ITEM: Inter-Texture Error Measurement for 3D Meshes

Rafael Pagés, David Fuentes and Francisco Mordn®
Grupo de Tratamiento de Imdgenes
Universidad Politécnica de Madrid

Abstract

We introduce a simple and innovative method o compare any two
texture maps, regardless of their sizes, aspect ratios, or even masks,
as long as they are both meant to be mapped onto the same 3D
mesh. Our system is based on a zero-distortion 31D mesh unwrap-
ping technique which compares two new adapted texture atlases
with the same mask but different texel colors, and whose every lexel
covers (he same area in 3D. Once these adapled atlases are created,
we measure their difference with ITEM-RMSE, a slightly modified
version of the standard RMSE defined for images. ITEM-RMSE is
more meaningful and reliable than RMSE because it only takes into
account the texels inside the mask, since they are the only ones that
will actually be used during rendering. Our method is not only very
useflul o compare the space efficiency ol dilferent lex(ure atllas gen-
eration algorithms, but also to quantify texture loss in compression
schemes for multi-resolution textured 3D meshes.

CR Categories: 1.3.7 [Computer Graphics]; Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: 3D mesh, texture, error, measure, RMSE, compression

1 Introduction

No one can deny that this is one of the sweelest moments for 3D
graphics. Even if computers have been able to produce 3D content
for decades, the growth of this engineering branch has been expo-
nential in the last years. 31D graphics are now ubiquitous in many
professional domains, such as the security or health industries, but
even more in (arguably) “less serious™ fields, like video games, cin-
ema, or enlerlainment in general. In many ol those domains, lex-
tured polygonal (typically, triangular) 3D meshes are used to model
3D objects, and then compressed seeking efficiency, since they have
to be stored and/or transmitted, e.g., for an on-line computer game,
or for a terrain/city fly-over application.

In the last two decades, a reasonable maturity has been achieved in
what concerns 31D mesh shape compression, thanks to substantial
research on (wo relaled topics. On one hand, many clever methods
have been devised and published lor the efficient coding of both
the geometry and the topology of a static, “naked” 3D mesh (i.e.,
the positions and connectivity of its vertices) [Avilés and Mordn
2008]. On the other hand, there is a good understanding and (up
to a certain extent) a common agreement on how two 313 meshes
should be compared [Aspert et al. 2002][Cemnea el al. 2010].

However, research has been much less active with respect to the
compression of textured 3D meshes. More precisely, there has been
much less effort on understanding and measuring the error incurred

31

d

~ I
P1o0Z 6w

Figure 1: Textured cube representing a dice, and two of the many
possible texture atlases for it.

when coding textured 3D meshes: [or the vast majority of them, far
many more bits must be devoted to coding their raw textures than
their raw shapes, so textures are usually aggressively compressed
by means of some lossy image coding scheme (e.g., according to
the JPEG standard [JPEG 1994]) so they may be more compactly
stored or transmitted through the Internet. But traditional metrics
lo objeclively quantify the error associated to thal lossy scheme,
say, the RMSE (Rool Mean Square Error) between the original and
reconstructed images, are not enough to characterize the texturing
error, since texture coordinates may introduce non-linearities in the
process of 2D-3D mapping. For instance, in a texture atlas designed
by an artist to be wrapped onto the 31> mesh of a virtual humanoid,
the portion corresponding Lo its face may lake many more lexels
than those (o be mapped on ils torso or legs, because il makes sense
to represent with more details the body parts which are more critical
for the subjective quality perceived by a human,

Besides, as suggested by Figure 1, even if texture coordinates are
not used to privilege certain 3D triangles in the mesh with respect
to others, texture atlases are frequently composed by a set of “is-
lands™ (which we will call “patches™ below), containing real color
information, within a *sea” of meaningless neutral lexels, which are
in fact not used at rendering time, given the interpolations induced
by texture coordinates. Below, we will refer to that set of islands
in a texture atlas as its mask. In the many cases where the number
of “net” texels in the mask of a texture atlas is well below the total
number of “gross” texels, the classic RMSE definition for rectan-
gular images yields a misleading impression of having a dilference
between the lexture atlases that is much smaller than it actually is.

