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Initiation and Dynamics of Hemifusion in Lipid Bilayers

Guy Hed and S. A. Safran
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel

ABSTRACT One approach to the understanding of fusion in cells and model membranes involves stalk formation and
expansion of the hemifusion diaphragm. We predict theoretically the initiation of hemifusion by stalk expansion and the
dynamics of mesoscopic hemifusion diaphragm expansion in the light of recent experiments and theory that suggested that
hemifusion is driven by intramembrane tension far from the fusion zone. Our predictions include a square-root scaling of the
hemifusion zone size on time as well as an estimate of the minimal tension for initiation of hemifusion. Whereas a minimal
amount of pressure is evidently needed for stalk formation, it is not necessarily required for stalk expansion. The energy
required for tension-induced fusion is much smaller than that required for pressure-driven fusion.

INTRODUCTION

Membrane hemifusion is a possible pathway (see Müller

et al., 2002, for an alternative view) to the complete fusion of

membranes (Chernomordik et al., 1995). Current theories

associate the initiation of hemifusion with the formation of

a contact zone between the membranes in which the two

proximal monolayers are connected by a stalk-shaped neck.

The stalk then expands and a region is formed (region C in

Fig. 1), in which the two distal monolayers form a single

bilayer. In general, the energetic cost of the splay of the lipid

chains in the stalk prohibits its spontaneous expansion.

However, the presence of additional, external forces (e.g.,

pressure, surface tension gradients, electrostatic effects) can

lead to expansion of the stalk into a ‘‘hemifusion region’’

and to the growth of this zone. Clear evidence for the

existence of these two distinct prefusion stages, stalk

formation and hemifusion, was found for poly(ethylene

glycol)-mediated fusion of vesicles (Lee and Lentz, 1997).

A recent theoretical paper (Safran et al., 2001) suggested

that the flow of lipids from region B to region A can be

caused by an increase of the surface tension in region A due

to the presence (in that region only) of additional polymer in

solution. The tension gradient between these regions induces

a flow of lipids that leads to the growth of region C.
A different scenario, where hemifusion can be an alter-

native pathway to fusion, was found in influenza hemagglu-

tinin-mediated fusion (Chernomordik et al., 1998; Leikina

and Chernomordik, 2000). The initial local stalk may evolve

to a fusion pore (Müller et al., 2002), or it may expand to

hemifusion. In the latter case, no fusion occurs.

In this paper, we predict the dynamics of the expansion of

the initial stalk and its role in the growth of a mesoscopic

hemifusion diaphragm. The nucleation of a stalk by thermal

fluctuations was recently shown to be thermally accessible

(Kozlovsky and Kozlov, 2002; Markin and Albanes, 2002).

A detailed description of the kinetics of this nucleation event

(that typically describes the formation of a stalk of several

nanometers in extent) is outside the scope of our work.

Instead, we focus on estimates of the conditions that facilitate

stalk expansion into hemifusion. We discuss the implications

of our theory on biological fusion mechanisms and on in

vitro experiments. In addition, we predict the growth of the

hemifusion region (e.g., from nanometers to microns) as

a function of time and discuss the physical parameters that

can be used to control the timescale for hemifusion. This

dynamic part is relevant mainly to in vitro experiments, since

biological fusion events generally remain at the microscopic

scale of the stalk.

If hemifusion is an intermediate state of fusion, then it

is important to contrast the timescales of hemifusion

diaphragm expansion and pore formation to determine the

rate-limiting step. Chizmadzhev et al. (2000) predicted that

pore expansion is exponential in time, with a timescale of

hm/dp\ 1 s, where hm is the membrane viscosity and dp is

the surface tension difference (both are estimated below).

However, if pore nucleation is slow enough, significant

expansion of the hemifusion diaphragm can occur before

pore formation. This is the case considered here, where we

predict that the hemifusion diaphragm expands as the square

root of time.

