142 research outputs found

    Two dimensional Leidenfrost Droplets in a Hele Shaw Cell

    Get PDF
    We experimentally and theoretically investigate the behavior of Leidenfrost droplets inserted in a Hele-Shaw cell. As a result of the confinement from the two surfaces, the droplet has the shape of a flattened disc and is thermally isolated from the surface by the two evaporating vapor layers. An analysis of the evaporation rate using simple scaling arguments is in agreement with the experimental results. Using the lubrication approximation we numerically determine the shape of the droplets as a function of its radius. We furthermore find that the droplet width tends to zero at its center when the radius reaches a critical value. This prediction is corroborated experimentally by the direct observation of the sudden transition from a flattened disc into an expending torus. Below this critical size, the droplets are also displaying capillary azimuthal oscillating modes reminiscent of a hydrodynamic instability

    Multi-perspective requirements engineering for networked business systems: a framework for pattern composition

    Get PDF
    How business and software analysts explore, document, and negotiate requirements for enterprise systems is critical to the benefits their organizations will eventually derive. In this paper, we present a framework for analysis and redesign of networked business systems. It is based on libraries of patterns which are derived from existing Internet businesses. The framework includes three perspectives: Economic value, Business processes, and Application communication, each of which applies a goal-oriented method to compose patterns. By means of consistency relationships between perspectives, we demonstrate the usefulness of the patterns as a light-weight approach to exploration of business ideas

    ITEM: Inter-Texture Error Measurement for 3D Meshes

    Get PDF
    We introduce a simple and innovative method to compare any two texture maps, regardless of their sizes, aspect ratios, or even masks, as long as they are both meant to be mapped onto the same 3D mesh. Our system is based on a zero-distortion 3D mesh unwrapping technique which compares two new adapted texture atlases with the same mask but different texel colors, and whose every texel covers the same area in 3D. Once these adapted atlases are created, we measure their difference with ITEM-RMSE, a slightly modified version of the standard RMSE defined for images. ITEM-RMSE is more meaningful and reliable than RMSE because it only takes into account the texels inside the mask, since they are the only ones that will actually be used during rendering. Our method is not only very useful to compare the space efficiency of different texture atlas generation algorithms, but also to quantify texture loss in compression schemes for multi-resolution textured 3D meshes

    Quantifying Shape of Star-Like Objects Using Shape Curves and A New Compactness Measure

    Get PDF
    Shape is an important indicator of the physical and chemical behavior of natural and engineered particulate materials (e.g., sediment, sand, rock, volcanic ash). It directly or indirectly affects numerous microscopic and macroscopic geologic, environmental and engineering processes. Due to the complex, highly irregular shapes found in particulate materials, there is a perennial need for quantitative shape descriptions. We developed a new characterization method (shape curve analysis) and a new quantitative measure (compactness, not the topological mathematical definition) by applying a fundamental principle that the geometric anisotropy of an object is a unique signature of its internal spatial distribution of matter. We show that this method is applicable to “star-like” particles, a broad mathematical definition of shape fulfilled by most natural and engineered particulate materials. This new method and measure are designed to be mathematically intermediate between simple parameters like sphericity and full 3D shape descriptions. For a “star-like” object discretized as a polyhedron made of surface planar elements, each shape curve describes the distribution of elemental surface area or volume. Using several thousand regular and highly irregular 3-D shape representations, built from model or real particles, we demonstrate that shape curves accurately encode geometric anisotropy by mapping surface area and volume information onto a pair of dimensionless 2-D curves. Each shape curve produces an intrinsic property (length of shape curve) that is used to describe a new definition of compactness, a property shown to be independent of translation, rotation, and scale. Compactness exhibits unique values for distinct shapes and is insensitive to changes in measurement resolution and noise. With increasing ability to rapidly capture digital representations of highly irregular 3-D shapes, this work provides a new quantitative shape measure for direct comparison of shape across classes of particulate materials

    Properties of Stars in the Subaru Deep Field

    Get PDF
    We investigate the properties of objects in the Subaru Deep Field (SDF), using public catalogs constructed from images in several optical passbands. Using a small subset of objects most likely to be stars, we construct a stellar locus in three-dimensional color space. We then compare the position of all objects relative to this locus to create larger samples of stars in the SDF with rough spectral types. The number counts of stars defined in this way are consistent with those of current models of the Galaxy.Comment: 14 pages, 9 figures, to appear in PASJ vol 57, number 6 (Dec 2005). Additional data available at http://spiff.rit.edu/sd

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Al–Mg–Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Al–Mg–Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Al–Mg–Si–Mn–Fe and Al–Mg–Si–Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Al–Mg–Si–Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same α-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, ÎČ-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Al–Mg–Si alloy, the identified Fe-rich intermetallics included the compact α-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped ÎČ-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of α-AlFeMnSi intermetallics and suppresses the formation of ÎČ-AlFe phase in the Al–Mg–Si alloys, and thus improves their mechanical properties.EPSRC and JL

    Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    Get PDF
    The oxygen reduction reaction (ORR) is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs) and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM) and a transmission electron microscope (TEM) analyses confirm the formation of the star-shaped nanoparticles. Among the investigated nanostar catalysts, an AuNS5 with smaller size and a few branches showed the higher electrocatalytic activity towards ORR than other catalysts with a bigger size. In addition, the electron numbers transferred for all the catalysts are approximately two. The present study results infer that the size of the Au-based nanostars may influence greatly on their catalytic activity. The present study results show that the further improvement is needed for Au-based nanostar catalysts towards the ORR reaction

    Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    Get PDF
    • 

    corecore