loaded fusion proteins were loaded 

into NMR tubes. The T1 values of the proteins were measured using a minispec Mq60 

1.4 T 60 mHz analyzer (Bruker).  Runs were performed at 40°C and 10 points of 

measurement were taken. Relaxivity was calculated using the following equation: 𝑅1 =

,
+,ST

− ,
+,UVW

/𝐶, where C is the concentration of gadolinium bound to the protein. 

In vitro MRI Imaging 

MRI images were obtained on an Espree 1.5T clinical scanner (Siemens). 

Samples were contained in NMR tubes containing at least 200 µl of sample and arranged 

asymmetrically in a plastic rack holder. Control samples consisted of H20, PBS, and free 

Gd3+ free in solution. Images were produced using a gradient echo sequence (TE = 5.12 

ms, TR =150 ms, resolution matrix 512x336, 111 slices, slice thickness=  2mm). Sample 

images were collected and analyzed using OpenDicom viewer software. 

3.4 Results 

Protein Synthesis and Expression 

The fusion protein was successfully synthesized and purified with a yield between 

70 and 90 mg per liter of culture. SDS-PAGE (Figure 3-2) showed that when the foldon 

domain is heated above its thermal stability limit (lane 1 + symbol) we expect the trimer 

to dissociate into a monomer structure which is visible as the single band on the gel at 32 

kDa. By keeping the sample at room temperature (lane 2 – symbol) we demonstrate the 
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proper folding of the foldon domain by showing trimer structures that are 3 times the 

molecular weight of the monomer at 96 kDa.  

 

Figure 3.2. SDS-PAGE gel of ELP-IMG fusion protein structures. Samples were kept at 

room temperature (24°C) or heated above the thermal stability limit of foldon domain 

(100°C).  

Transition Temperature Measurements 

The transition temperature of the construct with bound Gd3+ and without bound 

Gd3+ was determined using a UV-vis spectrophotometer at 25 µM protein concentrations 

in PBS. The fusion protein at neutral pH and physiologic salt conditions has a Tt of 

31.7°C. The addition of Gd3+ to the fusion protein has no effect on the Tt value of the 

system.  
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Figure 3.3. Transition temperature panel of ELP-IMG fusion proteins. A) ELP-IMG Tt  

as a function of protein concentration in PBS. B) ELP-IMG Tt as a function of salt 

concentration C) Determination of ELP-Fusion protein Transition temperature (Tt) as a 

comparison of linear and trimer structures. Tt is characterized for gd3+ bound proteins 

(solid) and proteins with no gd3+ present (dashes).ELP-IMG Tt as a function of 

concentration in PBS. 
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Table 3.1. Transition temperature comparison (25 µM in PBS). 

 

Dynamic Light Scattering 

 

Dynamic light scattering (DLS) was then used to confirm that micelle formation 

was occurring at low salt and high pH conditions as depicted in Figure 3.4. At neutral pH 

and high salt conditions aggregation occurs into particles above 700 nm in size. However, 

at salt concentrations below 20 mM and pH between 10.2-10.4 the construct forms 

particles ~ 32 nm in diameter. This is comparable to ELP-foldon16 without the CA1.CD2 

domain. 

 

Construct Sequence Weight 
kDa 

Tt 
(°C) 

ELP40 MGH(GVGVP)40 17 41.5 

GVGVP40-
foldon 

MGH(GVGVP)40- GYIPEAPRDG 

QAYVRKDGEWVLLSTFL 
20 34.5 

GVGVP40-
CA1.CD2 

MGH(GVGVP)40- GPGVGRDSGTV 

WGALGHGIELNIPNFQMTDDID 

EVRWERGSTLVAEFKRKMKPFLKS 

GAFEIDANGDLDIKNLTRDDSGTY 

NVTVYSTNGTRILDKALDLRILE 

29 40.1 

GVGVP40-
foldon-

CA1.CD2 
(ELP-IMG) 

MGH(GVGVP)40-GYIPEAPRDGQ 

AYVRKDGEWVLLSTFL GPGVG 

RDSGTVWGALGHGIELNIPNFQ 

MTDDIDEVRWERGSTLVAEFKR 

KMKPFLKSGAFEIDANGDLDIKN 

LTRDDSGTYNVTVYSTNGTRILD 

KALDLRILE 

31.2 31.7 
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Figure 3.4. Dynamic light scattering of ELP-IMG compared to ELP-foldon. Tests were 

performed on samples of 25µM concentration at 42°C. A narrow distribution between 26 

and 34 nm is observed. After crosslinking the size increased to ~40 nm with a broader 

distribution.  

In order to prevent the samples from aggregating in physiologic conditions 

polypeptide micelles were cross-linked with glutaraldehyde. This cross-linking allows the 

system to exist as particles above or below the Tt in and dialysis in PBS prevents particle 

aggregation. The DLS results of the cross-linking experiment are shown in Figure 3.5. As 

the temperature is raised above the Tt (42°C), the constructs collapse and have an average 

size of 82.2 ± 5.7 nm and is not significantly affected by bound Gd3+ being present. To 

show the diameter changes that occur from crosslinking conditions to PBS, heated 4M 

NaCl was added in a drop-wise manner to crosslinked samples while continuously 

monitoring the particle size (Figure 3.7). In order to successfully complete this test the 

salt had to be added in time points of at least 15 minutes and had to be held at the same 

temperature as the protein in the DLS cell. The results are analogous to the dialysis 
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process, as the slow addition of salt results in particles that are approximately the same 

size as when the dialysis process is applied.   

	

	

Figure 3.5. DLS of cross-linked ELP-IMG. Dynamic light scattering results of cross-

linked solutions of 25 µM GVGP40-foldon-CA1.CD2 fusion protein. Samples were cross-

linked with 10% glutaraldehyde for 24 hours at 55°C filtered with a .22 uM filter, cooled 

and dialyzed against PBS. Samples were then transferred to quartz cuvettes Samples were 

run for in triplicate for 2 minutes each. After cross-linking the samples gadolinium 

solution was added in a drop wise manner then they were analyzed to determine if there 

was any change in particle size. 
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Figure 3.6. Shrinking and swelling behavior of crosslinked ELP-IMG samples in PBS.  

 

Figure 3.7. Particle size change in relation to amount of NaCl added. 
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Figure 3.8. Crosslink stability of ELP-IMG samples in H2O reaction conditions (A) and 

after dialysis in PBS (B) 

 When the crosslinked constructs are cycled from below to above their Tt, the 

strength of the crosslinks is confirmed and there is no longer dissociation of the particles 

into monomer form below the Tt (Figure 3.6). This shrinking and swelling behavior is 

carried over from crosslinking reaction conditions when dialysis in PBS occurs. Further 

these particles display strong stability over time, as they were tested over a course of 44 

days. Each time they were tested particle size was measured above and below Tt, to 

ensure the stability of the crosslinks. Between tests samples were stored at 4°C.  

Transmission electron microscopy on a FEI tecna G2 Twin instrument was 

performed on dehydrated cross-linked fusion protein samples. A 5 µL sample was placed 

on the TEM grid at room temperature and left to dry and any excess sample was wiped 

off the grid. The samples were then imaged at 160Kv as shown in Figure 3.9. 
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Figure 3.9. TEM results of crosslinked ELP-IMG in PBS. TEM results of dehydrated 

cross-linked 10 µM protein sample ELP-IMG constructs in 1xPBS and neutral pH.  

