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Abstract  

Shape is an important indicator of the physical and chemical behavior of natural and engineered 

particulate materials (e.g., sediment, sand, rock, volcanic ash).  It directly or indirectly affects 

numerous microscopic and macroscopic geologic, environmental and engineering processes.  Due 

to the complex, highly irregular shapes found in particulate materials, there is a perennial need for 

quantitative shape descriptions.  We developed a new characterization method (shape curve 

analysis) and a new quantitative measure (compactness, not the topological mathematical 

definition) by applying a fundamental principle that the geometric anisotropy of an object is a 

unique signature of its internal spatial distribution of matter.  We show that this method is 

applicable to “star-like” particles, a broad mathematical definition of shape fulfilled by most natural 

and engineered particulate materials. This new method and measure are designed to be  

mathematically intermediate between simple parameters like sphericity and full 3D shape 

descriptions.   

For a “star-like” object discretized as a polyhedron made of surface planar elements, each shape 

curve describes the distribution of elemental surface area or volume.  Using several thousand 

regular and highly irregular 3-D shape representations, built from model or real particles, we 

demonstrate that shape curves accurately encode geometric anisotropy by mapping surface area 

and volume information onto a pair of dimensionless 2-D curves.  Each shape curve produces an 

intrinsic property (length of shape curve) that is used to describe a new definition of compactness, a 

property shown to be independent of translation, rotation, and scale.  Compactness exhibits unique 

values for distinct shapes and is insensitive to changes in measurement resolution  and noise.  With 

increasing ability to rapidly capture digital representations of highly irregular 3-D shapes, this work 

provides a new quantitative shape measure for direct comparison of shape across classes of 

particulate materials. 

Keywords: star-like shapes, characterization of shape, shape curves, compactness  
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1.0 Introduction 14 

Shape is an important consideration in the study of natural and processed particulate 15 

materials.  Shape influences numerous microscale and macroscale processes and it is important in 16 

understanding many chemical, physical, and biological properties in numerous areas of the science 17 

and engineering of particulate materials (Riley et al. 2003; Chung et al. 2010; Albanese et al. 2012).  18 

For example, volcanological processes dictate the shape and size of particles emitted from volcanic 19 

eruptions, which makes shape an important indicator of the fate and extent of transport of volcanic 20 

clouds (Rose and Durant 2009, 2011).  Shape is also a key factor in understanding fluid drag in the 21 

motion of suspended non-spherical particles (Leith 1987; Loth 2008; Bagheri and Bonadonna 22 

2016).  By implication, better characterization of particle shape can improve understanding of a 23 

wide range of processes and the behavior of numerous natural and synthetic materials (Bullard and 24 

Garboczi 2013).  25 

Particulate materials contain complex morphological features over multiple length scales 26 

(relative to some measure of overall object size).  Their shape can range from smooth, mildly 27 

aspherical forms to angular particles observed in engineering or environmental systems 28 

(Connolly et al. 2020) to highly porous and fractalesque geometries seen in volcanic ash (Bagheri 29 

et al. 2015).  The morphological features of such materials can be classified into a three-tiered 30 

hierarchy based on observational scale.  At the largest scale, form describes closeness to an ideal 31 

shape, curvature of the overall form (roundness) describes an intermediate scale property, while 32 

surface texture (asperity) describes small length-scale geometric properties (Barrett 1980; Blott 33 

and Pye 2008).   34 

There are two broad classes of quantitative shape measures developed for particulate 35 

materials – single factor and parametric measures (Jia and Garboczi 2016).  For example, Corey 36 

shape factor (CSF) is a single factor measure developed from three measurable sizes of a particle 37 



in mutually-perpendicular directions: the longest dimension (dmax), the shortest dimension (dmin), 38 

and an intermediate or medium direction (dmed) (Loth 2008), and defined as,  39 

CSF =
𝑑𝑚𝑖𝑛

√𝑑𝑚𝑎𝑥 𝑑𝑚𝑒𝑑
                                                             (1) 40 

Practical considerations and design of measurements limit many single factor shape 41 

measures to target one or two of the length scale hierarchies.  The CSF parameter was originally 42 

described using data captured by mechanical sieving (Corey 1949), and subsequently used with 43 

caliper measurements and microscopic images (Komar and Reimers 1978).  For particulate 44 

materials, by using a limited number of size measurements, CSF bypasses complexities in surface 45 

texture to get a snapshot of shape expressed in large and intermediate scale features.  Another 46 

single factor shape measure is the classic Wadell sphericity (Ψ), which gives a measure of the ratio 47 

of the surface area of a sphere with the same volume to the surface area of the particle (Wadell 48 

1932): 49 

Ψ =
𝜋

1
3 (6 𝑉)

2
3

A
                                                                (2) 50 

where A and V are particle surface area and volume, respectively.   51 

While sphericity is a more widely used measure, CSF has been shown to be more suited to 52 

characterize shape when the goal was to understand fluid drag coefficients of angular particles 53 

(Loth 2008).  This is likely because three size measurements capture “local” changes better in these 54 

materials.  More “global” measurements like volume and surface area do not capture the complex 55 

arrangement of mass within a particle.  The terms “local” and “global” here describe surface 56 

features with a single particle as reference.     57 

However, CSF is known to be less sensitive to equidimensional regular shapes, with a cube 58 

and a sphere producing similar values (Connolly et al. 2020).  Similarly, sphericity is affected by 59 

ambiguous values in a broader range.  For example, the sphericity of most ellipsoidal shapes can 60 



vary approximately in the range of 0.3 and 1.0. The approximate range for most commonly-61 

encountered cylinders (0.45- 0.87), objects perceived to be entirely different in shape, also fall 62 

within this range (Li et al. 2012).  As a result, more complete shape description is often performed by 63 

combining single parameter measures with material-specific terms that provide a better visual 64 

understanding of shape.  For example, descriptive terminology is commonly used to describe the 65 

shape of volcanic ash using terms such as vesicular, angular, blocky, twisted, and elongated droplets 66 

with smooth or fluidal surfaces (Heiken 1972).  While there exists a range of descriptive features for 67 

rocks and other geological materials (Blott and Pye 2008), there is no standard terminology for 68 

qualitative shape description across material classes (Jia and Garboczi 2016). 69 

Parametric series measures, on the other hand, are more complex as they capture shape 70 

information as a series of curves representing the shape profile of particles.  Often, these 71 

representations are encoded using complex Fourier series and they can be developed from 2-D or 72 

3-D form outlines of most particle shapes.  Various approaches exist for the development of these 73 

measures, such as the Fourier descriptors approach for 2-D and 3-D outlines (Boon et al. 1982; 74 

Bowman et al. 2001; Mollon and Zhao 2013, 2014) and a Fourier series based 2-D approach 75 

(Barclay and Buckingham 2009).  Another related approach uses spherical harmonic (SH) analysis 76 

applied to star-shaped particles (Garboczi 2002; Chung et al. 2010).  Parametric series measures 77 

can capture subtle features in particles and have unique advantages in applications related to shape 78 

reconstruction and representation.  Single parameter measures, however, typically find specific 79 

applications in shape-property studies. 80 

These factors underscore the need for continuing research towards developing fully 81 

quantitative shape measures applicable to all irregularly shaped objects, something that was 82 

highlighted almost two decades ago (Taylor 2002).  The overarching objective of this work is the 83 

development of a shape measure that aligns with single parameter measures but uses the power of 84 

parametric series measures to accurately capture scale-specific shape information for shape 85 



classification in order to have better discrimination between dissimilar shapes between classes. If 86 

successful, the shape measure will be in a mathematical sense intermediate: more complex than 87 

simple parameters but not as complex as parametric series.  The rest of this paper is divided into 88 

sections detailing theory behind a new approach to shape classification (shape curve theory) and 89 

its application on regular and Euclidean shapes(Section 2).  In section 3 we develop a shape 90 

classification approach and extend shape curve theory with a case study on irregularly shaped 91 

particles.  Section 4 discusses considerations in the application of shape curve analysis including 92 

factors like invariances and measurement sensitivities, followed by a summary of the method and 93 

important conclusions (Section 5). 94 

2.0 Background and Methods 95 

2.1 Star-like shapes 96 

The “star-like” description of a three-dimensional object S is a mathematical definition that 97 

is fulfilled if there exists an interior point O in S such that the line segment connecting O to any point 98 

p on the surface of S lies entirely in the interior of S (Dorf and Hall 2003; Garboczi and Bullard 99 

2017).  This feature has also been described as the object being “devoid of non-intersecting” 100 

surfaces or having a single-valued surface (Barclay and Buckingham 2009; Mulukutla et al. 2017).  101 

