14,289 research outputs found

    Symmetry based Structure Entropy of Complex Networks

    Full text link
    Precisely quantifying the heterogeneity or disorder of a network system is very important and desired in studies of behavior and function of the network system. Although many degree-based entropies have been proposed to measure the heterogeneity of real networks, heterogeneity implicated in the structure of networks can not be precisely quantified yet. Hence, we propose a new structure entropy based on automorphism partition to precisely quantify the structural heterogeneity of networks. Analysis of extreme cases shows that entropy based on automorphism partition can quantify the structural heterogeneity of networks more precisely than degree-based entropy. We also summarized symmetry and heterogeneity statistics of many real networks, finding that real networks are indeed more heterogenous in the view of automorphism partition than what have been depicted under the measurement of degree based entropies; and that structural heterogeneity is strongly negatively correlated to symmetry of real networks.Comment: 7 pages, 6 figure

    Dynamics-Driven Evolution to Structural Heterogeneity in Complex Networks

    Full text link
    The mutual influence of dynamics and structure is a central issue in complex systems. In this paper we study by simulation slow evolution of network under the feedback of a local-majority-rule opinion process. If performance-enhancing local mutations have higher chances of getting integrated into its structure, the system can evolve into a highly heterogeneous small-world with a global hub (whose connectivity is proportional to the network size), strong local connection correlations and power law-like degree distribution. Networks with better dynamical performance are achieved if structural evolution occurs much slower than the network dynamics. Structural heterogeneity of many biological and social dynamical systems may also be driven by various dynamics-structure coupling mechanisms.Comment: Figure 2 updated. Final version as appear in Physica

    Prominent effect of soil network heterogeneity on microbial invasion

    Get PDF
    Using a network representation for real soil samples and mathematical models for microbial spread, we show that the structural heterogeneity of the soil habitat may have a very significant influence on the size of microbial invasions of the soil pore space. In particular, neglecting the soil structural heterogeneity may lead to a substantial underestimation of microbial invasion. Such effects are explained in terms of a crucial interplay between heterogeneity in microbial spread and heterogeneity in the topology of soil networks. The main influence of network topology on invasion is linked to the existence of long channels in soil networks that may act as bridges for transmission of microorganisms between distant parts of soil

    Learning Stability in Economies with Heterogenous Agents

    Get PDF
    An economy exhibits structural heterogeneity when the forecasts of different agents have different effects on the determination of aggregate variables. Various forms of structural heterogeneity can arise and we study the important case of economies in which agents' behavior depends on forecasts of aggregate variables and show how different forms of heterogeneity in structure, forecasts, and adaptive learning rules affect the conditions for convergence of adaptive learning towards rational expectations equilibrium. Results are applied to the market model with supply lags and a New Keynesian model of interest rate setting.adaptive learning, expectations formation, stability of equilibrium, market model, monetary policy.

    Sampling bias in systems with structural heterogeneity and limited internal diffusion

    Full text link
    Complex systems research is becomingly increasingly data-driven, particularly in the social and biological domains. Many of the systems from which sample data are collected feature structural heterogeneity at the mesoscopic scale (i.e. communities) and limited inter-community diffusion. Here we show that the interplay between these two features can yield a significant bias in the global characteristics inferred from the data. We present a general framework to quantify this bias, and derive an explicit corrective factor for a wide class of systems. Applying our analysis to a recent high-profile survey of conflict mortality in Iraq suggests a significant overestimate of deaths

    Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization

    Get PDF
    Structural heterogeneity constitutes one of the main substrates influencing impulse propagation in living tissues. In cardiac muscle, improved understanding on its role is key to advancing our interpretation of cell-to-cell coupling, and how tissue structure modulates electrical propagation and arrhythmogenesis in the intact and diseased heart. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a mean of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, validated against in-vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies many relevant characteristics of cardiac propagation, including the shortening of action potential duration along the activation pathway, and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media
    corecore