
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

College of Arts & Sciences Senior Honors 
Theses College of Arts & Sciences 

5-2016 

Syndecan-1 tagged liposomes as a theranostic nanoparticle for Syndecan-1 tagged liposomes as a theranostic nanoparticle for 

pancreatic adenocarcinoma. pancreatic adenocarcinoma. 

Wenyuan Yin 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/honors 

 Part of the Biology Commons, and the Cancer Biology Commons 

Recommended Citation Recommended Citation 
Yin, Wenyuan, "Syndecan-1 tagged liposomes as a theranostic nanoparticle for pancreatic 
adenocarcinoma." (2016). College of Arts & Sciences Senior Honors Theses. Paper 126. 
http://doi.org/10.18297/honors/126 

This Senior Honors Thesis is brought to you for free and open access by the College of Arts & Sciences at ThinkIR: 
The University of Louisville's Institutional Repository. It has been accepted for inclusion in College of Arts & Sciences 
Senior Honors Theses by an authorized administrator of ThinkIR: The University of Louisville's Institutional 
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, 
please contact thinkir@louisville.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Louisville

https://core.ac.uk/display/143835905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.library.louisville.edu/
https://ir.library.louisville.edu/honors
https://ir.library.louisville.edu/honors
https://ir.library.louisville.edu/a-s
https://ir.library.louisville.edu/honors?utm_source=ir.library.louisville.edu%2Fhonors%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=ir.library.louisville.edu%2Fhonors%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/12?utm_source=ir.library.louisville.edu%2Fhonors%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.18297/honors/126
mailto:thinkir@louisville.edu


 

 

SYNDECAN-1 TAGGED LIPOSOMES AS A THERANOSTIC NANOPARTICLE 

FOR PANCREATIC ADENOCARCINOMA 

 

By Wenyuan Yin 

 

 

Submitted in partial fulfillment of the requirements for Graduation (summa or magna) 

cum laude and 

For Graduation with Honors from the Department of Biology 

 

University of Louisville 

 

May 2016 

  



 2  

Acknowledgments 

I would like to thank my mentor, Dr. Lacey McNally, for several years of valuable 

instruction and guidance. I am immensely grateful for the opportunities she provided me as an 

undergraduate researcher, and for her support as I continue my scientific career. The skills and 

experiences I gained in her lab have prepared me well. 

I would also like to thank my coworkers, Shanice Hudson, Charles Kimbrough, Anil 

Khanal, and Bigya Khanal, for their assistance on my project. Furthermore, I thank Dr. William 

Grizzle at the University of Alabama, Birmingham, for his advice and assistance. 

Finally, I would like to acknowledge the Rounsavall Foundation for funding this work.  



 3  

Abstract 

Theranostic nanoparticles are emerging as a novel mechanism for detecting and treating 

cancer. Due to the difficulties in detection and treatment of pancreatic cancer, these particles could 

serve within this unique niche. In this study, a Syndecan-1 ligand was utilized to increase tumor 

specificity of fluorescent dye encapsulated liposomes which were evaluated as a potential 

theranostic nanoparticle for pancreatic adenocarcinoma. Their diagnostic capabilities and 

specificity to pancreatic adenocarcinoma were determined in vitro using immunocytochemistry 

and in vivo using multi-spectral optoacoustic tomography (MSOT). Immunocytochemistry showed 

that liposomes preferentially bound and released their contents into cells expressing high levels of 

Insulin-Like Growth Factor 1 Receptor. In an orthotopic pancreatic cancer mouse model, the 

liposomes preferentially targeted the pancreatic tumor with little off-target binding in the liver and 

spleen. Peak accumulation of the liposomes in the tumor occurred at 8 h post-injection. MSOT 

imaging was able to provide high-resolution 3D images of the tumor and liposome location. Ex 

vivo analysis showed that non-targeted liposomes accumulated in the liver suggesting that 

specificity of the liposomes for pancreatic adenocarcinoma was due to the presence of the 

Syndecan-1 ligand. Syndecan-1 tagged liposomes specifically target pancreatic adenocarcinoma 

both in vitro and in vivo. Once bound, the liposomes released the dye in vitro as indicated by red 

fluorescence of DNA-bound propidium iodide. The therapeutic drug-delivering capabilities of 

Syndecan-1 liposomes remain to be tested. 
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Introduction 