Furthermore, as suggested as well by Figure 1, traditional methods
for comparing rectangular images, RMSE-based or nol, are use-
less for comparing texture atlases with completely different mask
shapes. There are plug-ins for 3D modeling software packages
which perform a rather good job of semi-automatically minimizing
the ratio of net/gross texels, i.e., for generating colorful islands that
may be packed as efficiently as possible, and with as little human
intervention as possible, in a neutral sea. But they output different
masks, and are all based on methods that introduce some distortion
in the 2D-3D mapping, so there is no easy way of comparing the
results of any two, since there is no easy way to determine the error
we make when we transform a given texture atlas into another.

As a first step towards our final goal of comparing two textured 3D
meshes, we wonder: Is it really impossible to compare two different
texture atlases to be mapped onto the same naked 3D mesh? An-
swering this question is the aim of the system we describe below,
which is based on first building two new texture atlases, correspond-
ing to each of the two input ones, but with the same dimensions
and masks, and then calculating a slightly modified version of the
RMSE between them. To the best of our knowledge, our system is
unique in making it sensible to use the (almost standard) RMSE to
compare two texture atlases for the same 3D mesh, and we believe
it may be specially useful to evaluate the objective quality results of
textured 3D mesh compression techniques, where it is necessary to
quantify texture losses.

2 Proposed technique: overview

As shown in Figure 2, our system consists of three main steps:

1. We unwrap the mesh with a zero-distortion method, which
makes the image comparison to be performed in the last step
reliable. With “zero-distortion” we mean that the angles of
every 2D triangle are exactly the same as those of its 3D coun-
terpart, and relative triangle sizes are preserved exactly — for
the moment, all vertex coordinates, both in 3D and 2D, are
expressed with floating point numbers.

2. Here is where we deal for the first time with texels and integer
coordinates, and guarantee that every texel in each of the two
original textures is duly represented (by one or more texels) in
each of the corresponding new, adapted textures. To this end,
for each (single) 3D triangle ¢;, we calculate the ratios r;; and
ri2 of the real area of ¢; vs. the (two, in principle different)
numbers of texels it covers in each original texture. We then
build one (single) new virtual texture atlas whose dimensions
are determined to guarantee the surjectivity even in the case
of the most restrictive ratio, ;1 or r;2 (step 2a in Figure 2).
Finally, we fill in the texels of the new adapted texture atlases
by emulating what any renderer would do (step 2b).

3. We now have two new texture atlases with identical dimen-
sions and masks, but different (although typically very simi-
lar) color information. We only have to measure that differ-
ence, and we do so with a slightly modified version of the
classic RMSE, that we have called “ITEM-RMSE”.

3 Previous work

Although the problem we want to solve has apparently not been
researched too thoroughly, there are several ways to evaluate the
shape error between two naked 3D meshes, among which the most
widely accepted as a reference is probably MESH [Aspert et al.
2002], a system to approximate the Hausdorff distance between the
surfaces of both meshes. Even if our aim is just to estimate the
difference between two textures applied to the same 3D mesh, and
not to determine the combined shape and texture error between two
3D meshes, it could be interesting to address in the future the latter,
more general problem.

Our method starts with the unwrapping of the 3D mesh. There are
different algorithms to accomplish this task, but most of them are
based on the use of a certain parametrization obtained by solving
a linear equation system. One of the most widely accepted sys-
tems of this kind is Floater’s [Floater 1997], which uses a shape-
preserving parametrization to obtain visually smooth approxima-
tions. Khodakovsky and co-workers developed another system to
cut the 3D mesh into portions which are then translated into 2D
patches, and optimize these patches with respect to metric distortion

32

Inputs
Process

Texture 1 Texture 2

Unwrapping..“

Floating-point
Mask

Dimensions
Calculation /"=,

Virtuaﬁ(exture
Atlas

Texture
Adaptation

Texture
Adaptation

ITEM-RMSE ..
Measurement

Outputs S < S <
Adapted Adapted
Texture 1 ERROR Texture 2

Figure 2: Schematic overview of our system.

or shape quality [Khodakovsky et al. 2003]. Also, Lévy et al. pre-
sented a method for generating texture atlases with a parametriza-
tion algorithm based on the least squares approximation of Cauchy-
Riemann’s equations [Lévy et al. 2002]. Finally, there exist other
methods such as Lee’s MAPS [Lee et al. 1998], which was in fact
designed for 3D mesh simplification (as opposed to 3D mesh un-
wrapping), but whose parametrizations could also be used for our
purposes. All these techniques have the same common problem:
even though their results are quite efficient, they introduce some
distortion in the texture atlas created for coloring the 2D patches.
We, instead, use a simpler and faster method of ours originally de-
vised for the creation of multi-texture atlases [Pagés et al. 2010].
The main advantage of our method is that it avoids distortion alto-
gether, thus making the task of comparing two images very straight-
forward.