Relaxometry 

Gd3+ loaded fusion proteins were used to determine the T1 relaxivity of the 

construct at 1.4T field strength. To ensure that no free Gd was present in samples the 

methods of section 2.7 were applied. Relaxivity values were plotted according to the 

following equation. Varying gadolinium concentrations and the slope of the resulting line 

gives the values for T1 relaxivity (Figure 3.10). 

1
𝑇1Z[

−
1

𝑇1\]^
= 𝑅1[𝐺𝑑`a] 

The results of the relaxivity experiments show that the fusion protein is capable of 

providing T1 relaxivity of 21.7 mM-1s-1for cross-linked nanoparticle samples, 31.7 mM-

1s-1for soluble constructs samples and 34.8 mM-1s-1 for soluble monomers. These values 

are significantly higher than clinical MRI contrast agents (~4 mM-1s-1). 
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Figure 3.10. Relaxivity plots for ELP-IMG in various conditions. Relaxivity plots for 

cross-linked fusion protein samples, soluble trimer protein samples and soluble 

monomers. The results show a linear relationship between Gd3+ concentration and 1/T1 

values. The slope of the lines is the value of the relaxivity r1 of the constructs 

 

In vitro MRI Imaging 

The results of the MRI experiments confirmed the relaxometry findings. Fusion 

protein samples with bound gadolinium were used to determine the contrast provided in 

T1 weighted images using a 1.5 T scanner (Siemens Espree). The results of the imaging 

show that the fusion protein is capable of producing contrast in T1 weighting (Figure 

3.11) and that the intensity of the contrast increases slightly with increasing Gd3+ 

concentration. These results correlate with what is found for the CA1.CD2 domain 

alone136 
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Figure 3.11. T1 weighted MR images of ELP-IMG. T1 weighted MR image of fusion 

protein samples using GRE sequence (TE = 5.12 ms, TR =150 ms, resolution matrix 

512x336, 111 slices, slice thickness= 2mm). Samples 1-4 are soluble protein samples at 

varying concentrations in 1xPBS and neutral pH. Samples 5-8 are cross-linked nano-

particles and are in 1xPBS at neutral pH. The images are arranged in the following order 

1) 0.025 mM Gd3+- ELP-IMG 2) 0.050 mM Gd3+-ELP-IMG 3) 0.1 mM Gd3+ ELP-IMG 

4) 0.15 mM Gd3+ ELP-IMG 5) 0.01 mM Gd3+ ELP-IMG 6) 0.025 mM Gd3+ ELP-IMG 7) 

0.05 mM Gd3+ ELP-IMG 8) 0.1 mM Gd3+ ELP-IMG 

3.5 Discussion  

The addition of an imaging domain to self-assembling ELP nanoparticles to create 

a new nanoparticle based MRI contrast agent opens up numerous possibilities for its use 

as a potential biomarker system or as a theranostic platform. A distinct advantage of this 

system is the ability to seamlessly integrate any ELP-foldon construct as the base using 

molecular biology. The Tt or any other condition used to drive the stimuli can be 

optimized for potential use in vivo through amino acid substitution. Further addition of 

any peptide based targeting moiety can be accomplished in the same manner. This allows 

for the creation of any number of systems composed of entirely organic components, 

without the need for any post-translational modification. This eliminates the need for any 

excess conjugation steps or further chemistry being performed on the system in order to 
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add functionality. To our knowledge this is the first MRI active elastin-like polypeptide 

nanoparticle system reported in literature.  

The first and most important part of this fusion was to ensure that both proteins 

retained their positive properties after the fusion takes place. The ELP retains its 

responsive behavior while the imaging domain retains the ability to effectively bind 

gadolinium. ELP constructs are defined by their transition temperature (Tt), which is a 

measure of the temperature at which the protein transitions from a soluble state below the 

Tt to an insoluble state above the Tt. The Tt of ELP-IMG is 31.7°C with or without bound 

gadolinium ions, compared to 34.5°C for ELP-foldon. Similarly when the construct was 

created without the foldon domain, the Tt was 40.8°C compared to 41.5°C for ELP40. 

This is a good indication that the CA1.CD2 domain binding gadolinium does not interfere 

with ELP properties nor does the trimerizing foldon domain cause a loss of CA1.CD2 

domain properties.   

When Dynamic light scattering was performed on these samples it was shown that 

the ELP-IMG constructs forms stable micellar nanoparticles in non-physiologic 

conditions (low salt, high pH), which is indicative of previously seen activity from ELP-

foldon constructs. The foldon domain at the C terminal of ELP carries a net negative 

charge and will act as a hydrophilic head group creating micelle structures with 3 

hydrophobic ELP chains and a charged head group.  We anticipated that the CA1.CD2 

domain would not interfere with the activity of the ELP-foldon structure due to its similar 

architecture; stability across a range of pH’s and net negative charge. In essence the 

CA1.CD2 positioned after the foldon domain acts an extension of the head group to 

encourage micelle formation. The results of dynamic light scattering showed that this was 



	 145	

the case as in conditions of low salt and high pH the fusion protein formed micelles with 

an average diameter of 31.65 ± 1.45 nm. In low salt conditions the charge on the head 

groups is sufficiently shielded in order to prevent aggregation and allow micelle 

formation to take place.  

To use the micelles as a theranostic platform the micelles need to be stable in 

physiologic conditions i.e. high salt and neutral pH. A method to stabilize micelles into a 

single nancoparticle shape regardless of temperature, salt or solution conditions is 

through the use of crosslinking42. Various methods have proven to be effective for cross-

linking micelles including dimethyl 3,3-dithiobispropionimidate (DTBP)234, disulfide 

based cross-linkers235 and glutaraldehyde236. Glutaraldehyde was chosen as the cross-

linking agent since it is considered most effective at high pH values, in which the 

micelles form. After the crosslinking reaction took place the size of the micelles 

increased to 39.7 ± 4.8 nm with a broader distribution than non-crosslinked micelles. To 

be utilized in physiologic conditions dialysis into PBS dynamic took place after which 

light scattering revealed that the constructs had increased in size to about 82.5 ± 5.7 nm at 

42°C which is approximately 2.5 times the size of non-cross-linked ELP-IMG constructs. 

The increased salt content may cause the construct to swell as the shielding on the 

headgroup decreases and the headgroup decreases in size. This was further confirmed by 

the addition of salt to crosslinked samples and monitoring particle size changes (Figure 

3.7). The strength and stability of the crosslink reaction was also shown through the 

shrinking and swelling behavior of the particles as well as monitoring their stability over 

the course of 44 days. It is possible that due to the nature of glutaraldehyde cross-linking 

being non-specific head-groups are being cross-linked together creating nanoscale 
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aggregates of micelles rather than individual micelle structures. Further the crosslinking 

reaction causes a slight increase in diameter, indicating that multiple micelles may be 

being crosslinked together. This is consistent with the TEM image of the constructs in 

Figure 3.9. However, the strength and nature of the glutaraldehyde cross-linking is 

sufficient enough to prevent the structures from losing their nanoparticle structure and 

becoming completely soluble again. 