Pancreatic ductal adenocarcinoma is a highly aggressive and almost universally fatal 

cancer with an average five-year survival rate of 5% across all stages (1). The poor prognosis of 

pancreatic cancer patients is due to inadequate early detection and ineffective treatments once 

diagnosed. Due to its asymptomatic nature in the early stages, over 85% of patients are diagnosed 

at stages III-IV with metastases, eliminating surgery as a curative option (1-2). Furthermore, 

ultrasound-guided needle biopsy, commonly used to diagnose pancreatic adenocarcinoma, 

requires suspected tumors to be at least 1 cm3 (3). The current gold-standard treatment for 

pancreatic cancer, gemcitabine, only enhances survival by 6.7 months. Advancements in 

chemotherapy such as FOLFIRONIX and nab-Paclitaxel minimally increase median survival, with 

survival rates of 11 and 8.5 months, respectively (4). 

The underlying biology of pancreatic ductal adenocarcinoma can make these tumors 

particularly resistant to chemotherapy. The dense desmoplastic stroma and poor vascularity of 

these tumors inhibits the accumulation of traditional chemotherapies and prevents sufficient drug 

concentrations from being attained within the tumor (7). Nanoparticle drug carriers can be an 

effective strategy for overcoming these extracellular barriers to drug delivery by increasing the 

therapeutic load at tumor sites while decreasing systemic toxicity (8-10). Enhanced accumulation 

at pathological sites can result in an increase in the drug's therapeutic efficacy and reduction of 

incidence and intensity of side effects, resulting in improved patient acceptance, compliance and 

prognosis (8, 12-14). 

Liposomes in particular have multiple desirable characteristics, such as the capacity for 

encapsulating large amounts of materials, the ability to protect these materials from degradation, 

and the capability for intracellular delivery through fusion with the plasma membrane (9). 



 5  

Liposomes are also permeable in environments with high collagen content, a trait of the 

extracellular matrices of solid pancreatic tumors (10-11). In addition to being drug carriers, 

liposomes can also encapsulate contrast agents for diagnostic imaging, thus combining diagnostic 

and therapeutic functions into one system. These particles, termed "theranostic nanoparticles", are 

a novel approach for detecting, monitoring, and treating cancer (12-15). The contrast agents loaded 

into theranostic nanoparticles allow tracking of nanoparticle accumulation and biodistribution 

using standard techniques such as planar fluorescent imaging (16). An important characteristic of 

theranostic nanoparticles is that a targeting ligand can be covalently attached to the outside of the 

particle so that it will preferentially accumulate at the tumor site (15-18). 

Syndecan-1 (Sdc1) can be used to specifically target pancreatic adenocarcinoma due to its 

known interactions with Insulin-like Growth Factor 1 receptor (IGF1R) (19-21). IGF1R has been 

shown to be highly expressed in pancreatic adenocarcinoma and other metastatic cancers with an 

important role in cell proliferation, tumor metastasis, and anti-apoptotic pathways (22-26). High 

IGF1R expression correlates to resistance to chemotherapy and radiation-induced apoptosis and is 

a marker for poor prognosis in pancreatic, breast, lung, and prostate cancers (23-26). The 

ectodomain of Sdc1 binds to IGF1R to activate αvβ3 integrin in many aggressive cancers, a 

mechanism not found in non-malignant epithelial cells (20-21). Furthermore, Sdc1-tagged optical 

probes have already been shown to bind specifically to pancreatic tumor cells in vivo (27). Thus, 

covalently attaching Sdc1 to the outside of a liposome may produce a theranostic nanoparticle that 

is specific to pancreatic adenocarcinoma, potentially leading to an improved method of 

transporting imaging agents and chemotherapies directly to the tumor site. 

Because Sdc1-tagged liposomes can encapsulate a variety of optically active molecules, or 

chromophores, they can be imaged using traditional imaging techniques (16). However, multi-



 6  

spectral optoacoustic tomography (MSOT) offers several advantages over traditional nuclear 

imaging modalities. MSOT operates via the photoacoustic effect, wherein a medium excited by 

pulsed laser light subsequently emits an acoustic wave. Chromophores absorb a photon and enter 

an excited state, generating heat upon relaxation. This pulse of heat leads to an increase in 

temperature and local pressure, termed thermoelastic expansion. Propagation of the pressure 

differential results in the formation of an acoustic wave, which can then be recorded with 

ultrasound detectors to create high-resolution 3D images (28-29). Expansion of endogenous and 

exogenous chromophores occur at specific excitation wavelengths, allowing for selective imaging 

of compounds of interest. Due to the low-scattering characteristic of ultrasonic waves, images do 

not suffer from the light scattering or signal attenuation that limits optical and fluorescent imaging.  