Our theoretical model is motivated by and consistent with

the experiments described by Kuhl et al. (1996), where two

bilayers supported on mica surfaces were brought into

contact in the presence of a PEG-water solution. Hemifusion,

which eventually extended over a distance of 50 m, was

observed in a time of ;10 min, whereas the time it took the

initial stalk to form was\3 min. This suggests that, at least

in this experiment, the rate-limiting step for hemifusion is the

expansion of the fusion zone, as opposed to stalk formation.

This article presents a simple theoretical model relevant

to this experimental system (Kuhl et al., 1996), and predicts

the time dependence of hemifusion expansion. The overall

timescale we find is comparable with the measurements of

Kuhl et al. (1996), although the details of the predicted

temporal dependence have yet to be tested experimentally.
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PHYSICAL MODEL

Our theoretical model is illustrated in Fig. 1, which is

a simplification of the experimental system of Kuhl et al.

(1996) wherein two bilayers deposited on mica cylinders are

brought together in a solution of poly(ethylene glycol) (PEG)

and water. The lipids of the distal monolayers are physi-

sorbed on the mica; this fixes their lateral density. From here

on in this paper, the term ‘‘lipid density’’ relates to the lateral

density of the proximal monolayers (see Fig. 1).

We assume that the lipids are in local equilibrium, so at

a particular location ~rr, the free energy per lipid (in the

proximal monolayers) mð~rrÞ, does not depend on the lipid

microstate, but only on the lipid density sð~rrÞ. This assum-

ption of local equilibrium is consistent with our results that

predict an overall timescale for hemifusion expansion that is

much larger than the local diffusion time of a single lipid

molecule.

The experimental system we consider is macroscopically

cylindrically symmetric and we therefore assume cylindrical

symmetry of all the physical quantities at mesoscopic length

scales. This is justified because all flows (of water and lipids)

are laminar, and there are no mechanisms that might induce

angular fluctuations or instabilities.

We distinguish between three regions, illustrated in Fig. 1:

Region A, where the distance d between the bilayers is

typically much larger than the polymer correlation

length j (Safran et al., 2001). In this region, the outer

lipid monolayer is in contact with the PEG in the

solution. The free energy per molecule in this region is

given by �mmðsð~rrÞÞ, and is different (in its functional

form) from the free energy m(s) of the monolayer in

the absence of PEG.

Region B, where d � j. For these values of d, the PEG

density near the bilayers is negligible and our model

assumes that there is no PEG in contact with the

bilayers in this region. The free energy per lipid in this

zone is mðsð~rrÞÞ. In addition, we assume that the

distance between the mica surfaces is constant (the

mica surfaces in the experiment are deformed and

flattened under pressure), and that this region is ring-

shaped with an outer radius RB and an inner radius R.
Region C, the region where the distal bilayers are in

contact.

The bilayers are Langmuir-Blodgett deposited in water,

without PEG, which is added later. The energy per lipid

when the monolayers are in contact with water is m(s) and
the proximal monolayers are initially Langmuir-Blodgett

deposited with a density s0 that minimizes m. When PEG is

added, it induces an effective attraction between the polar

heads (Safran et al., 2001), and changes the functional form

of the energy as function of the lipid density to �mmðsÞ.
The effect of lipid condensation in the presence of PEG

(Bartucci et al., 1996; Maggio and Lucy, 1978; Tilcok and

Fisher, 1979) has been discussed in terms of the dehydration

of the bilayer by the PEG (Mishima et al., 1997). This

dehydration affects the lipids in region A that are in

microscopic proximity to the PEG, but has no effect on the

lipids in region B. In the section ‘‘The Role of Pressure’’, we
demonstrate that the osmotic pressure induced by the PEG is

too small to induce hemifusion. This stands in contrast to the

surface tension effects that are the main focus of our work.