Relaxometry measurements show that the ELP-IMG constructs display a r1 

relaxivity value of 35.4 mM-1s-1 for soluble monomers, 31.7 mM-1s-1 for soluble trimer 

constructs and 21.7 mM-1s-1 for cross-linked samples. These results are less than what is 

reported for the CA1.CD2 domain on its own, which is 117 mM-1s-1 however, they are 

still 5 times larger than that of Gd-DTPA and comparable to other micelle based contrast 

agents with Gd3+ chelators237.  One possible explanation for the drop in relaxivity of the 

constructs is that the CA1.CD2 domains become crowded when they form after the 

foldon headgroups in micelle structures. When Gd3+ ions are closely packed together as 

they would be in this situation it brings two paramagnetic centers into close proximity238, 

which in turn causes, a reduction of proton relaxivity (r1) by increasing the transverse 

electronic relaxivity12. To understand this further, on a per volume basis the number of 

trimers per micelle can be calculated using the molecular weight of trimer as 93,600 

g/mol, a density of 1.2*103 g/L and the radius of an ELP-IMG micelle as 16nm. The 

volume of an ELP-IMG trimer is 363.15nm3. The volume of ELP-IMG micelle can be 

calculated using 4//3πr3, giving a value of 17,157 nm3. The number of trimers per micelle 

can then be calculated as 47 and with 3 gadolinium binding sites per headgroup, it is a 

total of 141 gadolinium binding sites per micelle.  
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In the cross-linked constructs the relaxivity decreases further. This can most likely 

be explained by the non-specific nature of using glutaraldehyde cross-linking for this 

process. The crosslinking process brings multiple headgroups closer together. Thus if 

multiple CA1.CD2 domains are being cross-linked together or packed on top of each 

other in the cross-linked structure the proximity of paramagnetic centers would be even 

closer. Compounding this would be a possible loss of availability to bulk water in the 

particle, which would reduce the ability of water exchange to take place for the CA1.CD2 

domain as compared to the water available in the soluble constructs. When these are 

crosslinked the number of gadolinium binding sites per headgroup most likely increases 

even further potentially explaining the crowding condition. In order to optimize the 

relaxivity properties of the construct different ELP architectures, including mixtures of 

linear and trimer structures need to be investigated to attempt to reduce headgroup 

crowding 

3.6 Conclusion 

Taken as a whole, this fusion protein represents a promising wholly peptide based 

MRI contrast agent with potential for use in in vivo applications and as a future platform 

for theranostic systems. The system exists as a nano scaled structure in physiologic 

conditions that is dependent only on the temperature of solution to drive the transition. 

Diagnostic imaging in MRI is provided by the fusion of the CA1.CD2 domain, which 

provides positive contrast in T1 weighted imaging at low gadolinium concentrations. 

Further expansion or modification of the construct is made possible through simple 

molecular biology procedures eliminating the need for post-translational modification. 
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CHAPTER IV 

ACTIVE TARGETING EFFECTS OF THERANOSTIC NANOPARTICLES OF 

ELASTIN-LIKE POLYPEPTIDES 

4.1. Abstract 

The addition of active targeting to a theranostic protein system based nanoparticle 

system, which is capable of MRI contrast and disease state targeting specificity is 

described. This theranostic system is composed of nanoparticles of the protein-based 

polymer elastin-like polypeptide. We previously described the development of 

nanoparticle contrast agents based on the fusion of these particles with a MRI binding 

domain. The system has been further enhanced to provide specific targeting through the 

addition of the gastrin-release peptide decorated on the outside of the nanoparticles. The 

construct displays relaxivity that is approximately four times higher than current clinical 

contrast agents and the contrast agent provides enhancement in cell lines in a short time 

frame. Being entirely protein based and highly amenable to alteration, this platform 

serves as an excellent candidate for soft matter theranostic systems.  
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4.2. Introduction 

Theranostics is a revolutionary new field of research that aims to combine both 

therapeutic and diagnostic imaging components into a single nanoparticle formulation218. 

Eventually formulations of this nature will help to create a future of personalized 

medicine, where treatments are designed to meet the specific needs and can be tailored to 

the specific response of individual patients6. Due to the variability in response for each 

patient to a therapeutic formulation, this concept may help to increase the efficacy of 

cancer treatment. The use of theranostic nanoparticles decorated with targeting elements 

and molecular imaging can lead to site specific treatments and positive recognition of the 

interactions111. This approach has multi-fold benefits, which include individualized dose 

response recognition, real-time monitoring of the response to combinatorial treatments 

and the possible creation of a new class of biomarkers for recognition of phenotypes. 

 Nanoparticles are vital to the success of creating theranostic systems and can be 

composed of inorganic or organic components including polymers239, lipids39, 

dendrimers41 and magnetic iron oxide144. In the case of cancer cells, the size and shape of 

nanoparticles offer great advantages in their ability to localize to these cells more so than 

to normal cells through the enhanced permeability and retention effect (EPR)67 and a 

general method known as passive targeting. This strategy has been shown to be 

successful in demonstrating a level of accumulation of nanoparticles at the target site. 

The EPR effect is limited by the poor vascularization of large tumors as well an 

insufficient accumulation of nanoparticles to achieve diagnostic imaging240.  

 These limitations can be overcome through the use of active targeting, which 

involves the attachment of targeting ligands or peptides to the surface of the 
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nanoparticles77.  The targeting ligands have high affinity for various receptors or antigens 

present on the cell surface. When the targeted particles interact with these receptors, 

binding occurs through ligand-receptor interactions that can lead to receptor-mediated 

endocytosis and localization of the nanoparticle inside the tumor81.  In order for active 

targeting to be successful the receptors must be over-expressed on the cell surface and 

should be evenly distributed to ensure the whole surface has a chance to experience the 

targeted nanoparticle241. The gastrin release peptide targeting ligand is a bombesin 

analogue used for prostate cancer specific targeting. This peptide targets to the gastrin-

release peptide receptor (GRPR) which is a G-protein coupled receptor106 and is over-

expressed on many types of cancers including pancreas106, breast107, and prostate108. A 

recent study found that GRPR was highly over-expressed in lower grade prostate cancer 

tumors, indicating that the GRPR is a potential target for early detection using theranostic 

nanoparticles81. Prostate cancer is the second most highly diagnosed cancer in men and 

the second leading cause of cancer related death1. If prostate cancer becomes too 

advanced, it will reach a state where it is not treatable known as prostate resistant cancer 

(PRC), thus early detection is critical96.  

 The use of magnetic resonance imaging (MRI) as the imaging modality for this 

theranostic system is desirable due to the fact that it is a non-invasive technique, high 

anatomical contrast and high spatial resolution242. When utilized for the purpose of 

disease detection and diagnosis of cancer states, however, there is a lack of sufficient 

contrast between the cancerous state and the surrounding healthy tissue219. MRI contrast 

agents are used to overcome this limitation, with the majority being based on the 

lanthanide, gadolinium243, which produces positive contrast images. Although contrast 
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agents are widespread in use, both in clinical and diagnostic practice, they have several 

drawbacks. These include a relatively low relaxivity on the order of 3-8 mM-1s-1, which 

leads to a large amount of contrast agent required to generate sufficient contrast137. 

Second, typical contrast agents are cleared rapidly from the vasculature through renal 

mechanisms, which lead to poor tissue retention and the need for repeated dosages. Using 

nanoparticle based contrast agents has shown the ability to overcome these limitations 

mainly through an increase in rotational correlation time which increases the molecular 

tumbling rate and increases with increasing molecular weight132. Further combing 

nanoparticle based MRI with active targeting strategies allows for specific targeting and 

imaging of a disease state with enhanced contrast accumulation244.  

 We have previously reported the design and characterization of elastin-like 

polypeptide (ELP) based micelles193. These nanoparticles are environmentally responsive 

and form with the aid of a negatively charged head group. ELPs are a genetically encoded 

responsive biopolymer based on the repetitive pentapeptide sequence VPGXG161. The X 

position is typically valine, but is substitutable for any of the amino acids except for 

proline, which makes for a limitless number of combinations. The most desirable feature 

of ELPs is their transition temperature (Tt) behavior where in an increase in the 

temperature of solution causes the ELP to change from a soluble state to an insoluble 

state where they aggregate into coacervates245. This behavior is rapid, reversible and able 

to altered in many ways including chain length and weight of the ELP199, the composition 

of the guest residue200 and solute conditions246, giving a wide range of options for tuning 

the response of the protein to different conditions. As the basis for a theranostic system, 

the combination of tunable responsive behavior, control over composition, size, and 
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charge along with generally biocompatible behavior make ELPs an excellent material 

choice.  