A particle being “star-like” is a weaker condition than convexity, although if a particle is “star-like” 102 

it can be proved that there exists a convex subset of the star-like particle so that the particle is star-103 

like with respect to any point O in this convex subset (Smith 1968).  This weaker condition allows a 104 

wider variety of shapes to conform to this property than only those that are convex.  All regular and 105 

irregular convex shapes are also star-like, as well as particles with minor concavities such as those 106 

derived from geological materials (e.g., sand, rock, gravel, volcanic ash, powders) and most particles 107 

made from industrial processes, assuming interior pores are neglected (Bullard and Garboczi 2013; 108 

Mollon and Zhao 2013; Qian et al. 2016).  We describe a particle as being “star-shaped” if it meets 109 



the mathematical definition of “star-like.” Only particles that are at least star-shaped are 110 

investigated in this work. 111 

2.2 Shape Curve Theory for Convex Objects 112 

Consider a sphere (a regular convex and thus star-like shape) discretized by closed 113 

differential elements, so constructed that their appropriate integral produces the surface area or 114 

volume of the shape.  A closed differential element for volume would be a spherical sector 115 

consisting of a spherical cap and a right circular cone (Figure 1a).  The same spherical sector can 116 

also be considered a closed surface area differential element by discounting the surface area of the 117 

conical portion of the spherical sector, as the surface area of the conical element does not 118 

contribute to the surface area of the sphere.  A similar construction of closed differential elements 119 

for a prolate and oblate spheroids and right circular cylinders are constructed (Figure 1 b-d).  120 

Specifically, for prolate and oblate spheroids the closed differential elements are so chosen that 121 

they align with the major axis and minor axis, respectively, and allow a circular base for the 122 

spheroidal cap and simpler formulations for the surface area and volume. 123 

For a sphere of radius r with a spherical sector element, given the height of the spherical cap is 124 

h, and the sphere radius is r, the volume of the spherical cap may be written as  125 

Vcap=
𝜋

3
ℎ2(3𝑟 − ℎ)                                              (3) 126 

The volume of the right circular cone portion of the spherical sector is  127 

Vcone=
𝜋

3
𝑟2(2ℎ𝑟 − ℎ2)                                           (4) 128 

The spherical sector volume can then be written as  129 

𝑉 =
𝜋

3
ℎ2(3𝑟 − ℎ) +

𝜋

3
𝑟2(2ℎ𝑟 − ℎ2)               (5) 130 

Similarly, the surface area of a spherical sector (excluding the surface area of the cone) can be 131 

written as  132 

𝐴 = 2𝜋𝑟ℎ                                                                (6) 133 



In order to understand the distribution of space within the sphere and its relationship to the 134 

expression of shape, we use the concept of solid angle.  By definition, the solid angle (Ω) of any 135 

object subtended at an arbitrary point O located at distance r is given as Ω =
𝐴

𝑟2 (units: steradians), 136 

where A is the spherical surface area that the object projects onto a unit sphere centered on the 137 

arbitrary point (Taylor and Thompson 2008).  Solid angle provides a measure of the extent an 138 

object’s projection covers the unit circle.  The solid angle of the spherical sector subtended at 139 

sphere center O is the same as the solid angle of the spherical cap.  This can be assumed to be equal 140 

to the solid angle of a circular disk formed by the base of the spherical cap.  Because the closest 141 

circular section of the spherical cap subtends the largest projected area on a unit sphere located at 142 

O, all other projections of the spherical cap will be obscured by this area.  As a result, the solid angle 143 

of the spherical sector (Ω) can be given by the solid angle of a thin circular disk (Asvestas and 144 

Englund 1994).  145 

Ω𝑐𝑎𝑝 = 2𝜋 (1 − cos 𝜃𝑐)                                         (7) 146 

where 𝜃𝑐 = 𝑡𝑎𝑛−1 (
√2𝑟ℎ−ℎ2

𝑟−ℎ
) is the angle between the axis and the straight line that connects the 147 

center and any point on the circular base. A set of similar underlying equations of surface area and 148 

volume for the non-spherical shapes considered here (spheroids and right circular cylinders) are 149 

summarized in Table 1.   150 

The total solid angle subtended at the center for any star-like shape is 4𝜋.   This result has been 151 

illustrated using numerical examples (Mulukutla et al. 2017).  It can also be proven mathematically, 152 

as summarized in section S1 (supporting information).  This intrinsic property allows the definition 153 

the physical fraction of an object (𝛥)(Mulukutla et al. 2017), a function describing the physical extent 154 

of an object in terms of the solid angle it subtends divided by 4𝜋. 155 

𝛥(Ω) =
Ω

4𝜋
   , 0 ≤ 𝛥 ≤ 1                                                                          (8) 156 



To capture shape information from the entire sphere, we initially consider a hemisphere 157 

and build a sequence of spherical caps that progressively integrates surface area and volume at 158 

each step.  The analysis can then just be doubled to reflect the whole shape. Each spherical cap 159 

encompasses the area and volume of the previous element, making them inherently cumulative and 160 

integrative of shape information captured within.  Equations (5) to (8) and the cumulative solid 161 

angle and physical fraction for the whole sphere can be rewritten in a normalized numeric form as   162 

𝑉𝑛 =
2

𝑉
(
𝜋

3
ℎ𝑛

2(3𝑟 − ℎ𝑛) +
𝜋

3
𝑟2(2ℎ𝑛𝑟 − ℎ𝑛

2))                                          (9) 163 

𝐴𝑛 =
2

𝐴
(2𝜋𝑟ℎ𝑛)                                                                                                (10) 164 

Ω𝑛 = 2(
A𝑛

𝑟2
)                                                                                                       (12) 165 

𝛥𝑛 = 2(
Ω𝑛

4𝜋
) , 0 ≤ 𝛥 ≤ 1 , where Ω𝑛 = 2(2𝜋 (1 − cos 𝜃𝑐

𝑛))                 (13) 166 

where V and A are the volume and surface area of the whole sphere, respectively. The variable ℎ𝑛 =167 

𝑛𝑟 ,  𝑛 = 0,
1

𝑁
,
2

𝑁
, … 1, where N is the number of steps (or number of spherical sector elements ) 168 

considered for the sphere.   169 

We define shape curves as a pair of curves that describe the variation of the cumulative surface 170 

area fraction function (CSAF) and the cumulative volume fraction function (CVF) with the cumulative 171 

physical fraction function (CPF).  For star-like shapes, we define the cumulative physical fraction 172 

function (CPF, Δ𝑐) as a continuous distribution that progressively depicts the fraction of an object.  173 

Since Eqs (9)-(13) integrate information from the previous element, a simple extraction of data will 174 

provide a series of discrete cumulative data: 175 

Δ𝑐 = {Δ1, Δ2, Δ3 …Δ𝑛}                                  (14𝑎) 176 



Similarly, the cumulative series for surface area (CSAF, 𝐴𝐶 ; 0 ≤ 𝐴𝐶  ≤ 1 ) and volume (CVF, 177 

𝑉𝐶 ; 0 ≤ 𝑉𝐶  ≤ 1 ) are defined as: 178 

𝐴𝐶 = {A1, 𝐴2, 𝐴3 …𝐴𝑛}                              (14𝑏) 179 

𝑉𝐶 = {V1, 𝑉2, 𝑉3 …𝑉𝑛}                                 (14𝑐) 180 

Analysis was performed by discretizing one half the axis of symmetry of each shape by 1000 181 

differential elements and the surface area and volume shape curve data doubled to reflect the 182 

behavior of the entire object.  Shape curves were generated for spheres, prolate and oblate 183 

spheroids, and right circular cylinders using the exact mathematical formulations described in Eqs 184 

(9) to (14) and in Table 1.  Aspect ratios in the range 1 to 100 were examined for each shape.  We 185 

define aspect ratio (≥ 1) as 𝑐/𝑎 for prolate spheroid, a/𝑐 for oblate spheroid, where a and c are the 186 

semi-axes.  For a right circular cylinder, aspect ratio is defined as 𝐿/𝑅𝑐 , where L is the height and 𝑅𝑐 187 

the radius.  Illustrative shape curves for prolate spheroids and right circular cylinders along with 188 

spheres are shown in Figure 2.  Shape curves for a sphere (aspect ratio = 1), being an equi-189 

dimensional shape, are marked by a straight line.  They show that aspect ratio differentiates shapes, 190 

with increasing length of curves for increasing values.  Shape curves of right circular cylinders are 191 

each marked by a sharp linear segment.  This is a result of the planar face of a cylinder contributing 192 

to a substantial portion of the solid angle.  With increasing aspect ratio, the planar face of the right 193 

circular cylinder becomes increasingly distant from the center of the cylinder, thus contributing a 194 

smaller solid angle fraction.  This shows that shape curves capture intrinsic signatures of convex 195 

objects.  In order for shape curve theory to apply to irregular shapes, there is a need to examine its 196 

validity for star-like shapes.   197 

2.3 Properties of Shape Curves 198 

Shape curves provide a non-dimensional method to understand the inherent relationship 199 

between an object’s surface area and volume integrated over the entire surface of the object.  While 200 



there exists a power-law scaling for the surface area to volume relationship for Euclidean shapes 201 