Additional advantages include an enhanced spatial resolution of up to 150 µm and accurate 3D 

imaging of deep tissue layers (29-33). Furthermore, multi-wavelength measurements can be used 

to quantify spatially varying concentrations of chromophores within biological tissues (28). MSOT 

can therefore be a valuable tool in determining the precise location and concentration of theranostic 

nanoparticles in vivo. 

In this study, Syndecan-1 tagged liposomes were synthesized to encapsulate a near-infrared 

(NIR) fluorescent dye, CF-750 or propidium iodide (PI), to allow for tracking of the liposome in 

vivo or determine the potential of the liposome to release its cargo within a tumor cell, respectively 

(Fig. 1). As a further control within experiments of the Syndecan-1 tagged liposome, untargeted 

liposomes were utilized. Untagged liposomes had no targeting ligand.   

 The specificity of Sdc1 liposomes for pancreatic adenocarcinoma was evaluated both in 

vitro and in vivo. Immunocytochemistry was performed to visualize IGF1R-dependent binding 

and endocytosis of Sdc1 and untagged liposomes. Sdc1 liposomes were systemically injected by 
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intravenous injection into an orthotopic mouse model to allow for in vivo tracking of 

biodistribution and accumulation. This study examines the feasibility of using Sdc1-tagged 

liposomes as a theranostic nanoparticle for pancreatic adenocarcinoma. 
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Materials & Methods 

Cell Culture 

Pancreatic adenocarcinoma cell lines S2VP10 and S2013, metastatic subclones of the 

SUIT-2 line, were obtained from Dr. Michael A. Hollingsworth at the University of Nebraska. 

Squamous cell carcinoma cell line SCC-1 was obtained from the University of Michigan. 

Pancreatic adenocarcinoma cell line MiaPaCa-2 was obtained from ATCC (Manassas, VA). 

S2VP10, S2013, and SCC-1 cells were cultured in RPMI 1640 and MiaPaCa-2 cells in DMEM 

medium (Gibco, Grand Island, NY), supplemented with 10% Fetal Bovine Serum (Atlanta 

Biologicals, Flowery Branch, GA) and 1% L-Glutamine (Gibco). The cells were cultured at 37°C 

and 5% CO2. S2VP10 cells were infected with a retrovirus containing the firefly luciferase (Luc) 

gene (Stratagene, La Jolla, CA) and a luciferase-positive single cell clone, S2VP10L, was isolated 

(34). 

 

Synthesis of Liposomes 

Materials 

Soybean L-α-phosphatidylcholine (95%) (PC), 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-

(hexanoylamine) (CAP) were purchased from Avanti Polar Lipids (Alabaster, AL). N-

Hydroxysulfosuccinimide sodium salt (NHS), N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC) and propidium iodide were purchased from Sigma (St. Louis, MO). CF-750 

N-hydroxysuccinimide ester amine-reactive dye was purchased from Biotium (Hayward, CA). 

Finally, Syndecan-1 (Sdc1) was purchased from Prospec (Rehovot, Israel).  
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Synthesis of propidium iodide and CF-750 encapsulated liposomes 

Naked liposomes were synthesized by thin film hydration method (35). Soybean PC 

(0.0067 g), CAP (0.0023 g) and DOPE (0.0020 g) were dissolved in chloroform. Then, the 

chloroform was evaporated by heating at 70°C for 10 min in a rotary evaporator to get a thin film 

of lipids. The thin film was hydrated by adding 1 ml PBS (pH 7.4, 0.9% NaCl) and propidium 

iodide or CF-750 (1 mM, 0.1 ml) for 2 h at 70°C.  Then, the liposomes were sonicated for 2 h at 

70°C. Finally, liposomes were extruded four times through a polycarbonate filter (200 nm) at 70°C. 

Conjugation of Syndecan-1 to dye-encapsulated liposomes 

Syndecan-1 was conjugated to the dye-encapsulated naked liposomes by carbodiimide 

chemistry. Syndecan-1 (0.74 mM, 20 µl) was mixed with NHS (1 mM, 0.1 ml) and EDC (1 mM, 

0.1 ml) and incubated for 6 h at room temperature at pH 7.5. Then, 1 ml of liposomes was added 

to this solution and mixed for 1 day at room temperature. The excess NHS and EDC were removed 

by dialysis, minimum 2000-3000 Da. The stock solution of Sdc1 conjugated liposomes was diluted 

further to get the desired concentration. 