 Fusion with the protein based MRI contrast agent CA1.CD2 was successfully 

achieved, and described in previous chapters. This cross-linked nanoparticle system 

displayed a relaxivity approximately five times that of clinical contrast agents, and 

displayed tolerance to being incubated with human serum as well as with zinc indicating 

stability of gadolinium binding. New modifications to the system include the addition of 

active targeting elements, through use of the gastrin release peptide c terminal fragment. 

This peptide was added to the system using common molecular biology techniques, and 

included a flexible spacer element between the headgroups and the targeting peptide. 

After expression and purification of the protein the contrast agent properties were 

examined, and the targeting efficacy of the modified ELP nanoparticles was investigated 

in three cancer cell lines. This system is the first ELP based theranostic nanoparticle 

reported in literature and is a promising candidate for use in many applications.  

4.3. Materials and Methods  

4.3.1. Gene Design and preparation 

 The genes that encode the ELP-THO structure (GVGVP40-foldon-CA1.CD2-

Spacer-GRP) were synthesized as previously reported. To modify the structure of ELP-

foldon-CA1.CD2 to allow for addition of gastrin release peptide receptor a new set of 

oligonucleotides were created, as represented in Table 1, which includes a flexible spacer 

between the head-groups and targeting elements. The amino acid sequence, which 
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contains the spacer and the targeting element, is represented by: 

GPGVGWTSTGPQSSNTGNPSTSGQNNVPGNHWAVGHLM 

Table 4.1. Oligonucleotides used to create ELP-THO construct. Representation of 

oligonucleotides used to encode the spacer and gastrin release peptide receptor fragment. 

4.3.2. Protein expression, purification, and characterization 

Starter cultures were prepared from frozen stocks in 50 ml TB media supplement 

with 100 mg/L ampicillin at 37°C. The starter cultures were then added to 1 L of TB 

medium and shaken at 300 rpm and 37°C. OD600 readings were taken until the mixture 

reached a level between 0.9 and 1.0 at which time 240 mg of IPTG was added for 

induction. After shaking for a time of 5 hours the cells were collected by centrifugation at 

9000xg for 30 minutes at 4°C. The cells were then lysed after being re-suspended in 30 

ml of PBS using a sonicator. The soluble and insoluble fractions were separated by 

DNA Sequence Primer Name 

TATGGGCCACGGCGTGGGTGGGAATCACTGGGCAGTGGGACACTTG

ATGTGAGCCCGGTGGGC  

 

GRP Forward 

CACCGGGCTCACATCAAGTGTCCCACTGCCCAGTGATTCCCACCCAC

GCCGTGGCCCA 

 

GRP Reverse 

TATGGGCCACGGCGTGGGTTGGACCTCTACTGGCCCGCAATCCTCTA

ACACTGGCAATCCGTCTACCTCTGGTCAAAATAACGTGCCGGGC 

 

Spacer Forward 

CGGCACGTTATTTTGACCAGAGGTAGACGGATTGCCAGTGTTAGAG

GATTGCGGGCCAGTAGAGGTCCAACCCACGCCGTGGCCCA 

Spacer Reverse 
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centrifugation at 4°C and 27000xg.  The protein was determined to be in the insoluble 

fraction in our previous study, which required the need for denaturation. The insoluble 

fraction from the first cold spin was re-suspended in 8M urea and sat at 4°C for at least 6 

hours and subsequently dialyzed against 4 M urea at 4°C overnight, followed by dialysis 

against 2 M urea at 4°C overnight. Dialysis then took place against water three times for 

at least 2 hours followed by centrifugation at 4°C and 27000xg. The soluble portion from 

this centrifugation contained the final protein, which then was dialyzed against water at 

4°C for at least 24 hours to remove any residual salts from the denaturation process.  

Protein purity, trimer formation and molecular weight confirmation was 

performed using SDS-PAGE with 4-20% gradient Tris-HEPES-SDS gel. Molar 

concentrations of the purified proteins were determined based on calculated extinction 

coefficients231 and absorbance at 280 nm measured on a Biomate 3 (Thermo Scientific).  

The transition temperature of the fusion protein was determined by measuring the 

UV-absorbance of solutions at 350 nm on a Shimadzu 1800 UV-vis spectrophotometer 

with an attached temperature control cell. Particle sizing was performed on a 90 plus 

Brookhaven particle size analyzer (Brookhaven Instruments). This unit is a fixed angle 

dynamic light scattering system with a Peltier temperature control system. Samples were 

made as 25 µM solutions in PBS at varying pH conditions. The solutions were filtered 

using a 0.22 µm filter (Millipore) and loaded into quartz cuvettes and the pH was 

adjusted through the addition of filtered 10 N NaOH. Measurements were performed in 

triplicate and made in 2-minute long runs. The results were analyzed by the BIC 

software, which utilized a non-negatively constrained least squares algorithm 
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(Brookhaven Instruments) and were reported as mean diameter of multimodal size 

distribution (MSD). 

For crosslinking reactions protein samples of varying concentrations were diluted 

in filtered water with the pH adjusted to 10.2-10.4 using 10 N NaOH. Stir bars were 

added to the sample and they were heated to 55°C with constant stirring for 1 hour. After 

1 hour pre-warmed 10% glutaraldehyde (~2 µl) was added to the solution to facilitate 

cross-linking of the micelles. Samples were kept in this state for at least 18 hours after 

which they were filtered using a .22 µM filter (Millipore). Samples were then dialyzed 

using 1000 Da MWCO float-a-lyzer dialysis tubes (Spectra-Por) against PBS overnight. 

Particle size measurements of the cross-linked micelles were then analyzed as described.  

Transmission electron microscopy (TEM) took place on FEI tecna G2 twin instrument on 

crosslinked protein samples in PBS at room temperature.  

4.3.3. MRI imaging properties and characterization  

Gadolinium chloride in citrate buffer was added to cross-linked protein samples in 

appropriate molar concentrations with constant stirring overnight. Samples were then 

dialyzed at 4°C against PBS for at least 6 hours to remove any potential excess Gd3+ and 

tested using the xylenol orange212 and Arsenazo III210 assays to ensure there was no free 

gadolinium present.  Confirmation of the amount of gadolinium bound to fusion protein 

samples was determined by inductively coupled plasma optical emission spectroscopy 

(ICP-OES) [Perkins-Elmer]. The samples were diluted 300 times in 2% nitric acid using 

rhenium as an internal standard and compared to calibration plots. Aliquots of varying 

concentrations of Gd3+ loaded fusion proteins were loaded into NMR tubes. The T1 



	 156	

values of the proteins were measured using a mini-spec Mq60 1.4 T 60 mHz analyzer 

(Bruker).  Runs were performed at 40°C and 10 points of measurement were taken. MRI 

images were obtained on an Espree 1.5 T clinical scanner (Siemens). Samples were 

contained in NMR tubes containing at least 200 µl of sample and arranged 

asymmetrically in a plastic rack holder. Images were produced using a gradient echo 

sequence (TE = 5.12 ms, TR =150 ms, resolution matrix 512x336, 111 slices, slice 

thickness =  2 mm), and these images were collected and analyzed using OpenDicom 

viewer software. 