One could argue that the comparison between texture images
should use some perceptual metric such as: i) Teo’s psychophysics-
based measure [Teo and Heeger 1994] which takes into account the
characteristics of the HVS (Human Visual System), exploiting its
sensitivity to contrast and tendency to pattern detection; ii) Begh-
dadi’s non-redundant wavelet decomposition system [Beghdadi and
Pesquet-Popescu 2003], where HVS’s nonlinearities in terms of
spatial frequency components are seized using Wigner-Ville’s dis-
tribution [lordache and Beghdadi 2001]; or iii) Wang’s hybrid (per-
ceptual plus analytic) quality index [Wang and Bovik 2002], which
makes use of three different factors: loss of correlation, luminance
distortion and contrast distortion. However, due to the nature of our
adapted texture atlases, which are composed by a big number of
2D patches that have plenty of artificial borders, we opted to use a
strictly objective metric, since we are only interested in the net data
inside patches, and in checking, texel by texel, whether the colors
in the two atlases match.

Overlap detected — Triangle discarded

—/

Figure 3: Avoiding overlaps while unwrapping the 3D mesh.

4 Proposed technique: detailed explanation

4.1 Unwrapping the 3D mesh

As summarized in Section 2, to obtain two texture atlases equivalent
to the input ones, but with the same mask, we start by unwrapping
the 3D mesh into 2D patches thanks to an algorithm which does not
introduce any distortion, and which we developed originally for a
previous system of ours [Pagés et al. 2010]. It performs a piecewise
translation of the 3D mesh onto the plane, therefore preserving ex-
actly the original angles and proportional sizes of the 3D triangles.

To create these 2D patches, a triangle adjacency list is initially built
to simplify the navigation across the topology of the 3D mesh. For
the first patch, we start by placing a random seed triangle on the
plane, and recursively place its neighbors in the corresponding ad-
jacent positions (still making all our calculations with floating point
coordinates), always checking for overlaps among triangles. We
can detect potential overlaps because we keep track of the edges
forming the perimeter of the current patch, so candidate triangles
are easily found to be conflicting if their edges would intersect any
current perimeter edge. If such a conflicting triangle is found, it is
discarded for that patch and left for a new one (see Figure 3). New
patches are created as soon as all candidate triangles for the current
patch are conflicting.

This unwrapping algorithm, that we have tested with hundreds of
standard 3D meshes, does not require them to be regular, or closed,
or even manifold. In fact, it may be fed as well with meshes with
intersecting triangles, and only complains about flat triangles and
repeated vertices.

This system tends to yield rather large texture atlases, but we do
not care much about the output dimensions, since we do not need
to store the two adapted texture atlases. Nevertheless, we want to
be orderly and as efficient as possible, so it is important to pack
the 2D patches on the texture canvas in an intelligent way. Packing
the (rectangular) bounding boxes of the 2D patches instead of their
irregular, star-like shapes reduces the complexity of the problem.
This new, simpler (but still very complex) problem is commonly
known as “block/Tetris packing” or, more technically, as “NP-hard
pants packing”, and has been very well studied, and even used for
texture atlases creation [Sander et al. 2001]. We have implemented
a simplified version of Murata’s algorithm [Murata et al. 2002],
where instead of optimizing both dimensions, we fix one and op-
timize the other to save some processing time (see Figure 4).

33

Figure 4: Efficiently packing the bounding boxes of the 2D patches.

Figure 5: Surjective function f mapping lattice I onto lattice A.