 

Characterization of Liposomes 

DLS measurements 

The size distribution of the liposomes was analyzed by dynamic light scattering (DLS) 

using a Zetasizer Nano-ZS (Malvern Instruments Ltd., Malvern, United Kingdom). The detection 

angle was 173° and the incident beam was a He–Ne ion laser (λ = 633 nm). Correlation functions 

were analyzed by a histogram method and used to determine the diffusion coefficient (D) of the 

liposomes in the sample. Hydrodynamic radius (Rh) was calculated from D by using Stokes–

Einstein's equation: 
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where kB is Boltzmann’s constant, T is absolute temperature, and η is solvent viscosity (36). 

Zeta-potential measurements 

Electrophoretic mobility (μE) of the liposomes was measured at 25 °C with the Zetasizer 

Nano-ZS. The zeta-potential of the samples was calculated from μE using following 

Smoluchowski's equation: 

 

where ζ is the zeta-potential, ε the permittivity of solvent, and η the solvent viscosity (36).  

Transmission electron microscopy 

10 µL of 1 mM liposomes were dropped on 200 mesh copper grids (Electron Microscopy 

Sciences, Hatfield, PA) and dried at room temperature for 5 h. Images were collected using the 

Phillips CM-10 transmission electron microscope at 80kV, equipped with a 15 megabyte SIA 

digital camera. 

UV-Vis spectroscopy 

The absorption spectrum for the CF-750 encapsulated liposomes was analyzed via UV-

Visible spectroscopy. Absorption at wavelengths every 10 nm between 650 and 860 nm was 

measured using the NanoDrop 2000 Spectrophotometer (Thermo Scientific, Waltham, MA) and 

accompanying software. Near-infrared (NIR) fluorescence signal was confirmed using Li-Cor 

Odyssey infrared scanner (Li-Cor, Lincoln, NE). 

 

Western Blot Analysis 
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Whole cell lysates from S2VP10L, MiaPaCa-2, S2013, and SCC-1 cells were collected to 

determine IGF1R expression. The cells were plated at a density of 5x105 cells per well in a 6-well 

plate 24 h prior to protein harvest. Cells were then lysed in a solution containing 1% NP-40, 1% 

protease inhibitor, and 1% phosphatase inhibitor (Thermo) in deionized water. The lysates were 

centrifuged at 13,000 x g for 10 min. Total protein concentration was determined via Bradford 

assay (Bio-Rad, Hercules, CA).  

Approximately 50 µg of total protein was dissolved in deionized water, loading buffer, and 

reducing agent (Life Technologies, Carlsbad, CA). Proteins were separated using NuPage 4-12% 

Bis-Tris gel and transferred onto a nitrocellulose membrane by iBlot (Life Technologies). The 

membrane was blocked in blocking buffer (Li-Cor) for 30 min and then incubated overnight at 

4°C with IGF1R antibody (Abcam, Cambridge, England) at a concentration of 1 µg/ml and β-

Actin antibody (Thermo) at a concentration of 1:3000. The membrane was then washed 3X with 

TBS (20 mM Tris-HCl, 150 mM NaCl in diH2O) for 10 min each, incubated with donkey anti-

mouse IRDye 680RD and donkey anti-rabbit IRDye 800CW secondary antibodies (Li-Cor) for 1 

h, washed 3X with TBS for 10 min each, and scanned using Li-Cor Odyssey infrared scanner. 

Dosimetry was performed using Li-Cor software.  