(Bullard and Garboczi 2013), shape curves can quantify these differences in a non-dimensional way.  202 

For a given volume, an isoperimetric inequality states that a spherical shape has the smallest 203 

surface area (Pólya and Szegö 1951).  This pattern is captured in the linear behavior of the sphere 204 

shape curves.  Any change from a sphere to a different shape (e.g. into an ellipsoid) leads to a higher 205 

surface area, a different volume, and an observable change in shape curve signatures.  These 206 

changes can be captured in the length of the shape curves, which can be determined by summing 207 

the length of individual segments formed by Eqs14a-c.  In the case of a sphere, each shape curve is a 208 

45o straight line with bounds [0 1] on each axis. The length of such a straight-line segment is easily 209 

calculated: 210 

(𝑙𝑠, 𝑙𝑣)𝑠𝑝ℎ𝑒𝑟𝑒 = √2 = 1.4142                                                   (15)  211 

where 𝑙𝑠 and 𝑙𝑣 refer to the length of the surface area and the volume shape curves, respectively.   212 

The definition of a new parameter that we call compactness (C) is derived by normalizing 213 

the object’s shape curve lengths to those of a sphere:  214 

𝐶 = (
𝑙𝑠

√2
,
𝑙𝑣

√2
)                                                                                      (16) 215 

We denote these normalized shape curve lengths as: 216 

𝐶 = (𝐿𝑠, 𝐿𝑣)                                                         (17) 217 

Compactness by the way of normalized shape curve lengths provide a two-component 218 

measure describing the shape of an object relative to a sphere, with each component integrating 219 

independent information that comes from the particle shape.  This metric is different from the usual 220 

topological measure, also called compactness, which is a measure of the nature of a point set 221 

(Bribiesca 2008).  For our case, the compactness of a sphere is exactly:  222 



𝐶 = (1, 1)                                                                   (18) 223 

Plots in Figures 3a-b capture compactness values (shape curve lengths) for spheroids and 224 

right circular cylinders.  Increasing aspect ratio results in increasing shape curve lengths.  For the 225 

same aspect ratio and value of a, volume shape curve lengths of prolate and oblate spheroids are 226 

identical (due to equal volume), but surface area shape curve lengths are distinct.  In subsequent 227 

sections, we use shape curve theory to further explore properties of star-like shapes using 228 

numerical representations of regular and irregular shapes and to develop a basis for shape 229 

classification. 230 

2.4 Shape Curves from Numerical Representations of Star-like Objects 231 

Many imaging and reconstruction techniques are available to capture object shapes with 232 

scales ranging from nanometers to millimeters and meters (Gualda et al. 2010).  These include X-233 

ray computed tomography (XCT) based measurements of internal structures and external surfaces 234 

(Garboczi 2002; Pirard 2012; Vonlanthen et al. 2015), stereology-based techniques developed from 235 

2-D XCT to aid 3D reconstructions (Proussevitch et al. 2007), 2-D surface imaging techniques 236 

combined with 3D reconstruction using scanning electron microscopy (SEM) (Tafti et al. 2015), and 237 

stereographic-SEM based reconstruction of partial surfaces of objects (Colucci et al. 2013; 238 

Mulukutla et al. 2017).  The aforementioned techniques do not form an exhaustive list of all 239 

available techniques to capture 3-D data.  Readers may find other 3-D imaging techniques, including 240 

volumetric imaging such as ultrasound or magnetic resonance imaging (MRI), or other topographic  241 

imaging techniques like confocal microscopy or Moiré interferometry, that may be more suited for 242 

their application.   243 

Regardless of chosen method to capture 3-D data, we present our work in terms of a 3-D 244 

representation of a star-like particle captured from a cloud of points depicting its exterior surface.  245 

These points, spread uniformly or randomly distributed on the surface, can be used to develop a 246 



closed, thin-shelled polyhedron defining the surface that then can be used, if so desired, to generate 247 

a full 3D digitized representation of the object, assuming that the object is of uniform material 248 

density, since a point cloud defining the surface does not give any information about the particle’s 249 

interior.  The surface polyhedron consists of vertices, linear edges and triangular facets (Cromwell 250 

1997) (Figures 5 and 6).  This object is considered to be solid, with any pores on the surface 251 

considered to be part of the point cloud.  Interior pores do not of course appear in a surface point 252 

cloud.   253 

Using the above described construction, we develop a discretization of the object using 254 

different closed differential elements that are appropriate for surface area or volume calculations.  255 

The surface area of the particle can be assembled by summing up the area of the individual 256 

constituent triangular facets (𝐴𝑖) of the surface.  These calculations can be performed using simple 257 

geometrical formulations.  With Cartesian coordinates representing the vertices 𝐴(𝑥1, 𝑦1, 𝑧1), 258 

𝐵(𝑥2, 𝑦2, 𝑧2), and 𝐶(𝑥3, 𝑦3, 𝑧3), the surface area of a triangular element is given as (Zwillinger 2003): 259 

𝐴𝑖 =
1

2
| 𝑨𝑩⃗⃗⃗⃗⃗⃗  ×  𝑨𝑪⃗⃗⃗⃗  ⃗|        (19) 260 

where vectors 𝐴  ,�⃗�  and 𝐶  are vectors formed by each side of the triangle: 261 

𝑨𝑩⃗⃗⃗⃗⃗⃗ = (𝑥2 − 𝑥1) 𝑖̂ + (𝑦2 −  𝑦1)𝑗̂ + (𝑧2 − 𝑧1)�̂�  (20a) 262 

𝑨𝑪⃗⃗⃗⃗  ⃗ = (𝑥3 − 𝑥1) 𝑖̂ + (𝑦3 −  𝑦1)𝑗̂ + (𝑧3 − 𝑧1)�̂�  (20b) 263 

and 𝑖,̂ 𝑗̂,and �̂� are unit vectors along the x, y and z axes, respectively.   264 

For volume calculations, each triangular facet is considered to be the base of a tetrahedron 265 

that is formed with the same interior point O as its opposite vertex and origin (Figure 4).  The 266 

volume of this tetrahedron is given as (Altshiller-Court 1964):  267 

𝑉𝑖 =
|�⃗⃗� 𝟏  ∙  (�⃗⃗� 𝟐 × �⃗⃗� 𝟑

⃗⃗ ⃗⃗ ) |

6
                                                                  (21) 268 

where, �⃗⃗� 𝟏, �⃗⃗� 𝟐  and �⃗⃗� 𝟑 are vectors connecting O to each vertex A, B and C, respectively: 269 

�⃗⃗� 𝟏 = 𝑥1  𝑖̂ + 𝑦1 𝑗̂ + 𝑧1 �̂�  (22a) 270 



�⃗⃗� 𝟐 = 𝑥2  𝑖̂ + 𝑦2 𝑗̂ + 𝑧2 �̂�  (22b) 271 

�⃗⃗� 𝟑 = 𝑥3  �̂� + 𝑦3 𝑗̂ + 𝑧3 �̂�  (22c) 272 

The interior point O is chosen to be a point with respect to which the object is star-like, so 273 

that the surface area (S) and volume (V) of the object is given by the summation of individual 274 

triangular facet areas and tetrahedra volumes: 275 

S = ∑𝐴𝑖 

𝑛

𝑖=1

                                                                  (23a) 276 

𝑉 = ∑𝑉𝑖

𝑛

𝑖=1

                                                                  (23b) 277 

In order to understand the distribution of space within the object and its relationship to 278 

shape, in an approach similar to Section 2.2 we use the concept of solid angle to develop the 279 

cumulative physical fraction function.  In the case of a planar triangular facet depicting the surface of 280 

a polyhedron (Figure 4), the solid angle (Ωi) subtended at O can be determined from a numerically 281 

optimized formulation (Van Oosterom and Strackee 1983),  282 

 283 

tan (
1

2
Ω𝑖  ) =

|𝒂𝟏⃗⃗ ⃗⃗  𝒂𝟐⃗⃗ ⃗⃗  𝒂𝟑⃗⃗ ⃗⃗ |

𝑎1𝑎2 𝑎3 + (𝒂𝟏⃗⃗ ⃗⃗ ∙ 𝒂𝟐⃗⃗ ⃗⃗ )a3 + (𝒂𝟏⃗⃗ ⃗⃗ ∙ 𝒂𝟑⃗⃗ ⃗⃗ )𝑎2 + (𝒂𝟐⃗⃗ ⃗⃗ ∙ 𝒂𝟑⃗⃗ ⃗⃗ )𝑎1
          (24)    284 

 285 

where Ω𝑖  is the solid angle contributed by one constituent triangular facet of the polyhedron surface 286 

mesh.  Vectors 𝒂𝟏⃗⃗ ⃗⃗  , 𝒂𝟐⃗⃗ ⃗⃗  and 𝒂𝟑⃗⃗ ⃗⃗  are the vector position of each vertex as defined in Eqs. 22a-c (Figure 287 