If equilibrium could be reached, the lipid density in region

A would tend to increase in the presence of PEG. However,

the number of lipids in the monolayers cannot increase to any

FIGURE 1 Illustration of the experimental geometry,

adopted from Kuhl et al. (1996). Regions A, B, and C are

defined in the text. R and RB are the inner and outer radii of

region B, respectively.

FIGURE 2 Enlargement of region B (between the

dashed lines) shown in Fig. 1. The lipid density in region

A is the initial density s0. In our model, we assume a step

in the density profile, so the lipid density at RB is sb\s0.

At R, it is approximated by s0. The normalized lipid

density profile r¼ (s� s0)/s0 as a function of the radius r
for R/RB ¼ 0.2 is plotted using Eq. 9. The free energy per

lipid in region B is m(s), which is a function of the local

lipid density. In region A, the free energy per lipid is �mmðs0Þ
everywhere.
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significant degree within the timescale of the experiments,

since the concentration of lipids in the bulk solution is neg-

ligible and the number of lipids that can be transported from

region B to region A is much smaller than that of region A.
Thus, the lipid density is unchanged and the energy per lipid

in region A is now �mmðs0Þ[mðs0Þ; with the derivative

�mm9ðs0Þ\0 due to the induced head attraction. This conden-

sation effect thus leads to a negative tension in the proximal

monolayers that ideally would cause them to contract in

extent. They cannot do this without exposing the chains of the

inner monolayers to the water, and this is energetically pro-

hibitive. The outer monolayers are therefore stressed, and one

way of relieving that stress is for additional lipid to enter

this region; this will allow the local lipid density to increase

while still covering the original area occupied by the outer

monolayer.

The PEG concentration near the outer monolayers in

region B is given by cB ¼ cA(d/j)
2, where cA is the PEG

concentration near the outer monolayers in region A, j is

polymer correlation length, and d is the distance between the
bilayers in region B (Safran et al., 2001). Since by the

definition of region B the bilayer spacing in that region is

small, d� j, we have cB� cA and the PEG concentration in

region B is negligible; we thus take this concentration to be

zero. The energy per lipid in region B is initially given by

m(s0), wheres0 is the lipid density in the absence of polymer.

Since the free energy per lipid, m, is minimized when the

density s ¼ s0 and the tension in region B initially vanishes,

either expansion or compression of the lipids will increase

their energy. The tension gradient between regions A
(initially at negative tension) and B (initially at zero tension)

induces a flow of lipids from region B to region A. Since
region A is much larger than region B, we can treat it as

a reservoir, and assume that even though lipid is flowing from

region B to region A, the lipid density in region A is not

changed from its initial value ofs0. The system is a dynamical

one, and the chemical potential (equivalent in our single-

component system to the free energy per lipid, m) is not

constant in all of space at the mesoscopic scale; this results in

lipid flow and dynamics. However, since local equilibrium is

maintained, we must have equal chemical potentials at any

given point in the system. In particular, at the boundary

between regions A and B, the chemical potentials of the lipids

must be equal:mðsbÞ ¼ �mmðs0Þ, where sb¼ s(RB) is the lipid

density at the edge of region B. We note that this equality of

chemical potentials determines the lipid density at the

boundary of region B, sb; the functional form of the two

free energies m(s) and �mmðsÞ are not the same, since in region

A the lipids are in contact with polymer.

The initial lipid density in region B (s0, the density at

which the lipids self-assemble in water in the absence of

polymer) is higher than the lipid density at the AB boundary:

s0[sb. This inequality is a consequence of the fact that the

tension at the boundary is negative, as shown in the section

‘‘Boundary Conditions and Global Dynamics’’. More intui-

tively, the negative tension in region A tends to pull in

additional lipids from the boundary region of region B into

region A as explained above. This lipid flow reduces the lipid

density at the boundary r ¼ RB from s0 to sb. In turn, the

reduced lipid density at the boundary of regions A and B,
(sb\ s0) induces a flow of lipids from the rest of region B
toward the boundary. This is because the minimum energy

state in region B is one where s ¼ s0[sb; thus lipids from

the entirety of region B flow to the boundary in an attempt to

restore the lipid density there to values closer to s0. This

flow, in turn, reduces the lipid density at the boundary

between regions B and C (the hemifusion region) at r ¼ R,
and lead to a negative tension that tends to expand region C.
At the boundary of regions B and C, the lipid density is

determined by a force balance between the membrane neg-

ative tension (arising from the lipids flowing to the AB
boundary) that tends to expand regionC, and the force exerted
by the boundary ring around region C that tends to shrink it.