4.2 Drawing the two adapted texture atlases

Since texture atlases provided by artists may have an irregular dis-
tribution of the texels, as mentioned in Section 1, some 3D mesh
portions with smaller triangles may end up being covered, by means
of texture coordinates, by larger areas in the texture atlas: see Fig-
ure 8. We must thus establish first a correct correspondence among
the texels of the original texture maps and those of the virtual tex-
ture atlas, which will then enable us to build the two adapted, and
easily comparable texture atlases. But before moving from the
floating point coordinates of 3D or 2D vertices (of the triangles of
the 3D mesh or of the 2D patches) to the integer coordinates of
the texels in our virtual or adapted texture atlases, we need to en-
sure that every texel of the original texture atlas is represented by
at least one texel in the texture atlas, so there is no loss in this pro-
cess. This is why we first build a single texture atlas mask, still in
floating point precision. Moreover, we must find which net texels
will actually be used in the rendering process by projecting each 3D
triangle onto each original texture map with the corresponding tex-
ture coordinates. Only then can we formulate mathematically our
surjectivity requirement as follows.

If an original texture atlas has m X n net texels and our virtual
texture atlas has p x g (m xn < p X g), we can define both textures
as lattices A and I" of dimensions m X n and p X g respectively:

A={G,§) i€ {l,...m},je{l,.,n}}

={(z,y):z€{1,....0},y €{1,...,q¢}}

We need to guarantee that, for every (4,7) in lattice A, there is
at least one value (x,y) in lattice I" which corresponds to (i, 7).
We do so by defining a function f to map the first lattice onto the
second, f : I' — A, and ensuring that f is a surjective function
(just injective in case the dimensions of both lattices match: see
Figure 5), i.e.:

V(z,y) €T 3(i,7) € A: f((,y)) = (i,])

We then calculate the ratios ;1 and 7;2 of the real area of each
3D triangle ¢; vs. the (two, probably different) numbers of texels it
covers in each original texture. The largest ratio determines the size
of the corresponding 2D triangle in the virtual texture atlas. In this
way, we guarantee that all texels in both input texture maps are duly
represented in the output texture map, even for the triangle with the
highest texel resolution. This method works perfectly even for very
inhomogeneous texture atlases, in which more texel resolution is
assigned to certain 3D mesh portions, even if the corresponding 3D
triangles are smaller than the rest.

To finalize the texture adaptation process, we determine the integer
dimensions of the virtual texture atlas thanks to the ratios above,
and we fill in the texels of each of the two adapted texture atlases,
which will have (probably only slightly) different color informa-
tion, but identical masks, and will hence be very easy to compare.
To obtain this color information for, say, the first adapted texture,
we use the first set of texture coordinates, which point to certain
texels in the first original texture atlas. If we want to emulate what
a sensible renderer should do, we must use bilinear interpolation
between texels to avoid pixeling (“texeling”?) noise in the textured
3D mesh. But we may also want to emulate what a “quick’n’dirty”
renderer would do, and use nearest neighbor replication, so that
one texel in the original texture is simply copied several times in
the adapted texture. We have implemented both choices, and report
on the obtained results below.

4.3 Measuring the error (ITEM-RMSE)

Once we have both adapted texture atlases, we are ready to measure
very easily the error between them. We have chosen to discard sub-
jective/perceptual metrics for image differences, such as the ones
referenced at the end of Section 3, and use a slightly modified ver-
sion of the RMSE, which is universally accepted as the best objec-
tive measure of the pixel-to-pixel difference. RMSE is defined for
instance in the classic book by Gonzalez and Woods [Gonzalez and
Woods 2008]: for two images R and S of M columns and N rows,

€rms =

e S0 Sl kD) = s(h D)2

where r(k, 1) is the value of the pixel at coordinates (k, 1) in the
first image, and s(k,) that of the corresponding pixel in the second
image.

In our case, we have not computed the RMSE across the whole
set of M - N texels, since this would artificially “dilute” the error
by introducing many zeroes in the sum, corresponding to non-used
texels of the adapted texture atlases. Instead, we have taken into ac-
count, for what we have called “ITEM-RMSE”, only the net texels
that have actually been transferred from both original images, so
the ranges in the sums above are k € {1,...,p} andl € {1,...,¢}
respectively, p X ¢ being the size of the lattice I" described above.

5 Results

Analyzing the results we have obtained is not an easy task: since
there is no other way to check the error between two textures for
a same 3D mesh, we cannot guarantee that our results are cor-
rect. Nevertheless, we can set several hypotheses which any system
needs to verify, and then test if ours does. To begin with, it is obvi-
ous that if we compare two identical texture images, the error must
be zero. But what if we change the mask of the texture (and the tex-
ture coordinates accordingly), and preserve the color information,
and compare the resulting texture with the original one?