 

Immunocytochemistry 

S2VP10L and SCC-1 cells were each seeded into 3 wells of a chamber slide at a density of 

3x105 cells/well. Cells were grown overnight in RPMI with 10% FBS and 1% L-Glutamine at 

37°C with 5% CO2. The cells were then serum-starved for 3 h by switching to RPMI with 1% BSA 

(Fisher). Immunocytochemistry buffers were prepared as follows: PBS++ (0.5mM CaCl2 and 

MgCl2 in PBS), PBS++++ (97.9 mL PBS++, 2 mL 10% BSA + 90.08 mg dextrose), and citrate 
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buffer (1 mL 20X SCC buffer, 19 mL ddH2O). Following starvation, cells of each line were treated 

with 30 µL PBS (control), 30 L of 1 mM naked liposomes, or 30 µL of 1 mM Sdc1 liposomes for 

3 h. Then, the wells were washed 2X with cold PBS++++, 3X with ice cold citrate buffer, and again 

2X with cold PBS++++. Cells were fixed with 4% paraformaldehyde (Electron Microscopy 

Sciences) for 5 min at 25oC followed by 15 min at 4°C. Next, the cells were washed 6X with PBS++ 

for 10 min each. The slides were mounted in ProLong with DAPI (Invitrogen, Waltham, MA) and 

set overnight. Images were taken at 400X magnification with a Zeiss Photometer 2 (Carl Zeiss, 

Oberkochen, Germany) using DAPI, FITC, and Texas Red filters.  The exposure times used were 

20 ms DAPI, 200 ms FITC, and 200 ms Texas Red.  

 

Orthotopic Pancreatic Cancer Xenografts 

Strict adherence to the University of Louisville Institutional Animal Care and Use 

Committee (IACUC)-approved protocol was maintained throughout the study. Five-week old 

female C.B-17 SCID mice (Harlan Laboratories, Indianapolis, IN) were acclimated for one week 

prior to the study. Mice were anesthetized for all surgical procedures with 1.6% isoflurane and all 

procedures were performed in a sterile hood. Orthotopic cell implantation was performed as 

previously described (30, 34). A 1-cm incision was made in the left upper abdominal quadrant and 

the spleen was located and used to indirectly position the tail of the pancreas, avoiding direct 

manipulation of the pancreas. The suspension of S2VP10L (Luc positive) cells in PBS was stored 

on ice and drawn up with a 28-gauge needle. Five mice were each injected with 1.5×105 S2VP10L 

(Luc positive) cells (30 uL) into the tail of the pancreas. Sterile cotton-tipped applicators were used 

to cover the injection site for 30 s to prevent peritoneal leakage. The organs were repositioned in 

the abdomen and the incision was closed using a single-layer closure with 5-0 nylon sutures. The 
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mice recovered on a heated pad while receiving clear liquid acetaminophen for 24 h with food and 

water ad libitum. Confirmation of orthotopic implantation was performed using bioluminescence 

optical imaging on the Advanced Molecular Imager AMI-1000X (Spectral Imaging Instruments, 

Tucson, AZ). Mice with detectable leakage from the pancreas were removed from the study. Mice 

received intraperitoneal (IP) injection of 2.5 mg luciferin 10 min prior to weekly imaging to 

monitor orthotopic tumor and metastatic growth. Region of interest (ROI) analysis was used to 

measure light emitted for orthotopic sites using the AMI Image Viewer software. Sutures were 

removed seven days following implantation. At 10 days post-implantation, mice were IV injected 

with 200 µL of 100 nM naked or Sdc1-tagged liposomes each containing CF-750 dye (Biotium).  

 

In Vivo Imaging and Reconstruction 

Multispectral optoacoustic tomographic (MSOT) imaging was performed as described by 

Kimbrough et al (27). Mice were anesthetized with 1.6% isoflurane and prepped for imaging with 

a combination of Nair cream with aloe (Church & Dwight Co., Princeton, NJ) and shaving. The 

mice were imaged using MSOT system InVision TF 256 (iThera Medical, Munich, Germany). 

Serial slice images were taken in 0.2 mm steps between the diaphragm to the bottom of the kidneys 

(40-55 mm) at wavelengths of 680, 710, 730, 740, 760, 770, 780, 800, 850, and 900 nm using 25 

averages per wavelength with acquisition time of 10 µsec per frame in order to minimize the 

influence of animal movement. Images were taken every 8 h for 24 h to track liposome uptake and 

accumulation. Excitation of CF-750 liposomes was conducted using a tunable parametric oscillator 

pumped by an Nd:YAG laser. The pancreas tumor was identified by a live-feed screen preview 

multispectral signal. Video-rate acquisition produced an imaging clip compiled from single-slice 

acquisition in less than 1 ms, resulting in an image data rate of 10 frames per second. Image 
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reconstruction was conducted using backprojection at a resolution of 75 µm. Multispectral 

processing was conducted using linear regression (ViewMSOT 3.5). A 3.5mm diameter ellipse 

was used for region-of-interest analysis of liposome signal on the tumor, liver, and kidney. 

