512 research outputs found

    Initiation and dynamics of hemifusion in lipid bilayers

    Get PDF
    One approach to the understanding of fusion in cells and model membranes involves stalk formation and expansion of the hemifusion diaphragm. We predict theoretically the initiation of hemifusion by stalk expansion and the dynamics of mesoscopic hemifusion diaphragm expansion in the light of recent experiments and theory that suggested that hemifusion is driven by intra-membrane tension far from the fusion zone. Our predictions include a square root scaling of the hemifusion zone size on time as well as an estimate of the minimal tension for initiation of hemifusion. While a minimal amount of pressure is evidently needed for stalk formation, it is not necessarily required for stalk expansion. The energy required for tension induced fusion is much smaller than that required for pressure driven fusion

    Field theoretic study of bilayer membrane fusion: I. Hemifusion mechanism

    Get PDF
    Self-consistent field theory is used to determine structural and energetic properties of metastable intermediates and unstable transition states involved in the standard stalk mechanism of bilayer membrane fusion. A microscopic model of flexible amphiphilic chains dissolved in hydrophilic solvent is employed to describe these self-assembled structures. We find that the barrier to formation of the initial stalk is much smaller than previously estimated by phenomenological theories. Therefore its creation it is not the rate limiting process. The barrier which is relevant is associated with the rather limited radial expansion of the stalk into a hemifusion diaphragm. It is strongly affected by the architecture of the amphiphile, decreasing as the effective spontaneous curvature of the amphiphile is made more negative. It is also reduced when the tension is increased. At high tension the fusion pore, created when a hole forms in the hemifusion diaphragm, expands without bound. At very low membrane tension, small fusion pores can be trapped in a flickering metastable state. Successful fusion is severely limited by the architecture of the lipids. If the effective spontaneous curvature is not sufficiently negative, fusion does not occur because metastable stalks, whose existence is a seemingly necessary prerequisite, do not form at all. However if the spontaneous curvature is too negative, stalks are so stable that fusion does not occur because the system is unstable either to a phase of stable radial stalks, or to an inverted-hexagonal phase induced by stable linear stalks. Our results on the architecture and tension needed for successful fusion are summarized in a phase diagram.Comment: in press, Biophys.J. accepted versio

    Field Theoretic Study of Bilayer Membrane Fusion III: Membranes with Leaves of Different Composition

    Full text link
    We extend previous work on homogeneous bilayers to calculate the barriers to fusion of planar bilayers which contain two different amphiphiles, a lamellae-former and a hexagonal former, with different compositions of the twoin each leaf. Self-consistent field theory is employed, and both standard and alternative pathways are explored. We first calculate these barriers as the amount of hexagonal former is increased equally in both leaves to levels appropriate to the plasma membrane of human red blood cells. We follow these barriers as the composition of hexagonal-formers is then increased in the cis layer and decreased in the trans layer, again to an extent comparable to the biological system. We find that, while the fusion pathway exhibits two barriers in both the standard and alternative pathways, in both cases the magnitudes of these barriers are comparable to one another, and small, on the order of 13 kT. As a consequence, one expects that once the bilayers are brought sufficiently close to one another to initiate the process, fusion should occur rapidly.Comment: 9 figure

    Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion.

    Get PDF
    The molecular underpinnings of synaptic vesicle fusion for fast neurotransmitter release are still unclear. Here, we used a single vesicle-vesicle system with reconstituted SNARE and synaptotagmin-1 proteoliposomes to decipher the temporal sequence of membrane states upon Ca(2+)-injection at 250-500 μM on a 100-ms timescale. Furthermore, detailed membrane morphologies were imaged with cryo-electron microscopy before and after Ca(2+)-injection. We discovered a heterogeneous network of immediate and delayed fusion pathways. Remarkably, all instances of Ca(2+)-triggered immediate fusion started from a membrane-membrane point-contact and proceeded to complete fusion without discernible hemifusion intermediates. In contrast, pathways that involved a stable hemifusion diaphragm only resulted in fusion after many seconds, if at all. When complexin was included, the Ca(2+)-triggered fusion network shifted towards the immediate pathway, effectively synchronizing fusion, especially at lower Ca(2+)-concentration. Synaptic proteins may have evolved to select this immediate pathway out of a heterogeneous network of possible membrane fusion pathways.DOI:http://dx.doi.org/10.7554/eLife.00109.001