34

We find an example of this situation in Figure 6. Image a is the
original texture provided for the “Buddha” 3D model, whose mesh
is shown in wireframe at its left, and b is another texture atlas man-
ually created with the same net color information but resized and
spatially relocated. Images a and b could never be compared with
usual image subtraction techniques, but with our method we can
check that the ITEM-measured error between them is, in fact, null
(except for the intrinsic imprecision of floating point operations).
On the other hand, we have image ¢, which is a reduced quality
texture for the same 3D mesh. Again, this image could never be
compared directly with neither a nor b, but thanks to ITEM we can
measure the difference between them, which is 15.42 if we use bi-
linear interpolation and 14.84 with nearest neighbor replication.

Although being able to compare two texture atlases with totally dif-
ferent masks is one of ITEM’s most important and innovative fea-
tures, the results of such a comparison may not be as clarifying as
the ones presented below. The following results illustrate the com-
parison of texture atlases that have been compressed for their lighter
transmission, specially for online 3D applications. In this scenario,
it could seem that the new atlas generation is not as useful as before
but, thanks to it, triangles are presented proportionally to their real
magnitude in the 3D mesh. This way, the distortion added by the
compression scheme is evaluated considering its real impact in the
textured 3D model.

In this new use case for ITEM, namely error measurement in cod-
ing frameworks for textured 3D meshes, JPEG would typically be
used to compress the textures. By comparing pixel by pixel the
original and reconstructed (i.e., compressed and de-compressed)
images, we would not find out the real influence in the visual per-
ception of the textured 3D mesh. Indeed, there are situations where
even if the RMSE between the two images is not very high, big ar-
tifacts and considerable distortion are noticeable once the mesh is
rendered. We therefore believe that ITEM-RMSE is more appropri-
ate than classic RMSE to measure errors in the context of textured
3D meshes.

Besides, let us analyze and illustrate further the impact that texture
coordinates (and the induced interpolation that takes place during
the rendering process) may have in such a compression framework.
Since there may be big areas of texture atlases that are not effec-
tively used for texturing, the ITEM-RMSE differs, sometimes con-
siderably, from the classic RMSE, as we prove with three examples:

1. For the “Buddha” 3D model shown in Figure 6, the plots in
Figure 9-top give an idea of how misleading the classic RMSE
may be in suggesting that the difference between the original
and reconstructed texture maps is lower than it is. Although
all the texels in the mask of image a are actually used (like all
the ones of b, and unlike all the ones of ¢), since the atlas has
a large number of black/useless texels, the vast majority of
which will be equally black/useless after compressing and de-
compressing that image with JPEG, the classic RMSE value
will be artificially low. As expected, the ITEM-RMSE value
is larger, since only net texels are considered. This turned
to be the case for all the “quality” JPEG compression levels!
that we tested, and for the two options that we considered
to emulate the rendering process: bilinear interpolation and
nearest neighbor replication.

2. The opposite situation is presented in Figure 9-bottom, where
the same curves are presented for the “Pagoda” 3D model
(see Figure 7). In this case, the original texture atlas shown
in image a is also inefficient, but not due to the existence of
many black and obviously useless texels: image b highlights
the texels actually used once texture coordinates are taken into

n fact, quantization levels for the discrete cosine transform coefficients.

Figure 6: “Buddha” 3D model: mesh, original texture atlas (a), and another two potential atlases (b, c).

Figure 7: “Pagoda” 3D model: mesh and original texture atlas (a), of which for some reason only the highlighted portions (b) are really
used.

Figure 8: “Soldier” 3D model: mesh, original texture atlas (a) (notice how many more pixels are devoted to the face than to the clothes,
proportionally to their true 3D sizes), and a section of the textured 3D mesh where, due to the bilinear interpolation (b), the noise due to
JPEG compression (c) is hardly noticeable.

35

account — artists have their own logic... When JPEG is used to
compress this texture atlas, quantization introduces distortion
everywhere, including areas not really used for texturing, so
the classic RMSE is in fact higher than our ITEM-RMSE, and
also artificially so.