 

Ex Vivo Imaging of Organs 

Mice were euthanized 24 h after liposomal injections via carbon dioxide inhalation. The 

pancreas, liver, and spleen were harvested and imaged ex vivo to compare accumulation of naked 

and Sdc1 tagged liposomes. The organs were imaged using near-infrared (NIR) fluorescence with 

the AMI 1000X at 675 nm excitation and 760 nm emission. 
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Results 

Western Blot 

Western blot analysis was performed to evaluate the expression of IGF1R on the three 

different pancreatic adenocarcinoma cell lines (S2VP10L, MiaPaCa-2, and S2013). The head and 

neck squamous cell carcinoma cell line SCC-1 served as a negative control (22). As expected, 

SCC-1 cells expressed much lower levels of IGF1R than pancreatic cancer lines (Fig. 2A).  Less 

aggressive MiaPaCa-2 cells also had relatively low IGF1R expression. Highly aggressive and 

metastatic S2VP10L and S2013 cells had five- and seven-fold increase of IGF1R expression 

respectively compared to SCC-1 cells (Fig. 2B). S2VP10L cells were chosen as the pancreatic cell 

line to be used for the remainder of the experiments due to their predictable behavior in vivo and 

relatively high levels of IGF1R expression.  

Characterization of Liposomes 

Liposomes were synthesized to encapsulate CF-750 dye or propidium iodide and tagged 

with Syndecan-1. Transmission electron microscopy (TEM) of the liposomes shows the average 

size to be 117 nm (Fig. 3C). The size of liposomes observed by TEM is smaller than DLS (129 

nm, Fig. 3A), as TEM yields a number-averaged size whereas DLS does a Z-averaged size that 

takes into account hydration layers. Based on the low polydispersion index, the liposomes are 

uniform in size (Fig. 3A). The liposomes also have a slight positive charge of 0.3 mV (Fig. 3B).  

UV-Vis Spectroscopy 

The absorption spectrum for CF-750 encapsulated Sdc1 liposomes was analyzed using UV-

Vis spectroscopy. The peak absorption of the liposomes was 750 nm, the same as the original dye 

(Fig. 4). Thus, encapsulating the dye within liposomes does not change the optical behavior of the 

dye.  
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Immunocytochemistry 

Immunocytochemistry slides of S2VP10L and SCC-1 cells were treated with non-targeted 

and Sdc1 liposomes containing propidium iodide and imaged using Texas Red, DAPI, and FITC 

filters. Fluorescence seen using the Texas Red filter indicates propidium iodide (PI) uptake by the 

cell.  In IGF1R-positive S2VP10L cells, there was greatly increased uptake of PI when treated 

with Sdc1-tagged liposomes (Fig. 5C) compared to naked liposomes (Fig. 5B). Treatment with 

non-targeted liposomes does not result in the intracellular localization of dye, as the green 

fluorescence indicates extracellular accumulation (Fig. 5E) rather than intracellular uptake. The 

bright yellow areas in Figure 5F indicate locations where red and green light are both present, 

suggesting PI on both the cell surface as well as within the cytoplasm, where it is likely bound to 

mitochondrial DNA or free-floating RNA. White areas indicate red, green, and blue co-localization 

demonstrating the PI binding to nuclear DNA. Untreated S2VP10L cells show minimal red 

autofluorescence (Fig. 5A) and no green autofluorescence (Fig. 5D).  

Propidium iodide, when bound to nucleic acids, displays maximum excitation and emission 

values at 538 nm and 617 nm respectively and fluoresces red using the Texas Red filter. However, 

PI in its free form exhibits different optical characteristics: maximum excitation at 488 nm and 

emission at 590 nm (37), fluorescing green using the FITC filter. This allows for distinction 

between excess dye bound on the cell surface versus internalized dye bound to nuclear or 

cytoplasmic nucleic acids. 

 

In Vivo Imaging and Reconstruction 

Syndecan-1-tagged liposomes were injected ten days post-implantation of the tumor. 