4).  In the numerator, |𝒂𝟏⃗⃗ ⃗⃗  𝒂𝟐⃗⃗ ⃗⃗   𝒂𝟑⃗⃗ ⃗⃗ | represents the determinant of the three vectors calculated by their 288 

scalar triple product.   289 

With these formulations, we have shown that an individual triangular facet of a polyhedron 290 

can be used to express its surface area and the fraction of total solid angle that it subtends with an 291 

interior point as well as the volume of a tetrahedron that it forms with said point.  Thus, the surface 292 



area and volume of each constituent element of the polyhedron can be expressed as a function of the 293 

surface’s contributing solid angle (𝐴𝑖 = 𝐴𝑖(Ω) ;  𝑉𝑖 = 𝑉𝑖(Ω) ).  The contributing solid angle from all 294 

the constituent triangles of the polyhedron mesh is given by 295 

Ω = ∑Ω𝑖  

𝑛

𝑖=1

                               (25) 296 

The definitions of physical fraction(Δ)and the cumulative functions for physical fraction, 297 

surface area and volume (CPF,CSAF and CVF) given earlier in Eq (8) and Eqs (14a-c) also apply to 298 

all star-like polyhedrons.  However, there is a difference in the definition of elemental surface area 299 

and volume for those derived for convex objects (Eqs 14a-c).  Individual closed differential 300 

elements chosen to develop shape curve theory for convex objects (Figure 1) were inherently 301 

cumulative, integrating surface area and volume from the previous element. The closed tetrahedral 302 

elements used for star-like objects are not inherently cumulative (Figure 4).  As a result, we write 303 

Eqs (14a-c) in a form applicable to this formulation to make them explicitly cumulative and 304 

equivalent to the convex object theoretical formulations as: 305 

Δ𝑐 = {Δ1, (Δ1 + Δ2), … ( Δ1 + Δ2 + Δ3 …+ Δ𝑛)}                               (26𝑎) 306 

𝐴𝐶 =
{𝐴1, (𝐴1 + 𝐴2), … ( 𝐴1 + 𝐴2 + 𝐴3 …+ 𝐴𝑛)}

𝐴
                              (26𝑏) 307 

𝑉𝐶 =
{𝑉1, (𝑉1 + 𝑉2),… ( 𝑉1 + 𝑉2 + 𝑉3 …+ 𝑉𝑛)}

𝑉
                                 (26𝑐) 308 

where the subscript c denotes a cumulative function. The shape curves, as defined in section 2.2 are 309 

reiterated and applied to the polyhedron.  One aspect of shape curves to consider is their visual 310 

appearance.  In particle reconstructions where constituent triangles are not equal in area, the 311 

sorting scheme employed can affect the visual appearance of shape curves even though their 312 

lengths are unaffected regardless of scheme.  In this study, CPF was developed by sorting for 313 



increasing solid angle contribution of constituent triangular elements and adding them up from 314 

least to largest.  This sorting scheme is employed on CSAF, and CVF to visualize the shape curves.  315 

Care must be taken that the same sorting scheme used to develop CPF is also employed for CSAF 316 

and CVF.   317 

3.0 Results for Regular Convex and Irregular Star-shape Objects 318 

To further explore shape curve use in shape classification we developed 3-D 319 

representations of convex regular shapes and platonic solids (summarized in Table 2).  Results 320 

from 39 unique numerically generated representations of 14 types of regular and platonic shapes 321 

are discussed here, including those of a soccer ball, prolate and oblate spheroids, and right circular 322 

cylinders.  In addition to regular convex shapes, we also analyzed several thousand representations 323 

of real star-shaped non-convex particulate materials in terms of spherical harmonic series, the 324 

results of which are discussed in Section 3.2.   325 

3.1 Regular Convex Shapes 326 

The regular and platonic shapes were numerically generated in Matlab1 (MATLAB 2020) 327 

using internal in-built functions or Geom3D, a toolbox containing a library of functions for 328 

computational geometry (Legland 2020).  Where necessary, individual representations were 329 

developed from an initial skeleton containing the minimum number of vertices required to define 330 

the particle geometry.  Subsequently, edges were subdivided using linear interpolation to increase 331 

the number of surface points.  Two figures illustrating this process are provided in Figure S2 332 

(supporting information).  An initial sensitivity study was performed to determine the minimum 333 

number of surface points required to produce an adequate number of planar triangular facets to aid 334 

in the development of smooth and continuous shape curve functions.  Results showed that a 335 

 
1 Certain commercial equipment, software and/or materials are identified in this paper in order to adequately 
specify the experimental procedure. In no case does such identification imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment 
and/or materials used are necessarily the best available for the purpose. 



minimum of 1024 points were needed to ensure this (see section 4.3 for a detailed discussion).  336 

Edge subdivision was performed so as to produce at least 1024 surface points, with the final 337 

number often exceeding this by factors up to 30.  Table S1 (supporting information) provides a 338 

summary of the number of surface points in each shape and material class used in this study.   339 

Before we extract shape curves and compactness values, we investigated the role of 340 

reference origin.  Shape curve theory was developed by implicitly assuming that the reference 341 

origin for each closed differential element was placed at the center of volume of the object.  Since 342 

there exists a convex kernel within a star-like object that satisfies star-shape condition, in theory 343 

the reference origin can be placed anywhere within this region. So, there is a need to understand 344 

shape curves and their relationship with the origin chosen.  345 

We performed initial analysis on two numerically generated regular shapes- a unit sphere 346 

(R=1) and a prolate spheroid with semi-major axes lengths of 1 and 2 (Figures 5 and 6).  Each shape 347 

is represented by 4900 surface points from which a triangular surface mesh was generated.  348 

Numerical estimates of surface area and volume were compared with theoretical values to ensure 349 

the accuracy of numeric implementation.  The prolate spheroid’s theoretical surface area was 350 

approximately 21.4784 square units, whereas the numeric estimate showed a value of 21.4464 351 

square units, a difference of  -0.15 %.  A similar comparison for the spheroid volume was off by   352 

-0.36 %.  A numerical estimate of the sphere’s surface area had an error of -0.18 % and that for the 353 

volume was off by  -0.36 %.  The error estimates for the total solid angle of each shape in 354 

comparison with the theoretical value  was found to be less than 10−14 %.  This very small error 355 

value is essentially round-off error, since a closed surface of a star-like particle will give a total solid 356 

angle of 4π (see Supplementary material). 357 

Individual plots in Figure 5 and 6 show numerous surface area or volume shape curves, 358 

each generated with a different reference origin.  While the generated shapes are convex, in order 359 



to avoid points very close to the surface within the scale of noise in numerically generated models, 360 

we located select points sufficiently far from the surface to locate the reference origin. To make 361 

selections we first chose a single point on the surface at random and then extended a line joining 362 

the geometric center (center of volume) and the chosen point.  The reference origin was placed at 363 

positions measuring 0 % (center of volume), 5 %, 30 %, 50 % and 70 % of the total distance of the 364 

line, starting from the center. This procedure repeated for a randomly chosen number of points on 365 

the surface ( about 5 % of all surface points ) to generate approximately 4900 pairs of shape curves, 366 

with each pair generated with a distinctly different reference origin.  Shape curves generated with 367 

reference origin located at the center match theoretical shape curves.  For a sphere, this curve is 368 

linear, whereas it is mildly non-linear for the prolate spheroid.  Another notable feature is that 369 

shape curves developed from using the particle center of volume as the origin appear to have 370 

shorter arc length compared to the other shape curves, both area and volume, based on all the other 371 

origins.  In Section 3.2, we will show that this also holds true for star-like shapes.  We thus refine 372 

the definition of a shape curve developed by the functions CPF, CSAF, CVF (Eqs. 13a-c) as only those 373 

generated using a reference origin located at an object’s center of volume.  For a convex shape like a 374 

spheroid, with this narrower shape curve definition, we can assume that deviations of a shape 375 

curve from the straight-line sphere result are solely generated by the differences in the internal 376 

distribution of space with respect to a sphere. The rest of the study uses only this narrower 377 

definition  of shape curves.  378 

Numerical estimates of the shape curve lengths for a sphere and a spheroid (oblate spheroid with 379 

semimajor axes lengths of 2 and 1) match up well with values derived from the theory described in 380 

Section 2.2 (Table 3).  For the spheroid, the surface area shape curve length was 2.2 % longer than 381 

that of a sphere, and the volume shape curve length was 4.2 % longer than for the sphere.  The 382 

corresponding differences from a sphere was 7.2 % for the sphericity and 29.2 % for the Corey 383 