3. Another interesting case is illustrated thanks to the 3D model
of a soldier in a camouflage uniform, depicted in Figure 8§,
whose texture atlas has many borders, i.e., high frequency
components. One could again think that the ITEM-RMSE
would be higher than the classic RMSE, but Figure 9-bottom
proves it is clearly lower when bilinear interpolation is used.
This has a logical explanation which again shows how ITEM
is able to calculate a more reliable error. JPEG-based com-
pression tends to add noise and distortion along any strong
edges causing the image to have high frequency components:
see Figure 8-c. When the images are compared using the clas-
sic RMSE, noisy pixels increase the error. However, when we
apply ITEM-RMSE and use a bilinear interpolation (to sim-
ulate the behavior of a good 3D renderer), we are in fact in-
cluding in the process a low pass filtering stage which reduces
the noise in the texture (see image b) and, as a result, the dif-
ference between both images decreases. On the other hand,
since nearest neighbor replication does not include any kind
of filtering, the aliasing effect is even worse, and therefore the
error increases considerably.

6 Conclusions and future work

As the industry requires more and more 3D content, there is a need
of objective tools for measuring the quality of synthetic 3D mod-
els. There exist methods which measure the shape error between
two naked 3D meshes, of which one may be a simplified version of
the other, with less vertices, edges and facets. There exist as well
traditional methods to analyze the error between different images
based on visual perception features or just direct, objective analy-
sis of the pixel-by-pixel color difference. But none of these meth-
ods addresses the problem of comparing two different texture maps
meant to be wrapped around the same naked 3D mesh. Indeed, the
error, be it objective or subjective, measured between two texture
maps considered as plain, rectangular images, may not represent
correctly at all the resulting error in the textured 3D mesh once it
is rendered. In fact, since the two texture maps need not even have
the same number of texels or aspect ratio, a direct comparison using
classic image processing techniques is not at all straightforward in
the general case.

The ITEM (Inter-Texture Error Measurement) method and ITEM-
RMSE metric we have presented in this paper are specifically de-
signed for comparing two textures to be mapped onto the same 3D
mesh, regardless of their aspect ratios or dimensions. This is a first
step towards our final goal of comparing the final textured 3D mod-
els, a context in which it is meaningless to use a traditional image
error measuring system, or even a perceptual image comparison
algorithm, to examine the differences between two texture atlases
whose masks, to begin with, might be completely diverse. ITEM
takes into account the size of the 3D mesh triangles in each atlas
to calculate the visual influence of every texel, and ITEM-RMSE
gives a much less biased value than the classic RMSE, since only
net texels are taken into account. Moreover, we have presented and
analyzed different examples showing that ITEM-RMSE is more
meaningful when texture resolution is not homogeneous, or when
JPEG-like compression introduces noise by mistreating high fre-
quencies. As we have seen in these examples, the ITEM-RMSE
value is not always higher or lower than the classic RMSE, but more
adjusted to reality and, therefore, more reliable. ITEM can be used
for many applications, such as testing the space efficiency of dif-

36

15

-+-Classic RMSE
-&-Bilinear interpolation ITEM-RMSE
—«-Nearest neighbor ITEM-RMSE

i
o

Error (max. 255)

/

0 20 40 60 80
JPEG quantization level

100

18

—+-Classic RMSE
-®-Bilinear interpolation ITEM-RMSE
12 —+-Nearest neighbor ITEM-RMSE

Error (max. 255)

0 20 40 60 80
JPEG quantization level

100

21

—e-Classic RMSE

-®-Bilinear interpolation ITEM-RMSE

14 -+-Nearest neighbor ITEM-RMSE

Error (max. 255)

0 20 40 60 80
JPEG quantization level

100

Figure 9: Comparison of RMSE (blue) vs. ITEM-RMSE with bi-
linear interpolation (red) and ITEM-RMSE with nearest neighbor
replication (green), for three 3D models: from top to bottom, “Bud-
dha”, “Pagoda” and “Soldier” (see Figures 6, 7 and 8, resp.).

ferent 3D modeling software plug-ins for compiling several images
into a single texture atlas, or for measuring the objective quality of
a multi-resolution texturing scheme, etc.

We foresee several avenues for future work. From a practical view-
point, implementing a more efficient and intuitive program or plug-
in that researchers or artists could use to compare texture maps is
very appealing. From a more scientific viewpoint, we consider try-
ing to measure the combined shape and texture error to compare
two textured 3D meshes in a more complete way.

7 Acknowledgements

This work has been partially supported by the Ministerio de Ciencia
e Innovacion of the Spanish Government under project TEC2010-
20412 (Enhanced 3DTV).