Liposome accumulation in vivo was determined using MSOT imaging every 8 h for 24 h. 
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Representative location of organs as seen on the MSOT can be viewed in Figure 6. Liposome 

accumulation in the tumor peaked at 8 h post-injection and declined within 24 h (Fig. 7C). The 

highest region of photoacoustic signal was between 45 and 46 mm in the mouse, and corresponded 

with the location of the pancreatic tumors (Fig. 7A).  Low signal intensity was observed in the 

spleen and liver (Fig. 7B), indicating significantly more liposomes accumulated in the tumor 

versus in the liver and kidney (p<0.05). Furthermore, orthogonal views of the tumor demonstrate 

probe accumulation along 3 spatial dimensions, and suggest liposome penetration and 

accumulation within the interior of the pancreatic tumor (Fig. 7B).  

 

Ex Vivo Imaging of Organs 

Ex vivo fluorescent imaging confirms accumulation of Sdc1-liposomes within organs (Fig. 

8). Mice were euthanized 24 h post-liposomal injection. The pancreas, liver, and spleen were 

imaged using NIR fluorescent imaging with excitation 675 nm and emission 760 nm. Sdc1-tagged 

liposomes bound preferentially to the pancreas tumor with little off-target binding in the liver and 

spleen. Non-targeted liposomes accumulated primarily within the liver. 
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Discussion 

This study investigated the feasibility of using Sdc1-tagged liposomes as a theranostic 

nanoparticle for detection and possible treatment of pancreatic adenocarcinoma. By utilizing 

fluorescent dyes, liposome specificity and unloading capability was assessed in vitro using 

immunocytochemistry. Accumulation time and specificity in vivo were analyzed by injecting the 

liposomes into an orthotopic mouse model and imaging using MSOT and ex vivo fluorescence 

imaging. 

Treatment with liposome-encapsulated therapeutics has been shown to increase 

bioavailability of therapeutic agents at the tumor site, reduce off-target toxicity, and increase 

circulation time (39-41). Many of these liposomes utilize the Enhanced Permeability and Retention 

effect (EPR), a phenomenon wherein particles around 100 nm accumulate in tumors due to leaky 

vasculature, to passively target cancerous tissues (38). Sdc1-tagged liposomes were 117 nm in 

diameter, theoretically allowing them to diffuse into tumor sites via EPR. However, targeting 

IGF1R with the Sdc1 ligand utilizes a second mechanism to enhance specificity, active targeting. 

Previous studies have shown that attaching a targeting ligand increases tumor targeting and 

intracellular uptake in tumor sites when compared to non-targeted liposomes (42). In this project, 

Sdc1-tagged liposome and control (untagged) liposome specificities were compared using ex vivo 

analysis. Though some control liposomes may have reached the pancreatic tumor due to passive 

targeting from EPR and the leakiness of the blood vessels around the tumor, Sdc1-tagged 

liposomes showed greater accumulation within the pancreatic tumor and less off-target binding. 

These results, congruent with previous findings, suggest that the active targeting of the Sdc1 ligand 

contributes most to the specificity of the Sdc1-tagged liposomes. 
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 Cancer cells treated with targeted liposomes containing chemotherapeutic agents show 

enhanced cell death when compared to non-targeted liposomes due to enhanced receptor-mediated 

endocytosis (43). This project showed that Sdc1-tagged liposomes are capable of fusing with cell 

membranes and unloading their contents into the cell, indicated by the presence of DNA-bound 

propidium iodide in S2VP10L cells treated with the liposomes. This result was observed in IGF1R-

positive S2VP10L cells and not in IGF1R-negative SCC1 cells, suggesting that the Sdc1-IGF1R 

interaction facilitates endocytosis.  

The specific unloading of liposomal contents to IGF1R-positive cells in vitro and low off-

target binding in vivo demonstrate the feasibility of using Syndecan-1 as a targeting ligand for a 

pancreatic theranostic nanoparticle. Because Sdc1-tagged liposomes specifically target and 

preferentially release contents to pancreatic adenocarcinoma, encapsulating a drug in these 

particles can reduce systemic toxicity, leading to decreased side effects and improved patient 

prognosis (8, 12-14). Furthermore, the presence of a contrast agent allows for tracking of liposomal 

movement and accumulation and can be used to image pancreatic cancer in earlier stages using 

existing ultrasonic methods.  