4.3.4. Cell Culture and Passaging  

Cancer cell lines were chosen based on their expression levels of gastrin release 

peptide receptor108. The three lines chosen were pC3 prostate cancer cells247, U87 RFP 

glioblastoma248, and H441 lung cancer249. The pC3 and H441 lines were ordered from 

ATCC and the U87 RFP glioblastoma cells were a gift from Dr. Joanne Belovich. All 

cells were grown in a sealed incubator at 37°C and 5% CO2. U87 cells were grown in 

Eagle’s minimum medium 10% FBS supplemented with 5 ml L glutamine (0.292 gm/L), 

5 ml 100 x non-essential amino acids (10 mM concentration of each within the solution), 

10 ml 1x HEPES buffer, 5 ml pen strep (100 I.U. /ml penicillin and 100 ug/ml 

streptomycin) and 0.5 ml of 250 mg/ml amphotericia-B. Prostate cancer cell line, pC3 

(ATCC CRL-1435) was ordered from ATCC and grown in F-12K media with 10% FBS. 

H441 (ATCC HTB-174) lung cancer cells were ordered from ATCC and grown in 

RPMI-1640 media with 10% FBS.  Cells were passaged when they reached 75-80% 

confluence. Standard passage protocols were applied and passage number was kept less 

than 8 before using a fresh culture of cells.  
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4.3.5. ELP Targeting Properties and Fluorescent Imaging  

From a fresh passage of cells, total number of cells was counted. Once seeding 

density was determined for each well per plate to transfer into, an appropriate amount of 

cell suspension was added to each well and diluted with an appropriate amount of fresh 

media. Cells were left to grow on the plates and were checked after 24 hours to ensure 

that attachment took place. Once that was determined the media was aspirated and 

replaced with fresh media and left to sit for 1 hour after which, protein samples at 

appropriate concentrations were incubated with the cells. ELP’s were labeled with 

Flourescein isothioctanate (FITC), using a labeling kit (Pierce) and following standard 

protocols. After incubation times were completed the media was aspirated from the wells 

and cells were washed 2 times with ice cold sterile PBS and removed. Following this 

cells were washed with ice cold 4% paraformaldehyde for 5 to 8 minutes, followed by 

washing one more times in ice cold PBS for minutes. Solution was removed and DAPI 

was added and allowed to sit for 5 minutes before filling well with PBS and beginning 

microscopy studies. An inverted fluorescent microscope (Zeiss Axiovert) was used for 

imaging localization of ELP’s within the cells at wavelengths corresponding to FITC 

(588 nm) and DAPI (461 nm) or red for RFP proteins (615 nm). Images were collected 

and processed in ImageJ.  

4.3.6. MR Imaging of cells  

ELP-THO-Gd3+ at 4 different protein concentrations was incubated with PC3 

cells for 4 hours. As controls both ELP-IMG-Gd3+ and Gd3+Cl in citrate buffer were 

incubated with the cells for the same time period. At the completion of incubation period, 

the cells were washed three times with ice-cold PBS and removed from their wells with 
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trypsin. After trypsinization of the cells, volumes of 500 µl were then transferred into 

micro-centrifuge tubes and spun down. The resulting pellets in solution were kept on ice 

and taken immediately for MR imaging.  

4.4. Results  

Protein Synthesis, Expression and Characterization 

Expression of the protein was successful and produced yields between 80 and100 

mg/ml per liter of culture. Results of SDS-PAGE gel show that the trimer structures were 

folding correctly and are represented in Figure 4.1.  

 

Figure 4.1. SDS-PAGE results of protein expression. Lane 2 represents the sample at 

room temperature with the trimer form present slightly above the 102 kDa marker and the 

monomeric form is represented by Lane 1 at 100°C with a molecular weight between the 

31 and 38 kDa marker.  

The amino acid sequence of the construct was confirmed by DNA sequencing (Cleveland 

Clinic genomics core) and was found to be MGH-(GVGVP)40-

GYIPEAPRDGQAYVRKDGEWVLLSTFL 
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GPGVGRDSGTVWGALGHGIELNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPF

LKSGAFEIDANGDLDIKNLTRDDSGTYNVTVYSTNGTRILDKALDLRILE 

GPGVGWTSTGPQSSNTGNPSTSGQNNVPGNHWAVGHLM. The molecular weight 

of this construct in monomer form is calculated to be 35,267 daltons.  

 Transition temperatures (Tt) of protein samples were measured at a range of 25 

protein concentrations in PBS, as well as a 25 µM protein concentration sample in 

varying salt conditions. At neutral pH and in PBS the transition temperature of the 

protein at a concentration of 25 µM is 32.4 °C. When gadolinium is added to the system 

the Tt is unchanged. Figure 4.2 represents a collection of Tt measurements taken as a 

function of concentration and salt in comparison to the same construct without targeting 

elements.  

 

Figure 4.2. Transition temperature measurements as compared to ELP-IMG. Comparison 

of Tt values between ELP-THO and ELP-IMG: A) As a function of protein concentration 

B) As a function of NaCl concentration. Values of the two constructs are comparable 

indicating insignificant change in protein character after addition of targeting elements.  
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When dynamic light scattering was performed on the samples the self-assembly 

of micelles was confirmed. In micelle forming conditions (salt <30 mM pH 10.2-10.4), 

the constructs self-assemble into micelles above Tt with an average diameter of 37.7 ± 

2.9 nm, and is comparable to previous iterations of the constructs (Figure 4.3c). After 

cross-linking the nanoparticles have an average diameter of 44 ± 3.8 nm with a slightly 

broader distribution. After dialysis in PBS overnight, the construct’s particle diameter 

above the Tt increases to 70.8 ±1.8 nm, while below the Tt the particle diameter swells to 

a size of 94.8 ±5.8 nm and the constructs do not dissociate. These particle diameters are 

visible in Figure 4.3.   
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Figure 4.3. Particle size characterization of ELP-THO construct. A) Particle diameter in 

H2O particle forming conditions and in reaction conditions. B) Cross-linked particle 

behavior above and below the Tt. C) Comparison of 3 ELP nanoparticle constructs 

Using methods described previously, TEM images were acquired and further confirmed 

the nanoparticle scale of the crosslinked constructs as shown in figure 4.4.  
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Figure 4.4. TEM images of ELP-THO. TEM images of crosslinked ELP-THO samples at 

room temperature in PBS.  

Gadolinium addition, characterization, and imaging properties  

Gadolinium chloride in citrate buffer (Acros) was added to cross-linked ELP-

THO proteins in a drop-wise manner and allowed to stir overnight.  It was found that a 

protein to gadolinium ratio of 1:1 was required to ensure the level of excess gadolinium 

present in the solution was minimal (<10%). ICP-OES analysis with the presence of the 

internal standard showed 95-100% recovery of internal standard, which indicates that the 

protein was not interfering with the detection of gadolinium. Xylenol orange and 

Arsenazo III assays were used to show that the amount of excess gadolinium present was 

< 10%.  After addition and determination of bound gadolinium, relaxivity values were 

determined using a series of ELP-THO Gd3+ chelates at varying concentrations and 37°C. 

The results showed that the crosslinked constructs had a r1 relaxivity of 15.17 mM-1s-1, 

which is slightly less than ELP-IMG (21.7 mM-1s-1).  
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Figure 4.5. Relaxivity plot for ELP-THO construct compared to ELP-IMG. A linear 

relationship is observed between the Gd3+ concentration and 1/T1 values, and when 

plotted as a line the slope gives the r1 value of the construct as a whole.  