    Field Theoretic Study of Bilayer Membrane Fusion: II. Mechanism of a Stalk-Hole Complex

    Get PDF
    We use self-consistent field theory to determine structural and energetic properties of intermediates and transition states involved in bilayer membrane fusion. In particular, we extend our original calculations from those of the standard hemifusion mechanism, which was studied in detail in the first paper of this series, to consider a possible alternative to it. This mechanism involves non-axial stalk expansion, in contrast to the axially symmetric evolution postulated in the classical mechanism. Elongation of the initial stalk facilitates the nucleation of holes and leads to destabilization of the fusing membranes via the formation of a stalk-hole complex. We study properties of this complex in detail, and show how transient leakage during fusion, previously predicted and recently observed in experiment, should vary with system architecture and tension. We also show that the barrier to fusion in the alternative mechanism is lower than that of the standard mechanism by a few kBTk_BT over most of the relevant region of system parameters, so that this alternative mechanism is a viable alternative to the standard pathway

    A New Mechanism of Model Membrane Fusion Determined from Monte Carlo Simulation

    Get PDF
    We have carried out extensive Monte Carlo simulations of the fusion of tense apposed bilayers formed by amphiphilic molecules within the framework of a coarse grained lattice model. The fusion pathway differs from the usual stalk mechanism. Stalks do form between the apposed bilayers, but rather than expand radially to form an axial-symmetric hemifusion diaphragm of the trans leaves of both bilayers, they promote in their vicinity the nucleation of small holes in the bilayers. Two subsequent paths are observed: (i) The stalk encircles a hole in one bilayer creating a diaphragm comprised of both leaves of the other intact bilayer, and which ruptures to complete the fusion pore. (ii) Before the stalk can encircle a hole in one bilayer, a second hole forms in the other bilayer, and the stalk aligns and encircles them both to complete the fusion pore. Both pathways give rise to mixing between the cis and trans leaves of the bilayer and allow for transient leakage.Comment: revised version, accepted to Biophys. J. (11 figures

    New mechanism of membrane fusion

    Full text link
    We have carried out Monte Carlo simulation of the fusion of bilayers of single chain amphiphiles which show phase behavior similar to that of biological lipids. The fusion mechanism we observe is very different from the ``stalk'' hypothesis. Stalks do form on the first stage of fusion, but they do not grow radially to form a hemifused state. Instead, stalk formation destabilizes the membranes and results in hole formation in the vicinity of the stalks. When holes in each bilayer nucleate spontaneously next to the same stalk, an incomplete fusion pore is formed. The fusion process is completed by propagation of the initial connection, the stalk, along the edges of the aligned holes.Comment: 4 pages, 3 figure

    Structure and function of bacterial dynamin-like proteins

    Get PDF
    Membrane dynamics are essential for numerous cellular processes in eukaryotic and prokaryotic cells. In eukaryotic cells, membrane fusion and fission are often catalyzed by large GTPases of the dynamin protein family. These proteins couple GTP hydrolysis to membrane deformation, which eventually leads to fusion or fission of the lipid bilayer. Mutations in eukaryotic dynamin-like proteins (DLPs) are associated with various diseases underscoring the importance to fully understand the biochemistry of these proteins. In recent years, a wealth of structural and biochemical data have been published that allow a detailed analysis of how dynamins or DLPs modulate biological membranes. However, less is known about the function of bacterial DLPs, although structural data exist. This review summarizes current knowledge about bacterial dynamins and discusses structural and functional properties in comparison to their eukaryotic counterparts
    • …
    corecore