Shape Factor.  These results indicate that shape curves integrate surface area and volume 384 

differently compared to single factor measures like sphericity and CSF.   385 

A comparison of shape curves generated for 10 shapes is shown in Figures 7a-b.  This provides 386 

a window into the potential use of shape curves in shape classification.  Objects selected here were 387 

based on clear distinctions in perceived shape so that the shape curves were also distinct.  The 388 

appearance of the shape curve for a right circular cylinder is distinct from that of all the other 389 

shapes shown in Figure 2.   390 

Table 2 summarizes compactness values calculated for various regular and platonic shapes.  391 

Corresponding sphericity values are also provided for comparison.  These compactness values are 392 

also plotted in compactness space (Ls-Lv) (Figure 8) with an illustration of select shapes.  393 

Compactness of equi-dimensional shapes cluster closely with a sphere, along the line with slope = 1, 394 

while more oblate or prolate spheroids, cylindrical or disk shapes fall farther away from this line.  395 

Volume shape curve lengths are consistently higher than the corresponding surface area shape 396 

curves.  This analysis demonstrates that shape information is well integrated into shape curves and 397 

thus they can provide a basis for shape classification, including irregular star-like shapes.   398 

3.2 Case Study-Shape Classification of Irregular Star-Shape Objects. 399 

Shape curve analysis was performed on several thousand cement and sand particles (Table 4 400 

and Table S1, supporting information).  Cement particles have irregular geometries dictated by 401 

their manufacturing process and have been shown to generally comply with the star-shape 402 

condition (Garboczi and Bullard 2017).  Naturally weathered sand particles are often rounded and  403 

less irregular in shape than cement particles.  Manufactured sand particles are derived from 404 

crushed rock and may have more angular shapes similar to cement particles.  Both kinds of sand 405 

particle have been shown to fulfil the star-shape condition (Barclay and Buckingham 2009; Mollon 406 

and Zhao 2013; Garboczi and Bullard 2017).   407 



3-D representations of cement aggregates and sand particles were reconstructed from anm data 408 

(Bullard and Garboczi 2013).  The quantity  anm is a complex coefficient of spherical harmonic 409 

(SPHARM) functions that approximate the surface of a 3-D object (Garboczi 2002; Bullard and 410 

Garboczi 2013).  Computed from 3-D voxel data generated by XCT,  anm coefficients are used to 411 

develop approximations to the function r(θ,ϕ) (Eq. 3), which per the definition developed for shape 412 

curves is the distance from the center of volume to the particle surface in a direction given by the 413 

spherical polar angles (θ,ϕ), where 0 ≤ θ ≤ 𝜋 and 0 ≤ ϕ ≤ 2𝜋.   414 

𝑟(𝜃, 𝜙) = ∑ ∑ 𝐴𝑛𝑚𝑌𝑛𝑚

𝑛

𝑚=−𝑛

∞

𝑛=0
(𝜃, 𝜙) 415 

𝑌𝑛𝑚(𝜃, 𝜙) is the spherical harmonic (SPHARM) function with indices n and m, where −𝑛 ≤ 𝑚 ≤ 𝑛,  416 

𝑌𝑛𝑚(𝜃, 𝜙) = √
(2𝑛 + 1)(𝑛 − 𝑚)!

4𝜋(𝑛 + 𝑚)!
𝑃𝑛𝑚(𝑐𝑜𝑠𝜃)𝑒𝑖𝑚𝜃 417 

and 𝑃𝑛𝑚(𝑐𝑜𝑠𝜃) is the associated Legendre polynomial.  Custom computer code was developed using 418 

the Matlab to read anm data, with n≤ 30, and reconstruct each shape and compute their associated 419 

shape curves.   420 

A sensitivity analysis showed that for each particle reconstruction a minimum of 1024 surface 421 

points ( a grid consisting of 32 X 32 points in θ and ϕ,) are necessary to sufficiently resolve the 422 

shape curve functions (CPF, CSAF and CVF).  Doing so ensured that the error in solid angle (with 423 

respect to the true value of 4π) was +0.13 % for a select cement particle (Table 4), a lower value 424 

compared to an error of +0.38 % for a numerically generated sphere.  A detailed description of the 425 

results of the sensitivity analysis is provided in Section 4.3. 426 

We developed SPHARM reconstructions with a resolution of 12,484 surface points, approximately 427 

10 times the minimum number required based on the sensitivity analysis.  For all reconstructions, a 428 

value of n=30 (the total number of spherical harmonics actually computed for these particles) was 429 



used. The optimal value (n < 30) given in the particle shape database (Garboczi, 2002) keeps the 430 

total solid angle to be within 5% of 4π.   Instead, we used a threshold error of 0.5 % to filter out the 431 

small percentage of particles whose total solid angle exceeded 4π.  The number of particles 432 

eliminated by this threshold varied by material class and ranged from 4.9 % for MA-111 coarse 433 

sand to only 0.2 % for MA107-6 fine sand. Processing time for each particle was reasonably small 434 

(20 s to 30 s, including SPHARM reconstruction and shape curve analysis) on a personal computer 435 

with an Intel i7 CPU at 2.1 GHz with 16 GB RAM and no graphics processing unit running a 64-bit 436 

Windows 10 Pro operating system.  For more complex materials that contain more pronounced 437 

surface morphological features, an initial sensitivity study may be necessary to determine an 438 

appropriate spatial resolution for particle reconstruction.  A more detailed discussion of the results 439 

of sensitivity analysis is summarized in Table 4 of Section 4.3.  440 

Surface area and volume shape curve lengths for each shape were extracted to produce two-441 

parameter compactness values.  A scatter plot of data for two cement classes, along with their 442 

separate marginal histograms for Ls and Lv , is shown in Figure 9.  The cement class labels are only 443 

arbitrary names serving to identify their shape database of origin.  The scatter plot provides 444 

compactness values with the vertical dashed lines placing them in the context of previously studied 445 

regular convex shapes that span from near-spherical isometric shapes to more elongated (prolate 446 

spheroidal or cylindrical) or oblate spheroidal shapes.  This plot suggests that the particles in the 447 

two cement classes are very similar in their shape as captured by shape curves.  Each histogram 448 

provides a distribution of percentage of particles falling in one of 45-binned classes for shape curve 449 

length.  Similar histograms of shape distribution for three different classes of sand are shown in 450 

Figure 10.  For the fine sand particles (MA 107), there is a significant fraction of data points 451 

clustered near the equi-dimensional (isometric) region suggesting that they are more equi-axed 452 

particles that than those for coarse sand (MA111) and Ottawa sand, which have a gap at Ls  and Lv 453 

values close to 1.  Scatter plots of each sand’s shape curve length (compactness) values along with 454 



shape classification data for regular shapes are given in the supporting information (Figure S3 a-e) 455 

along with a discussion of the observed patterns.  These plots together provide an approach to 456 

using shape curve analysis in the interpretation of populations.  In the supporting information, 457 

shape curve lengths are compared with sphericity and Corey shape factors, the results of which 458 

provide additional evidence that shape curves capture a different signature or shape than these 459 

classic measures. 460 

For a particle whose shape is represented by a weighted sum of SPHARM, using only the a00 461 

coefficient results in a sphere. Using  higher n value anm coefficients modifies the shape from the 462 

previous step producing an intermediate star-like shape until the iterative process  terminates at a 463 

given value of  n≤ 30, in this case.  This gradual modification of shape can be tracked on a plot like 464 

Figure 8. Figure 11 illustrates this process by tracing the evolution of shape curve lengths of five 465 

select particles, each chosen from one of the five material classes (Table 3), along with all the data 466 

for all five classes.  Each path is unique to that shape, giving rise to unique pair of final compactness 467 

values for each shape.  While a more in-depth analysis of this data is needed to understand shape in 468 

each material class, these results, together with others previously discussed, provide a basis for a 469 

fully quantifiable framework that captures the shape of star-like objects always using the center of 470 

volume for the particle origin. 471 

4.0 Discussion 472 

Shape curve functions integrate the distribution of space within the object by mapping 3-D 473 

information into 2-D curves.  Such a mapping loses most of the 3D parametric series information 474 

but should retain more information than simple shape parameters contain, so are mathematically 475 

intermediate between simple shape parameters and full 3D shape re-creations.  In this section, we 476 

examine shape curve invariance with respect to translation, rotation, and scale, which is an 477 

important requirement for universal applicability of any shape measure (Bribiesca 2008).  Any 478 



discussion of numerical methods implemented on digitized representations is not complete without 479 

understanding their sensitivity to measurement resolution and noise.  Different measurement 480 

resolutions capture different levels of morphological features affecting surface area and volume 481 

estimates (Garboczi 2002; Zhao and Wang 2016).  Since shape curves incorporate all observed 482 

scales of variations that are present in the underlying 3-D data, results may be affected by noise in 483 

the data.  We examine factors that  affect shape curve characterization, including difficulties in 484 

accurately estimating surface area of individual particles, a common issue in 3-D characterization 485 

studies (Erdoğan 2016), and shape curve sensitivity to errors in surface area measurements, noise, 486 

and changes in spatial resolution. 487 

4.1 Invariance to Translation, Rotation, and Scale 488 

Invariance to translation, rotation, and scale is at the heart of a commonly understood 489 

definition of shape, which Kendall so elegantly expressed as “all the geometrical information that 490 

remains when location, scale, and rotational effects are filtered out from an object” (Kendall 1984).  491 