MR Imaging 

The results of the phantom experiment showed that the construct was displaying contrast 

in T1 weighted imaging. Samples of increasing Gd3+ content (as measured by ICP-OES) 

displayed increasing contrast (Figure 4.6).   
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Figure 4.6. T1 weighted MR image of ELP-THO constructs. Phantom MR images of 

cross-linked ELP-THO-Gd3+ samples in PBS. Gd content was present in the samples as 

follows A) 0.01 mM B) 0.05 mM C) 0.1 mM D) 0.15 mM and T1 weighted MR images 

were obtained using GRE sequence (TE = 5.12 ms, TR =150 ms, resolution matrix 

512x336, 111 slices, slice thickness= 2 mm) 

Active targeting properties of ELP-THO 

Incubation of ELP-THO with gastrin release positive and negative cell lines and 

subsequent fluorescent microscopy imaging confirmed that the attachment of the gastrin 

release peptide targeting fragment allowed for active targeting of ELP constructs. As a 

negative control ELP without the targeting fragment also underwent the same procedure 

and was shown to have no interaction with the cell lines (Figures 4.7 and 4.8). 
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Figure 4.7. Immunohistochemistry panel of ELP-THO for 3 cell lines. Panel of three cell 

lines with either positive or negative GRPR content incubated with ELP-THO labeled 

with FITC. Images are taken at three wavelengths and merged to determine the nature of 

the targeting.  

 

Figure 4.8. Immunohistochemistry panel of ELP-IMG as negative control. 3 cell lines 

negative control using ELP-IMG labeled with FITC incubated with PC3 cells.  

 

Specific uptake and targeting of PC3 cells was investigated with different time points of 

incubation for 25 µM ELP-THO constructs labeled with FITC. Time points chosen were 
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30 minutes, 1.5 hour, 4 hours. Fluorescence microscopy indicated that the nanoparticles 

were targeting PC3 cells and were able to undergo interaction with cells in 30 minutes 

(Figure 4.9).  MR Imaging of cells was performed to show that Gd3+ loaded targeted 

constructs would display MRI contrast even after interaction with cells (Figure 4.10). 

 

Figure 4.9. Uptake of ELP-THO-FITC in PC3 cells at 3 time points. PC3 cells (25,000 

cells/well) incubated with 25µM ELP-THO at three time points a) 30 minutes b) 90 

minutes c) 4 hours. The images were taken at three wavelengths and merged.  
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Figure 4.10. MR imaging of incubated cell pellets. PC3 cells at a density of 80,000 

cells/well were cultured. ELP-THO Gd3+ was incubated at four concentrations (1-4) with 

the cells for 4 hours, followed by harvesting and imaging. As controls Gd3+ only at a 

concentration of 100 µM was incubated with cells (7) as well as the protein construct 

without targeting elements (5-6).  

 

Cytoxicity assays 

The results of the live/dead assay showed that ELP constructs displayed minimal toxic 

effects on PC3 cells while constructs with excess GTA and Gd3+ provided a higher level 

of toxicity. DMSO was used as a control to provide a majority of cells as dead while one 

well was left completely alive.   
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Figure 4.11. Live / Dead controls cytotoxicity %. Results of a series of controls to 

determine cell viability using a live / dead assay, which shows that ELP constructs 

inherently display minimal toxic effects on cells. 

 

..  

Figure 4.12. Live / Dead control A) ELP-THO with Gd3+ B) DMSO control. 

The live / dead assay were performed as function of ELP concentration in samples of 

both PC3 cells, and U87 cells.  The results showed that as ELP concentration increased 

the toxic effects remained minimal (Figure 4.13).  
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Figure 4.13. Live / Dead as a function of protein concentration. A) ELP-THO at protein 

concentrations from 25-150 µM incubated with PC3 cells.  B) ELP-THO at protein 

concentrations from 25-150 µM incubated with U87 cells.  
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4.5. Discussion  

The addition of targeting elements to MRI active nanoparticles of elastin-like 

polypeptides (ELP-IMG) is the first step to transforming the previously described system 

into a theranostic nanoparticle. These targeting peptides allow for disease state specific 

interaction between ELP nanoparticles and receptor positive cell lines.  

After the addition of the targeting domains, it was important to determine the 

changes on the ELP properties. Transition temperature (Tt) behavior was characterized 

and compared to ELP-IMG. The Tt was found to be 32.4°C at 25 µM in PBS which is 

comparable to previous results. Further over a series of protein concentrations and salt 

concentrations the construct behaved in an expected manner. Also, with the addition of 

gadolinium, there was not an appreciable change in the Tt. This is a strong indication the 

addition of the spacing element and targeting peptide has no adverse effect on the ELP 

properties. When samples were prepared in micelle forming conditions (low salt, high 

pH) micelle self-assembly took place as expected and is comparable to both ELP-

foldon193 and ELP-IMG with an average diameter of 37.7 ± 2.8 nm. Cross-linking of the 

micelles was undertaken to stabilize the particles and prevent dissociation of the micelles 

in physiologic conditions. Another benefit of crosslinking the ELP-THO with 

glutaraldehyde (GTA) is that GTA has been shown to reduce drug burst release levels, 

reduce release rates and increase the time it takes for total drug release to occur174. After 

crosslinking took place in GTA the diameter of the constructs increased slightly, which 

can be explained by the non-specific nature of glutaraldehyde, which utilizes free amines 

for crosslinking250. Free amines are located on the N-terminal amines inside the core of 

the micelles; however, others exist on the headgroups, which may lead to the crosslinking 
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of individual micelles together to form aggregates. This behavior is clear from the TEM 

image in Figure 4.4. After dialysis into PBS, the diameter of the constructs increased 

approximately 200%. This can be explained by extra salt content that causes a decrease in 

the shielding on the headgroups. This decreased shielding causes the headgroups to 

become smaller while the length of the chains in the ELP core become extended194. The 

extent of the crosslinking through glutaraldehyde interacting with amines prevents the 

construct from dissociating as the temperature is dropped below the Tt. Instead the 

nanoparticles swell, to allow for the influx of water into the core that would typically be 

associated with soluble ELP. This swollen state, which only exists with the crosslinked 

proteins, has a diameter of 94.8 ±5.9 nm with a relatively broad distribution. When the 

temperature is raised above the Tt the diameter of the crosslinked nanoparticles collapses 

to a diameter of 70.8 ±1.8 nm. This can be described as the water leaving the core of the 

micelles as the ELP goes from a soluble to an insoluble state, but in this case the 

nanoparticle shape remains, with less water located in the core. This shrinking and 

swelling behavior can potentially be exploited in many ways for theranostic applications, 

with the transition being only dependent upon temperature change.  

The next step of characterizing the ELP-THO crosslinked nanoparticle was to 

determine its properties as a contrast agent. Relaxometry was used to determine the value 

of the relaxivity at various Gd3+ concentrations and compared to ELP-IMG. The 

measurements showed that the constructs had a relaxivity of 15.1 mM-1s-1, which is 75% 

of the value achieved for the ELP-IMG constructs without the targeting and spacing 

elements. The spacer and targeting elements can be preventing water access to the 

CA1.CD2 domain in order to allow for optimal interaction between the Gd3+ and the bulk 
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water. Further, due to the non-specific crosslinking from the glutaraldehyde multiple 

headgroups may be being crosslinked together and held in close proximity, which can 

reduce relaxivity. The TEM may lend credence to this idea, as the headgroups appear to 

be stacked on top of each other (Figure 4.4). Water exchange rates, however are still high 

due to the soluble nature of the ELP construct in solution. Gradient echo MRI images 

show that the construct does provide positive contrast in T1 weighted imaging which is 

dependent on the concentration of gadolinium bound to the construct.  