The main contribution to the energy of this ring is of the tilt of

the lipid tails imposed by the toroidal geometry. This tilt is

needed to form the three-way junction of the boundary ring

cross section while avoiding an intramembrane void, which

has a much higher energetic cost (Kozlovsky and Kozlov,

2002). The energetic cost of the tilt can be considered through

the related intramembrane strain and the adjacent stress tensor

(Hamm and Kozlov, 2000).

We assume that for R � d the energetic cost ft for a cross
section of the BC boundary ring is independent of R. Thus,
the ring energy is given by Er(R) ¼ 2pRft. The force per unit
length that the ring exerts on region B of the membrane tends

to shrink region C and pull region B in the�r̂r direction. This
force (per unit length) is

1

2pR
� @Er

@R

� �
r̂r ¼ � ft

R
r̂r; (1)

and tends to shrink the boundary ring; that is, the expansion

of region C is energetically costly. In local equilibrium, this

force is balanced by the surface tension p, which may be

considered as a two-dimensional lateral lipid pressure in

region B of the monolayer that tends to expand the ring:

pðRÞ1 ft
R
¼ 0: (2)

Negative tension in region B tends to cause this region to

contract and thus provides a force in the r̂r direction,

balancing the force due to the BC boundary.

MONOLAYER DYNAMICS

In this section, we derive the dynamics that govern the

expansion of the hemifusion region and predict the flow of

lipids within the monolayer as a function of the lipid density

and of time.
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There are three local, dissipative forces that oppose any

lipid motion:

The stress, or force per unit area due to the viscosity of

the water that is moved along with the lipids, is given

by h@vw=@z, where vw is the water velocity and h ¼
0.01 erg s/cm3 is the viscosity of water. The stress is of

order hv=d, where v is the lipid velocity and d is the

spacing between the bilayers in region B.
The stress, or force per unit area due to the monolayer

viscosity, is given by hm=
2v, where hm is the mono-

layer friction coefficient (Seifert and Langer, 1993).

For a laminar flow, we estimate this stress as hmv=R
2
B;

that is, the relevant dimension is the size of region B in

which there is monolayer flow.

The stress, or force per unit area that is due to the friction

between the monolayers, is given by bv, where b is the

friction coefficient. This stress depends only on the

motion of the outer relative to the inner monolayer

where there is no flow; there is, therefore, no depen-

dence of the length scale related to the geometry of the

different regions.

The friction between a dimyristoylphosphatidylcholine

(DMPC) monolayer and a supporting HTS (trichlorosilanes

with hexadecyl chains) monolayer at T ¼ 458C is b ¼
7 � 106 erg s/cm4, whereas for a supported OTS (trichlorosi-

lanes with octadecyl chains) monolayer the friction is b ¼
2.9 � 108 erg s/cm4 (Merkel et al., 1989). The experiments of

Kuhl et al. (1996) were carried out at 258C. It has been

observed that the diffusion coefficient of a molecule in

a DMPC monolayer increases about threefold when T is

increased from 258C to 458C (Haibel et al., 1998; Merkel

et al., 1989; Vaz et al., 1985), which suggests a correspond-

ing decrease in b. In this work we use an estimated value of

b ¼ 108 erg s/cm4. For DMPC bilayers at T ¼ 258C, the
bilayer viscosity is hm ; 3 � 10�7 erg s/cm2 (Merkel et al.,

1989). The values relevant to the experiments of Kuhl et al.