In this study, photoacoustic imaging was used to produce high resolution molecular images 

in vivo based on the absorption of contrast agents. It has previously been used to image both 

endogenous (such as melanin in the monitoring of melanoma) and exogenous (NIR dyes) 

chromophores in the context of cancer (44). Though photoacoustic imaging is not currently widely 

used in the clinic, applications of MSOT in clinical settings have begun with the development of 

a handheld MSOT system (45). Using MSOT to image theranostic nanoparticles may soon become 

a versatile tool in the diagnosis and monitoring of pancreatic cancer by providing a method of 

detecting tumors at an earlier stage.  
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In conclusion, Syndecan-1 tagged liposomes actively target pancreatic adenocarcinoma 

with minimal off-target binding in vivo and are capable of releasing their contents in vitro. Though 

this study reveals that Sdc1-tagged liposomes can be useful for imaging pancreatic 

adenocarcinoma in a laboratory setting, further work is needed to assess their clinical value. Such 

studies should include using clinically viable techniques to image the liposomes evaluating the 

therapeutic capabilities of these liposomes. Ultimately these studies may lead to the development 

of a theranostic nanoparticle for clinical use.  
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Figures 

 

 

Figure 1. Structure of Syndecan-1 tagged liposome encapsulating either propidium iodide or CF-

750 dye.  
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Figure 2. Western blot analysis of pancreatic cell lines S2VP10L, MiaPaCa-2, S2013, and head 

and neck squamous cell carcinoma cell line SCC-1. (A) Western blot bands of β-Actin (42 kDa) 

and IGF1R (90 kDa). (B) Western blot band intensity dosimetry. The signal intensity of the IGF1R 

band was divided by the signal intensity of the β-Actin band to calculate relative abundance. 

Relative abundance of IGF1R in negative control SCC-1 cells was approximately 0.06. Pancreatic 

cell lines S2VP10L and S2013 displayed relative abundance of IGF1R of 0.32 and 0.42 

respectively, a five- and seven-fold increase compared to the negative control. 
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Figure 3. (A) DLS measurements to determine the size of the liposomes. The liposomes are 

approximately 129 nm in diameter with a polydispersion index of 0.05. (B) Zeta-potential 

measurements of the liposomes. Z=0.3 mV. (C) Transmission Electron Microscopy of the 

liposomes. The average size of the liposomes as determined by TEM is approximately 117 nm. 
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Figure 4. Absorption spectrum for CF-750 encapsulated Sdc1 liposomes. The liposomes 

demonstrated fluorescence activity with peak absorbance at 750 nm. Encapsulating the CF-750 

dye within the Sdc1 liposomes did not change the optical activity of the dye. 
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Figure 5. S2VP10L cells following 3 h treatment at 400X magnification. All images were taken 

with the same exposure times. (A), (B), (C): Texas Red filter only. (D), (E), (F): Texas Red, DAPI, 

and FITC (A) Control cells show minimal red autofluorescence. (B) Cells treated with non-

targeted liposomes display faint red signal, corresponding to minimal dye uptake. (C) Cells treated 

with Sdc1 liposomes show much stronger red fluorescence, indicating uptake of PI and binding of 

PI to DNA. (D) Control cells with DAPI. (E) Cells treated with non-targeted liposomes. Green 

signal is due to unbound PI, showing dye accumulation outside of the cell. (F) Cells treated with 

Sdc1 liposomes. Yellow signal occurs due to colocalization of red and green fluorescence, 

indicating that dye was located both on the cell surface and in the cytoplasm. White signal is 

colocalization of red, green, and DAPI signal. 
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Figure 6. Representative locations of organs on MSOT at both 46 and 49 mm.  
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Figure 7. (A) Serial slice images of liposomal accumulation taken from 43 to 48 mm (abdomen). 

The highest signal intensity of the liposomes was at 45-46 mm. (B) Orthogonal views of the 

pancreatic tumor and liposomal accumulation through different anatomical planes. (C) ROI 

analysis on liposome signal in various locations over time measured in MSOT a.u.. Bar height 

represents the median value and error bars represent the standard deviation throughout the organ. 

Peak liposomal accumulation occurred at 8 h post-injection. Significantly more liposomes 

accumulated in the tumor versus off-target organs (p<0.05). Representative locations of organs 

can be viewed in Supplemental Figure 2.  
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Figure 8. Ex vivo fluorescent imaging of the pancreas, liver, and spleen 24 h post-injection. Sdc1 

liposomes accumulated in the tumor with very little off-target binding in the liver and spleen. Non-

targeted liposomes tend to accumulate in the liver with low signal in the tumor. 

 


	Syndecan-1 tagged liposomes as a theranostic nanoparticle for pancreatic adenocarcinoma.
	Recommended Citation

	tmp.1486496287.pdf.vs2DB