The key to determining a shape curve’s invariance to translation lies in the local reference system 492 

tied to each object.  For a star-like shape, the reference origin of this coordinate system can 493 

technically be placed at any point within the convex kernel.  However, as discussed in the previous 494 

section, we demonstrated that consistency in encoding shape information can be achieved by 495 

placing the reference origin at the center of volume of the object (centroid of a thin shelled 496 

polyhedron of uniform density).  Doing so produces minimum shape curve lengths for that object 497 

(Figures 5-6).  Comparison of compactness across shapes is only valid when this specific condition is 498 

satisfied, regardless of any translation of the object.  Since translation does not affect a change to 499 

the centroid, it ensures that shape curves are invariant to translation.  500 

A shape curve’s invariance to rotation can be demonstrated by examining their nature.  Random 501 

rotation of the object does not change the labels of the triangular facets that form the object, only 502 

the spatial positions of their constituent vertices. Therefore, using the same ordering of triangles to 503 



compute the cumulative shape curve functions will result in the same values of CVF, CPF and CSAF.  504 

Lastly, scale independence is built into the shape curve function with the use of normalized and 505 

dimensionless quantities (Eqs. 26a-d) so that the same cumulative shape curve functions will be 506 

generated no matter what the scale.  Satisfying these conditions enables the newly formulated 507 

shape curve analysis and compactness measure to be readily applicable to star-like particles.   508 

4.2 Issues with Surface Area Measurement  509 

Surface area is an important and necessary measurement to generate shape curves.  However, 510 

measurement of surface area for particulate materials is often a topic of controversy and confusion 511 

as results can widely vary due to internal and external pore structures, nano-scale roughness 512 

features, and complex, highly irregular geometry. We defined surface area in this study as modified 513 

geometric surface area (MGSA), given by the total surface area represented by a closed, hollow 514 

polyhedron constructed by a thin shell of scale-specific triangles (Mulukutla et al. 2017).  MGSA is a 515 

modified definition of geometric surface area (GSA), which is defined by the surface area of an 516 

equivalent regular shape (usually a sphere or ellipsoid) that best fits the object (Schroeder-517 

Pedersen et al. 1997).   518 

GSA and MGSA are not to be confused with the physical surface area (PSA) or specific surface 519 

area (SSA) per unit mass, commonly measured by the popular gas-absorption based BET method 520 

(Brunauer et al. 1938) that for many materials can include internal pore surfaces in its estimate.  521 

For many natural materials, the PSA/SSA is known to be orders of magnitude higher than the 522 

surface area measured by other means (Papelis et al. 2003) and therefore it may not relate well 523 

with shape.  For angular and more complex materials, GSA may not capture intermediate scale 524 

features that contribute to the shape. Since MGSA does not make any shape assumptions but only 525 

incorporates the given measurement data, it is as accurate as the surface area measurement 526 

method employed.   527 



4.3 Sensitivity to Measurement Resolution and Noise 528 

The shape curves analysis method assumes that the data input is free of noise from any artifact 529 

of measurement and that any uncertainties in data are minimal relative to the size of the particle 530 

and that they do not influence the perception of shape.  It is important, however, to understand the 531 

sensitivity of shape curves to noise, whether incorporated during measurement or is a numerical 532 

artifact of reconstruction.  For example, the SPHARM reconstructions using anm coefficient data was 533 

corrected for noisy high frequency ripples called Gibbs phenomenon (Bullard and Garboczi 2013), 534 

minimizing errors that might otherwise get incorporated into representations as small scale 535 

morphological features.  In the absence of correction, such features can affect surface area and 536 

volume measurements.   537 

To better understand sensitivity of shape curves to noise we analyzed a numerically generated 538 

unit sphere and a cement particle with varying levels of artificially generated noise added to the 539 

data.  Each surface point was generated with randomized noise incorporated into it by modifying 540 

the radial coordinate as - 541 

𝑟′ = 𝑟 + 𝐼 𝛸  𝑟     542 

where r is the original noise-free coordinate, 𝛸 is a uniformly distributed random number in the 543 

interval  0 < 𝑋 < 1 and I is a multiplier  given as  𝐼 = [1, 10−1, 10−2, 10−3, 10−6, 10−9 ,0], where I= 0 544 

represents a shape with no added noise.  Together these variables (𝐼 𝛸 𝑟)  serve to create a 545 

randomized fraction of the radial coordinate that is added on as noise.  Two different values of 546 

surface points, one a low value (1024) and one representing a high value (12482 points for the 547 

cement particle and 10952 points for the sphere) were used to generate the 3-D representations.  548 

The resulting spherical and cement particle representations were analyzed for error in total solid 549 

angle and shape curve lengths (Table 4).  Error estimates of solid angle were determined using the 550 

true value (4π), a known number for all star-like shapes.  Since we do not know the true value of 551 



shape curve lengths for irregular star-like particles, error estimates for the cement particle were 552 

generated  by comparing values from a noise-free shape at the highest resolution.  Results show 553 

that the star-shape condition is violated for representations with noise on the scale of the radial 554 

coordinate (I=1).  For I=0.1, , the uncertainties in shape curve lengths and total solid angle are 555 

greater than 1 % but less than 10 %.  For lower noise levels, the error estimates fall below 1 % in all 556 

variables (shape curve lengths, Ls and Lv, and solid angle) for both the low value and high value of 557 

surface points.  This demonstrates that cumulative functions and their application in shape curve 558 

analysis are relatively insensitive to noise.   559 

5.0 Summary and Conclusions 560 

The ability of a shape metric to produce a unique value for every distinct shape is an important 561 

but often-overlooked consideration for shape characterization studies.  We hypothesized that a 562 

quantitative shape measure could be developed for star-shape particles by applying a fundamental 563 

principle that the shape of an object is a unique signature of its internal volume and external 564 

surface area distribution.  An application of this principle led to the development of shape curve 565 

analysis as a new method to characterize 3-D particle representations, which are mathematically 566 

intermediate between simple shape parameters and full 3D shape parametric series.  We produced 567 

cumulative functions of surface area and volume whose variation with cumulative solid angle was 568 

demonstrated to provide a pair of unique signatures of shape that were invariant to translation, 569 

rotation, and scale.  Analysis of numerically generated regular and platonic shapes showed that 570 

description by a two-parameter compactness space (Ls-Lv) provides a basis for shape classification.   571 

Compactness values for regular and irregular shapes capture the internal spatial arrangement 572 

(relative to a sphere) as expressed by surface area and volume.  Furthermore, the compactness 573 

space (Ls- Lv space) enables a classification methodology for shapes providing unique values for 574 

regular and platonic solids.  Irregular star-like particulate materials, regardless of size, have also 575 



been shown to fit in this space, with compactness values having similar ranges to that of the regular 576 

and platonic shapes considered in this paper.  Analysis of several thousand star-like cement and 577 

sand particles suggest that shapes closely clustered in Ls- Lv space have a more similar (but not 578 

exact) spatial arrangement with each other than do shapes not clustered together.  This 579 

demonstrates what is intuitively observed of many particulate materials - their shapes can fall in a 580 

spectrum of qualitative description (e.g., “equi-dimensional”, “oblate”, “prolate”, “columnar”, 581 

“bladed”, ‘rod-like”).  Analysis of these real particles demonstrated that a fully quantifiable shape 582 

description can be achieved in the form a pair of histograms for Lv and Ls.  These shape 583 

distributions, when produced from a statistically significant population of particle shapes (such as 584 

in Figures 9 and 10), can not only provide a quantifiable shape parameterization but also an 585 

understanding of their nature in the context of regular shapes.   586 

In conclusion, shape curve analysis is a robust and easily implementable technique to 587 

characterize the shape of star-like particles.  It produces a pair of values for every distinct shape 588 

and can be used to characterize large populations of particles.  This analysis method requires that 589 

the special point needed for the star-shape condition to be satisfied is the center of volume of the 590 

particle, which also serves as the origin for generating the shape curves.  The developed cumulative 591 

functions integrate shape information across scales so that any star-shaped particle, even more 592 

angular and complex materials, can be studied without any changes in the methodological 593 

assumptions.  The resulting pair of histograms for Lv and Ls describe shape distributions that 594 

produce full quantifiable shape parameterizations, which can be used for further research in the 595 

very active field of the science and engineering of particulate materials. 596 

 597 

 598 



6.0 Symbols 599 

Symbol Description 
An Surface area of closed differential element 

 anm Coefficient of spherical harmonic functions 
Ac Cumulative surface area function 
Ai Area of an individual triangular facet. 