We thank Samsung for the “Buddha” and “Pagoda” textured 3D
models, donated among others to MPEG? for their use within the
core experiments on multi-resolution 3D mesh compression. We
also thank Khaled Mamou for having shared with us initial ideas,
and our colleagues Daniel Berjon and Raidl Mohedano for their
valuable suggestions to improve this paper.

References

ASPERT, N., SANTA-CRUZ, D., AND EBRAHIMI, T. 2002.
MESH: Measuring Errors between Surfaces using the Hausdortf
distance. In Proc. ICME’02 (Intl. Conf. on Multimedia and
Expo), IEEE, 705-708.

AVILES, M., AND MORAN, F. 2008. Static 3D triangle mesh
compression overview. In Proc. ICIP’08 (Intl. Conf. on Image
Processing), IEEE, 2684-2687.

BEGHDADI, A., AND PESQUET-POPEScU, B. 2003. A new
image distortion measure based on wavelet decomposition. In
Proc. ISSPA’03 (Intl. Symp. on Signal Processing and its Appli-
cations), vol. 1, IEEE, 485-488.

CERNEA, D. C., MUNTEANU, A., ALECU, A., CORNELIS, J.,
SCHELKENS, P., AND MORAN, F. 2010. Efficient error con-
trol in 3D mesh coding. In Proc. Intl. Workshop on MMSP’10
(MultiMedia Signal Processing), IEEE, 292-297.

FLOATER, M. S. 1997. Parametrization and smooth approximation
of surface triangulations. Computer Aided Geometric Design 14,
3, 231-250.

GONZALEZ, R. C., AND WooDSs, R. E. 2008. Digital image
processing. Pearson/Prentice Hall.

IORDACHE, R., AND BEGHDADI, A. 2001. A Wigner-
Ville distribution-based image dissimilarity measure. In Proc.
ISSPA’01 (Intl. Symp. on Signal Processing and its Applica-
tions), vol. 2, IEEE, 430-433.

JPEG. 1994. ISO/IEC Intl. Standard 10918-1:1994, Information
Technology - Digital compression and coding of continuous-tone
still images: Requirements and guidelines. ISO/IEC.

KHODAKOVSKY, A., LITKE, N., AND SCHRODER, P. 2003. Glob-
ally smooth parameterizations with low distortion. ACM Trans.
on Graphics 22, 3 (Proc. SIGGRAPH’03 Conf.), 350-357.

2MPEG (http://mpeg.chiariglione.org/) stands for “Moving Picture Ex-
perts Group” and is formally ISO/IEC JTC1/SC29/WGl1, whose sister
committee ISO/IEC JTC1/SC29/WG1 is commonly known as JPEG (Joint
Photographic Experts Group).

37

LEE, A. W. F., SWELDENS, W., SCHRODER, P., COWSAR, L.,
AND DOBKIN, D. 1998. MAPS: Multiresolution Adaptive
Parameterization of Surfaces. In Proc. SIGGRAPH’98 Conf.,
ACM, 95-104.

LEVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002.
Least squares conformal maps for automatic texture atlas gen-
eration. ACM Trans. on Graphics 21, 3 (Proc. SIGGRAPH’02
Conf.), 362-371.

MURATA, H., FuJIYOSHI, K., NAKATAKE, S., AND KAJITANI,
Y. 2002. Rectangle-packing-based module placement. In Proc.
ICCAD’95 (Intl. Conf. on Computer-Aided Design), IEEE, 472—
479.

PAGES, R., ARNALDO, S., MORAN, F., AND BERJON, D. 2010.
Composition of texture atlases for 3D mesh multi-texturing.
In Proc. EG-IT’10 (EuroGraphics Italian Chapter) Conf., EG,
123-128.

SANDER, P. V., SNYDER, J., GORTLER, S. J., AND HOPPE, H.
2001. Texture mapping progressive meshes. In Proc. SIG-
GRAPH’01, ACM, 409-416.

TEO, P. C., AND HEEGER, D. J. 1994. Perceptual image distor-
tion. In Proc. ICIP’94 (Intl. Conf. on Image Processing), vol. 2,
IEEE, 982-986.

WANG, Z., AND BOVIK, A. C. 2002. A universal image quality
index. IEEE Signal Processing Letters 9, 3, 81-84.

38