 Incubation of the ELP-THO constructs with cancer cell lines with varying levels 

of gastrin release peptide receptor expression confirmed the specificity of the targeting 

mechanism. After an incubation periods of 30 minutes crosslinked ELP-THO samples 

appear to be interacting with the PC3 cells, while after a period of 1.5 hours non targeted 

ELP-IMG show no uptake into cells. Similar behavior was observed in the GRPR 

positive cell line U87, while GRPR negative cell line H441, showed no interaction with 

ELP-THO. These results are strong indicators of the efficacy of the targeting peptides, as 

well as the ability of the targeted protein to interact with the cell. When MR imaging was 

applied to collected cell pellets, there was an enhancement of contrast observed with an 

increase in protein and Gd3+ concentration. Cytotoxicity analysis showed that the ELP 

based protein constructs without therapeutic displayed minimal toxicity. A 10 fold molar 

excess of Gd3+ with ELP-THO showed an increase in cytotoxic effects as well as a larger 

increase in cytotoxic effects for the sample with 300 fold excess GTA. However, samples 

that contained no excess amounts of either component had minimal toxicity. This is to be 

expected as Gd3+ is only toxic to cells in very large doses251, and both ELP168 and 

CA1.CD2 domain137 are considered biocompatible.  Further when ELP-THO was 
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incubated without bound Gd3+ in varying concentrations, minimal cytotoxicity was 

observed. 

4.6. Conclusion  

The advantages of this system are numerous and clearly display that the ELP-

THO construct has potential as a theranostic system. The system exists as a crosslinked 

nanoparticle that is responsive to changes in the temperature of the environment. The 

combination of self-assembly, imaging properties, and targeting specificity are presented 

and represent the basis of using this system for numerous applications. A further 

advantage of the system is that it is fully protein based which allows for easy 

modification of the construct dependent only upon utilization of molecular biology. 

Modifications that are possible include adding any peptide based targeting element, 

changing the ELP composition to change the mechanism of response or to be more 

sensitive to various therapeutic interactions.  
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CHAPTER V 

MODIFICATION OF THE ARCHITECTURE OF ELP-IMG CONSTRUCTS: 

EFFECTS OF CHAIN LENGTH AND MIXTURES WITH ELP-FOLDON 

 

5.1. Introduction 

 Through the use of molecular biology, modification of the previously described 

ELP-IMG gene is a relatively straightforward process. The idea of this brief study was to 

determine two things; the first being the effects of linear chain length without the foldon 

domain on the properties of ELP-IMG and the second being making mixtures of ELP-

IMG and ELP-Foldon. The linear constructs were conceived to see if the foldon and 

subsequent micelle formation had any adverse effects on properties and effectiveness of 

CA1.CD2 domain. The mixtures were thought of as a solution to reduce headgroup 

crowding that has been observed in ELP-IMG and ELP-THO. This chapter will detail 

their development and characterization.  
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Figure 5.1. Schematic of mixtures of ELP-IMG and ELP-foldon. 

 

5.2. Materials and Methods 

 The molecular biology method to create the linear constructs follows the methods 

previously described in other sections. The only difference was (GVGVP)10,  

(GVGVP)20, (GVGVP)40 were double digested with NdeI and BglI and inserted into a 

pET20b-IMG vector that had been double digested with NdeI and PflMI. Mixtures were 

made based on a molar ratio which is what the percentages indicate, with only 

(GVGVP)40-foldon and ELP-IMG being used. For example a 100 µM total protein 

concentration sample will have the following composition for different mixtures: 
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Composition: 2 ml 

100 

µM protein 

concentration 

ELP-IMG (430 µM 

stock) 

ELP-Foldon (950 µM 

stock) 

10/90 
10 µM 

46.5 µl stock 

90 µM 

189.5 µl stock 

30/70 
30 µM 

139.5 µl stock 

70 µM 

147.4 µl stock 

50/50 
50 µM 

232.5 µl stock 

50 µM 

99.25 µl stock 

Table 5.1. Ratios of protein stocks used to make mixtures.  

Expression and purification of the linear constructs followed the same methods as 

described before, except for (GVGVP)20-IMG and (GVGVP)10-IMG, where NaCl was 

added to aid in the warm purification steps.  At the conclusion of purification samples 

were dialyzed against H2O for 24 hours to remove residual salts. Characterization 

including Tt measurements, dynamic light scattering and r1 time measurement proceeded 

as described earlier. T1 weighted imaging was performed on a 1.5 T scanner (Siemens 

Espree) using Spin echo imaging with a TR of 500 ms, a TE of 12 ms. Slice thickness 

was 5 mm or 7 mM and the resolution matrix was 256x100.  

5-3. Results 

Mixture formation was successful in creating single entity constructs with mixed 

headgroups. The transition temperature (Tt) of the mixtures decreased with increasing 

ELP-IMG content with values for a 25 µM sample in PBS of: 10% ELP-IMG / 90% 
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ELP-Foldon having a value of 41.6°C, 30% ELP-IMG / 70% ELP-Foldon having a value 

of 38.7 °C and 50% ELP-IMG / 50% ELP-Foldon having a value of 36.2°C (Figure 5-2.).   

 

 

Figure 5.2. Transition Temperatures of mixtures. Transition temperature measurements 

for ELP-IMG / ELP-Foldon mixtures. Samples were made at 25 µM concentration in 

PBS.  

Dynamic light scattering was applied to samples in particle forming conditions 

(low salt, high pH), post crosslinking in water and post crosslinking in PBS. The diameter 

of the particles in all conditions compares favorably to both ELP-foldon and ELP-IMG. 

A broadened distribution in crosslinked samples is observed however (Figure 5.3).  
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Figure 5.3. Dynamic light scattering of mixtures. Dynamic light scattering results for 3 

mixtures, 10% 90%, 30% 70% and 50% 50% ratios. Single populations are observed 

across all conditions.   

Upon measurement of the relaxivity values for crosslinked samples it was found 

that in mixtures with increasing ELP-IMG content, the relaxivity increased 

(50%>30%>10%) as would be expected.  These values range from 16.6 mM-1s-1 to 12.9 

mM-1s-1 (Figure 5-4), which are still at least 2.5 times more than Gd-DTPA in clinical 
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use. The advantage of the headgroup mixing however was as anticipated with a reduction 

in headgroup crowding leading to an enhancement of relaxivity values. 

 

Figure 5.4. Relaxivity plots for mixtures of ELP-IMG and ELP-Foldon.  

When the linear samples were measured as soluble constructs below their 

respective Tt GVGVP40-IMG and GVGVP20-IMG display relaxivities of 34.1 mM-1s-1 and 

14.5 mM-1s-1, both of which are relatively high values in relation to clinical contrast 

agents (Figure 5-5). GVGVP10-IMG was unable to be measured due to difficulty 

purifying the sample.  
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Figure 5-5: Relaxivity plots for linear ELP-IMG constructs.  