�⃗⃗� 𝟏, �⃗⃗� 𝟐  and �⃗⃗� 𝟑 Vector positions of a triangular facet’s vertices. 
C, Cx Two-parameter and one-parameter compactness, respectively. 
CSF Corey shape factor. 

CSAF Cumulative surface area function. 
CPF Cumulative physical fraction.  
CVF Cumulative volume function. 
h, hn Height of closed differential element in shape curve theory 

I Fractional multiplier. 
ls, lv Surface area and volume shape curve length, respectively. 

Ls, Lv Normalized surface area and volume shape curve length, respectively. 
m index in spherical harmonic reconstruction. 
N Number of particles 
n Number of vertices on polyhedron/number of spherical harmonics. 

Pnm Legendre polynomial. 
r, r’,rn Radial coordinate, or radius of closed differential element. 
𝑅𝑐 radius of cylinder 
S Surface of a polyhedron. 

S, Si Total surface area of object, elemental surface area. 
V, Vi Total volume of object, elemental volume. 

Vc Cumulative volume function. 
x, y, z Cartesian coordinates. 

X Normally distributed random number 0<X<1. 
Ynm spherical harmonic (SH) function. 
𝜃, ∅ Azimuthal and polar angles in a spherical coordinate system. 
𝜃𝑐 Conical angle 
Ψ Sphericity. 

Ω,Ωi Total solid angle of polyhedron, elemental solid angle. 
𝛥, 𝛥𝑐 Physical fraction of object and cumulative physical fraction, respectively. 
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Table 1: Summary of surface area, volume, and solid angle formulations for differential elements of three regular 

shapes – prolate and oblate spheroids and right circular cylinders. Please refer to Figure 1 for a visualization of the 

constructed differential elements and Section 2.1 and 2.2 for a discussion of analysis and results. 

Shape  Surface Area Volume Solid Angle 

Prolate 

or Oblate 
Spheroid 

𝐴𝑐𝑎𝑝

= 𝜋𝑎𝑐 {
𝑠𝑖𝑛−1𝑒 − 𝑠𝑖𝑛−1𝑒1

𝑒

+
𝑎

𝑐
− (1 −

ℎ

𝑐
) √1 − 𝑒1

2} 

Where, 𝑒 = √1 −
𝑎2

𝑐2  , 

 𝑒1 = 𝑒 (1 −
ℎ

𝑐
) 

 

𝑉𝑐𝑜𝑛𝑒 =
1

3
𝜋𝑅2(𝑐 − ℎ),  

Where, 𝑅 =
𝑎

𝑐
√𝑐2 − (𝑐 − ℎ)2 

 

𝑉𝑐𝑎𝑝 =
𝜋𝑎2ℎ2

3𝑐2
(3𝑐 − ℎ) 

 

Ω = 2𝜋 (1 − cos 𝜃𝑐) 
Where,  

𝜃 = 𝑡𝑎𝑛−1 (
𝑅

𝑐−ℎ
)  

Right 

circular 
cylinder 

𝐴𝑐𝑦𝑙 = 2𝜋𝑅𝑐ℎ 

where 

𝑅𝑐  is the cylinder radius 

 

𝑉𝑐𝑦𝑙 = 𝜋𝑅𝑐
2ℎ 

𝑉𝑐𝑜𝑛𝑒 =
1

3
𝜋𝑅𝑐

2(𝑐 − ℎ) 

Ω = 2𝜋 (1 − cos 𝜃𝑐) 
Where, 

𝜃𝑐 = 𝑡𝑎𝑛−1 (
𝑅𝑐

2(𝐿 − ℎ)
) 

 

 

  



Table 2: Summary of compactness data for regular and platonic solids.  Two-parameter compactness is 

indicated by (Ls, Lv). The numbers in parenthesis show how many shapes of this type were considered. 

Shape (# of models) 
Compactness 

Sphericity 
Ls Lv 

Smooth sphere (1) 1.0000 1.0000 1.00 
Soccer Ball (1) 1.0005 1.0005 0.97 
Icosahedron (1) 1.0023 1.0023 0.94 
Dodecahedron (1) 1.0033 1.0033 0.91 
Tetrakaidecahedron (1) 1.0038 1.0046 0.91 
Rhombododecahedron (1) 1.0047 1.0047 0.90 
CubeOctahedron (1) 1.0049 1.0060 0.90 
Octahedron (1) 1.0136 1.0136 0.85 
Cube (1) 1.0168 1.0168 0.81 
Durer Polyhedron (1) 1.0218 1.0252 0.81 
Tetrahedron (1) 1.0541 1.0541 0.67 
Oblate Spheroids (9) 1.0207-1.1976 1.0423 -1.2384 0.42-0.91 
Prolate Spheroids (9) 1.0250-1.2122 1.0425-1.2382 0.59-0.93 
Right circular cylinder (10) 1.0156-1.1760 1.0348-1.2149 0.68-0.83 

 

Table 3. Comparison of numerically derived shape curve lengths with those derived from theory.  

Shape  Theoretical shape 

curve lengths (lv, lv ) 

Numeric shape 

curve lengths (lv, lv ) 

Sphere  (1.4142,1.4142) (1.4142,1.4142) 

Spheroid 

(a=2, b=1) 

(1.4495,1.4742) (1.4495,1.4741) 

 

 

 

 

 

 

 

 

 



 

Table 4: Summary of irregular shaped sand and cement particles analyzed in this study.  Labels are arbitrary to 

distinguish them in databases. Relevant shape measurements are summarized in Figures 6-7. 

Model name Material Number of Particles 

Analyzed 

Number of Valid Models* 

(percentage of valid models) 

CCRL141  Cement 5000 4867 (97.3%) 

CCRL 163 Cement 5000 4928 (98.5%) 

C109 Ottawa Sand 2,202 2199 (99.8 %) 

MA107-6 Fine sand 739 738 (99.8%) 

MA111-7 Coarse sand 206 196 (95.1 %) 

* Models whose total solid angle was estimated to be within 0.5 % of 4π, a nominal threshold used for  

accuracy.  For a more detailed discussion, please refer to discussion in section 3.2  

  



 

Table 4: Summary of results from sensitivity analysis.  A sphere and a cement particle were reconstructed with 

different values of add-on noise. 

Model Number of 
Surface Points 

I Solid Angle 
error (%) 

Ls error 
% 

Lv error 
% 

 
 
 
 
 
 
 
 
Sphere* 

 
 

1024 
 

1 Star-shape condition violated 
0.1 0.382 4.468 0.575 
0.01 0.387 0.32 0.198 
0.001 0.387 0.194 0.194 
1 x10-06 0.387 0.194 0.194 
1 x10-09 0.387 0.194 0.194 
0 0.387 0.194 0.194 

 
 

10952 

1 Star-shape condition violated 

0.1 0.113 6.198 0.442 

0.01 0.091 0.822 0.049 

0.001 0.091 0.05 0.046 

1 x10-06 0.091 0.046 0.046 

1 x10-09 0.091 0.046 0.046 

0 0.091 0.046 0.046 

 
 
 
 
Cement 
Particle** 

 
 

1024 

1 Star-shape condition violated 
0.1 0.131 3.301 0.222 
0.01 0.006 0.122 -0.085 
0.001 0.001 -0.047 -0.097 
1 x10-06 0.001 -0.054 -0.096 
1 x10-09 0.001 -0.054 -0.096 
0 0.000 0.000 0.000 

 
 

12482 

1 Star-shape condition violated 
0.1 0.225 5.267 0.415 
0.01 0.006 0.570 -0.031 
0.001 0.001 -0.001 -0.034 
1 x10-06 0.001 -0.016 -0.034 
1 x10-09 0.001 -0.016 -0.034 
0 - - - 

* Error estimates calculated by comparing with true value 
** Error estimates calculated by comparing with data from noise-free (I=0) high resolution model 

 
  



 

Figure 1:  Differential elements shown in shaded blue color for  (a) sphere (b) prolate ellipsoid  

(c) oblate ellipsoid (d) right circular cylinder. For surface area calculations, only the exterior facing portion of the 

element is considered. 

 

 

 

 

 



 

 

Figure 2 (a): Surface area (above) and (b) volume shape curves (below) for prolate spheroids.  Results shown for 

analysis aspect ratios ranging from 1 to 100.  In each plot the shape curve of a sphere (dashed line) is shown for 

reference.  Visually perceivable differences in individual shape curves is used as a basis for shape classification. 
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Figure 2 (c): Surface area (above) and (d) volume shape curves (below) for right circular cylinders.  Results 

shown for analysis aspect ratios ranging from 1 to 100.  In each plot the shape curve of a sphere is shown for 

reference(dashed line).  Visually perceivable differences in individual shape curves is used as a basis for shape 

classification. 

 

  

(c) 

(d) 



 

Figure 3: Analytical variation of two-parameter compactness (shape curve lengths) for prolate and oblate 

spheroids, and right circular cylinders of aspect ratio in the range of 1 to 100. (a) shows volume shape curves and 

(b) surface area shape curves.  Compactness of a sphere is C= (1,1) 
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Figure 4: The solid angle of a plane triangular facet subtended at an arbitrary point O (0, 0, 0) shown as a small 

shaded spherical triangle on an exaggerated unit sphere.  The triangular facet also forms a tetrahedron with O as 

the fourth vertex.   
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(a) 

Figure 5: Shape curves of a unit 

radius sphere.  Distribution of (a) 

surface area shape curves, and (b) 

volume shape curves. Each curve 

generated with select interior 

points located as reference origin.  

Shape curve generated with 

centroid of the sphere as reference 

origin are highlighted (dashed 

black line).   

(b) 



 

 

 

 

 

 

Figure 6: Shape curves of a prolate 

spheroid (a=1, b=1, c=2) (above).  

Distribution of (a) surface area 

shape curves, and (b) volume 

shape curves for select points 

located within the sphere.  Shape 

curves with the center of the 

ellipsoid serving as the reference 

origin are highlighted (dashed 

black line). 

 

(a) 
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Figure 7: (above) surface area and (below) volume shape curves of select regular shapes selected to provide a 

contrast in shape curve lengths. Curves generated with constituent triangles sorted by their increasing 

contribution to total solid angle of the object. 



 

 

Figure 8: Plot of two-component compactness for various regular shapes (bottom).  Top plot shows a zoomed-in 

portion of the bottom plot for near-spherical shapes.  



 

 

 

Figure 9: Scatter plot of two-parameter shape curve lengths with marginal histograms for two classes of cement 

particles, noted as CCRL141 and CCRL163. 5000 samples were analyzed for each class.  Dotted lines show shape 

curve coordinates of select regular shapes shown in Figures 5.  The point (Lv=1, Ls=1) represents a sphere.  Like all 

other convex objects (regular and irregular) cement particles also fall below the line with slope 1.  The Lv 

distribution is slightly wider than Ls. More flat and columnar shapes have increasing shape curve lengths.  Each 

histogram contains 45 binned shape classes showing percentage of particles found in each class. Each plot has two 

histograms ( red – CCRL 163 and blue – CCRL 141) with the intersection of the histograms shown in purple.   

  



 

Figure 10.  A compilation of shape distribution histograms of three different samples of sand. N refers to number 

of particle models analyzed.  Dotted lines highlight shape curve coordinates of select regular shapes that were 

shown in Figure 8.   

  



 

Figure 11:  Evolution on shape as captured by the intermediate process steps of SPHARM. Five distinct paths are 

plotted each for a select model of a material class.  SPHARM reconstruction begins with all shapes approximated as 

a sphere (Ls=1,Lv =1).  Every addition of a new harmonic brings in new anm coefficients to modify the shape.  Shape 

curve lengths for each intermediate shape is captured to create the eventual evolution of path.  Final shape curve 

data for all materials are plotted in blue markers. 
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Section S1: Solid Angle of a Star-Shape 3-D Object Subtended at an Interior Point 

Consider an arbitrary star-like object depicted by a polyhedron made of equally sized elements 

of size 𝑑𝐴 (Figure S1).  The point cloud that makes up the surface can be described in Cartesian and 

Spherical coordinates by Eqs (3) and (4) (Section 2.1, main text), respectively. 

By definition, the solid angle 𝑑𝜓 of a planar rectangular area in 3-D space 𝑑𝐴 at a distance r is 

given below, with the underlying assumption (for our case) that the reference origin is located 

within the interior of the object.  

𝑑𝜓 =  
𝑑𝐴

𝑟2
                 (𝑆1) 

The rectangular area can be written as  

𝑑𝐴 = 𝑟 2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙            (𝑆2) 

Substituting Eq (S2) in Eq (S1) gives 

𝑑𝜓 =  𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙          (S3)  

To determine the total solid angle contributed by the polyhedron, we can develop a surface integral 

using Eq(S3) as shown below.  The assumption of reference origin being in the interior of the object 

allows setting up the limits of integrations.  Evaluating this integral shows the total solid angle of 

any star-shape object is 4𝜋 : 

∫ 𝑑𝜓 =  ∬ 𝑑𝜙 𝑠𝑖𝑛𝜃 𝑑𝜃
𝑆

= ∫ 𝑑𝜙
2𝜋

0 ∫ 𝑠𝑖𝑛𝜃 𝑑𝜃
𝜋

0
= 4𝜋  

Thus, 

𝜓 = 4𝜋 



 

Figure S1 Showing a star-shape object, overlaid with the Cartesian coordinate system, with origin 

O within the interior of the object.  The surface of the object is discretized into equal area planar 

rectangles of area dA.   

  

Not to scale 
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Section S2: Refinement of Mesh for Regular and Platonic Solids 

 

 

Figure S2: 3-D model of a soccer ball generated as a polyhedron (above) with the minimum 

number of vertices required to define shape.  Each planar face is then refined with additional 

surface points when applying a triangulation meshing procedure. 



Table S1: Characteristics of 3-D models used in this study. 

Shape (# of models) Characteristics 
Smooth sphere (1) 7200 points- 

Soccer Ball (1) 12 pentagons; 20 hexagons, 29696 pts 

Icosahedron (1) 20 triangular faces, 5120 points 

Dodecahedron (1) 12 pentagons, 9216 points 

Tetrakaidecahedron (1) 8 hexagons, 6 squares;11264 points 

Rhombododecahedron (1) 12 rhombic faces; 6144 points 

CubeOctahedron (1) 8 triangles, 6 squares; 5120 points 

Octahedron (1) 8 triangle faces; 2048 points 

Cube (1) 4 square faces; 3072 points 

Durer Polyhedron (1) 6 pentagons, 2 triangles; 5120 points 

Tetrahedron (1) 4 triangle faces; 1024 points 

Oblate Spheroids (9) Semi-axes [a, c] = [ 2 to10,1]; 4996 points 

Prolate Spheroids (9) Semi-axes [a, c] = [1, 2 to10]; 4996 points  

Right circular cylinder (10) Two circular faces; 7200 points 

CCRL141 (5000) Cement Particles/anm models/12484 points 

CCRL163 (5000) Cement Particles/anm models/12484 points 

MA107 -6 (739) Fine sand/ anm model/12484 points 

MA111 -7 (206) Coarse sand/ anm model/12484 points 

C109 (2202) Ottawa Sand/ anm model/12484 points 

 

 

 

 

 

 

 

 



Section S3: Additional Plots from Shape Curve Analysis of Irregular 

 

Figure S3 (a-b):  Shape curve lengths of (a) MA111 coarse sand and (b) MA107 fine sand, plotted 

along with the data of regular and platonic solids. 



 

Figure S3 (c): Plot of C109 Ottawa sand shape curve lengths along with regular and platonic solids. 

  



 

 

 

Figure S3 (d-e): Plot of shape curve lengths for cement particles (above) CCRL141 class and 

(below) CCRL163.  Regular and platonic solid shape curve lengths are plotted for context 



Section S4: Comparison of Shape Curve Data with CSF and Sphericity. 

We examined the nature of shape curves in comparison with sphericity and Core Shape 

Factors. (CSF) (Figures S4 a-e and S5 a-e).  These plots are arranged to show decreasing values in 

the sphericity and CSF axis with near-spherical values clustering close to lower left corner of the 

plots.  For both cement materials (CCRL141and CCLR163) the limitation of sphericity in shape 

differentiation can be observed with the sparsity in values close to 1, in comparison to the presence 

of values for both shape curve lengths and CSF values (Figures S4 a-e).  A similar observation can be 

made for the two sand particle classes shown in Figures S4 a-e, suggesting that sphericity is a 

weaker indicator of shape than CSF or shape curves.  Furthermore, the slope of these relationships 

suggests that each shape curve captures a signature different from CSF and sphericity, and that for 

every unique value of shape curve length there are multiple sphericity and CSF values.  By 

combining two such signatures, from surface area and volume shape curves, we produce a 

compactness measure that produce a unique pair of values for every shape.  All 12942 models of 

irregular particles, whose compactness was captured in this study, reported a unique pair of shape 

curve length values. Albeit, shapes with similar arrangement of space within cluster close to each 

other . 



 
Figure S4 (a-d) Relationship of shape curve lengths to sphericity and Corey shape factor (CSF) for 
two cement classes. Values for CSF and Sphericity are plotted on axis with decreasing values. 



 
Figure S5(a-e): ) Relationship of shape curve lengths to sphericity and Corey shape factor (CSF) for 
two sand classes (C109 Ottawa sand and MA111 coarse sand) . Values for CSF and Sphericity are 
plotted on axis with decreasing values. 

 



 

Figure S6(a-e): ) Relationship of sphericity to Corey shape factor (CSF) for two cement and two 
sand classes. Both axes have decreasing values left to right. 
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