Construct Relaxivity (mM-1s-1) Tt (°C) 

GVGVP40-IMG 34.13 40.1 

GVGVP20-IMG 14.5 55.5 

10% ELP-IMG 90%ELP-Foldon 12.87 41.7 

30% ELP-IMG 70%ELP-Foldon 14.95 38.6 

50% ELP-IMG 50%ELP-Foldon 16.6 36.2 

 

Table 5.2. Summary of relaxivity and Tt measured for modified constructs. 
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Figure 5.6. In vitro MRI imaging of mixtures. T1 weighted MR image of linear ELP-

IMG samples. The images are arranged in the following order (1) 0.01 mM Gd3+- 

GVGVP20-IMG (2) 0.025 mM Gd3+- GVGVP20-IMG (3) 0.05 mM Gd3+ GVGVP20-IMG 

(4) 0.75 mM Gd3+ GVGVP20-IMG (5) 0.01 mM Gd3+ GVGVP40
-IMG (6) 0.025 mM Gd3+ 

GVGVP40-IMG (7) 0.05 mM Gd3+ GVGVP40-IMG (8) 0.75 mM Gd3+ GVGVP40-IMG 
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Figure 5.7. In vitro MRI imaging of linear constructs. T1 weighted MR image of 

Mixtures of ELP-IMG and ELP-foldon samples. Samples 1-4 are 10% ELP-IMG / 90% 

ELP-foldon, samples 5-8 are 30% ELP-IMG / 70% ELP-foldon and samples 9-12 are 

50% ELP-IMG / 50% ELP-foldon. The images are arranged in the following order (1) 

0.01 mM Gd3+, (2) 0.025 mM Gd3+, (3) 0.05 mM Gd3+, (4) 0.75 mM Gd3+, (5) 0.01 mM 

Gd3+, (6) 0.025 mM Gd3+, (7) 0.05 mM Gd3+, 8) 0.75 mM Gd3+, 9) 0.01 mM Gd3+, 10) 

0.025 mM Gd3+, (11) 0.05 mM Gd3+, and (12) 0.75 mM Gd3+ 

5.4 Discussion 

 Modification of the architecture of ELP-IMG constructs resulted in a series of 

new contrast agent constructs. There were a few important results from this experiment 

that may be able to shed light on the effects of ELP on contrast agent properties. The first 

motivation for the experiment was to attempt to solve what is believed to be headgroup 

crowding in crosslinked ELP-IMG nanoparticles. The strategy chosen was to attempt to 
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make mixtures of ELP-foldon and ELP-IMG to create a reduction in CA1.CD2 domain 

headgroups that would be present in each nanoparticle. On a positive note, these mixtures 

behaved in exactly the same manner as individual constructs, with Tt and particle 

formation that did not deviate from normal behavior. All mixture constructs however 

displayed relaxivity values that were less than ELP-IMG on its own, however the 50% / 

50% mixture was higher than ELP-THO. The expected gains in relaxivity were not 

achieved through this mixture. Possible reasons include a drop in molecular weight of the 

mixtures, or a gain in mobility due to the headgroups no longer being cross-linked 

together. If multiple headgroups aren’t being cross-linked together along with a reduction 

in molecular weight, there may be an increase in the molecular tumbling rate, which 

decreases relaxivity. Alternatively as theorized earlier headgroup crowding could still be 

occurring in the mixtures due to the choice of a non-specific crosslinking agent. These 

ideas would need to be investigated further if the mixtures were to continue as a viable 

project.  

 Linear constructs were synthesized to ensure that the foldon domain was not 

radically interfering with the activity of the fused CA1.CD2 domain. The results showed 

that the foldon domain does cause a loss of relaxivity (r1 GVGVP40-IMG >  r1 

GVGVP40-foldon-IMG) at the same chain length of ELP. This is most likely due to 

reasons mentioned previously. The linear ELP-IMG construct would be the version most 

similar to the CA1.CD2 domain alone, but in this case with a random coil polymer tail. 

Interesting when the tail length is cut in half (GVGVP20) the relaxivity drops by 20 mM-

1s-1, which is most likely explained by the drop in molecular weight and increase in 

rotational motion. The GVGVP20-IMG construct is well below its Tt during the T1 
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measurement, which would mean it, exists as a random coil in solution, possibly 

explaining the drop in relaxivity. The GVGVP40-IMG however construct has a Tt of 40.1 

°C, which at the temperature of measurement for T1 puts the construct right at its Tt, 

which could imply that the construct is going through the transition process during 

measurement and may be measured during the onset of turbidity. During this period there 

would be less random behavior of the ELP and a more ordered environment. T1 weighted 

images confirmed that the constructs were displaying positive contrast in T1 imaging and 

that the contrast increased in a linear fashion with increasing Gd3+ content (Figure 5.6 

and Figure 5.7).  This is important as the patterns are similar what was found for ELP-

IMG and ELP-THO alone.  

5.5 Conclusion 

Being able to modify the construct in this manner allows for a number of 

possibilities to create mixed architectures that will still retain the positive properties of 

the designed protein. Although the mixtures did not enhance relaxivity due to perceived 

reduction of headgroup crowding, the mixtures still provide a positive route to attempt 

new ELP-IMG based constructs without having to completely redesign the architecture.  
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CHAPTER VI 

CONCLUSION AND FUTURE DIRECTIONS 

 Utilizing elastin-like polypeptides as the base material for multifunctional 

theranostic nanoparticle systems has many distinct advantages. Starting with an entirely 

amino acid based composition has dual positive properties as the system is organic in 

nature and can then be modified and designed at the gene level through the use of 

molecular biology techniques in any applicable way. The responsive behavior can be 

exploited to drive the transitional behavior in response to various stimuli, which opens 

endless possibilities in the field of theranostics.  The approach of this work was to utilize 

these properties to design a new theranostic nanoparticle system, composed entirely of 

organic components and needing no complex post-translational chemical modification.  

 Micelles of three-armed star elastin-like polypeptides were fused to a protein 

based MRI contrast agent in the first part of this study. The aim was to create a stable 

nanoparticle contrast agent composed of organic components that retained flexibility for 

modification. This aim was successful as the fusion of the two components produced a 
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stable crosslinked nanoparticle that was effective as a T1 weighted MRI contrast agent in 

both particle and non-particle form that had relaxivity values 5 times that of clinical 

contrast agents.  To demonstrate the flexibility of the system the architecture was 

modified and it was established that the system could undergo changes without loss of 

effectiveness of the positive properties.  

This system was then modified through the addition of a short targeting peptide 

and spacing element that specifically targeted the gastrin release peptide receptor. When 

incubated with receptor positive cell lines the new construct showed targeting capabilities 

that were demonstrated by an enhanced amount of cellular uptake. Contrast agents 

incubated with these cell lines were able to introduce gadolinium into the cells, which 

was demonstrated by T1 weighted imaging of cell pellets.  

 To enhance the system for the future the following recommendations are 

presented. 1) change the ELP guest residue position to create a stimulus responsive 

particle system. This could potentially enhance relaxivity as well enhance cytotoxicity 

through specific dissociation of the particles in certain conditions. 2) Introduce site-

specific crosslinking to better control the morphology of the crosslinked nanoparticles. 

This can potentially enhance relaxivity by eliminating some of the non-specific 

crosslinking that currently takes place. 3) Establish a range of therapeutics and their 

partition coefficients in relation to changes in guest residue. This would create a library 

of ELP / therapeutic combinations that could potentially be used in any number of 

treatments. Along with the enhanced contrast agent properties these combinations would 

prove to be an ideal theranostic system.  
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This work demonstrated the ability to use micelles of ELPs as multifunctional 

nanoparticles for theranostic applications. Features demonstrated include self-assembling 

nanoparticle formation, MRI contrast, and active cancer cell targeting behavior. Taken as 

a whole this represents a platform that can be manipulated in endless ways to truly 

demonstrate the potential of elastin-like polypeptides.  
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APPENDIX 

	

 

 

Figure A-1: Incubation of Doxorubicin loaded ELP-THO nanoparticles with cells. 

Nanoparticles were incubated with both PC3 and U87 cells at different concentrations 

and for different time periods. There is clearly an increase in interaction with the cells 

with increasing in incubation time as well as protein concentration.  
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