(1996) are d ¼ 2 � 10�7 cm and RB ¼ 5 � 10�3 cm. With the

estimates for the stress given above, we find that the

frictional force due to relative motion of the two monolayers

is much larger than either the lipid or water viscosity con-

tributions to the stress. We thus neglect these latter two

effects and predict the dynamics for a system where the only

relevant dissipation is due to the relative friction between

the monolayers.

The lipid flow is induced by the tension gradient =p, and is
opposed by the frictional bv. The force balance equation is

�=p� bv ¼ 0: (3)

In Appendix A, we derive the lipid local dynamics using Eq.

3 and the continuity equation. We consider the dynamics

only to first order in the lipid density variations r¼ (s� s0)/

s0, which is known from experiments to be small. In Kuhl

et al. (1996) a variation of jrj � 0.05 was measured.

To first order in r, the local dynamics has the form of

a diffusion equation

@r

@t
¼ a

b
=

2
r; (4)

where a ¼ s3
0m0ðs0Þ is the harmonic ‘‘spring constant’’ of

the monolayer. For a small density variation jrj � 1, the

surface energy cost is dg ¼ ð1=2Þar2, and the related

tension difference is dp ¼ ar. We note that the surface

energy g ¼ sm(s) is the Gibbs free energy per unit area, and
is different than the surface tension p, which has the

thermodynamic role of the two-dimensional pressure.

We estimate a using the phenomenological form

mðsÞ ¼ g
1

s
1

s

s
2

0

� �
; (5)

where g is the effective surface tension of the hydrocarbon-

water interface (Ben-Shaul, 1995). The second term in Eq. 5

accounts for the (electrostatic) effective headgroup repul-

sion, whereas the first term represents the effective hydro-

carbon-water repulsion. We note that this effective repulsion

is smaller than the repulsion of the bare hydrocarbon-water

interface, and has been estimated as g ; 20 erg/cm2

(Israelachvili, 1991).

From Eq. 5, we obtain a ¼ 2g ; 50 erg/cm2. For b ¼
108 erg s/cm4, the effective ‘‘diffusion constant’’ is 5 � 10�7

cm2/s. This quantity is larger than the actual, microscopic

diffusion constant measured for free liquid bilayers above the

gel transition, which are of the order of 10�8 � 10�7 cm2/s

(Haibel et al., 1998; Sonnleitner et al., 1999; Vaz et al.,

1985). The Einstein relation is not applicable in our case,

since the flow (which happens to scale-like diffusion) of the

lipids from the high to low density regions is not due to the

random motion of the molecules, but due to the tension

gradient a=r. Indeed, for a characteristic molecular area a¼
10�14 cm2, we find that the related energy per molecule is

aa ; 10kBT.

BOUNDARY CONDITIONS AND
GLOBAL DYNAMICS

The boundary conditions for the lipid density were already

discussed in the ‘‘Physical Model’’ section and we review

them here for convenience. The local tension equilibrium at

the boundary with region A determines the local lipid density

sb at RB. In Appendix A we show that the tension in the

monolayer is given by

p ¼ s
2
m9ðsÞ: (6)

Since the tension in region A is negative, from the tension

equality at the boundary we see that pðRBÞ ¼ s2
bm9ðsbÞ is

negative. Moreover, because the function m(s) has a mini-

mum at s0, it is convex in a neighborhood of s0. If sb is in

that neighborhood, then the condition m9(sb)\0 yields that

sb\ s0.
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The boundary ring near the hemifusion region at R exerts

a force that opposes hemifusion expansion; this is because

the boundary energy of the hemifusion region is increased as

this region grows. This force is locally balanced by the

negative tension in region B where lipids are flowing toward

region A. As lipids pass from region B to A, the lipid density

in region B decreases; the tension in region B, and in

particular near its boundary with region C, becomes more

negative and pulls on region C, causing its expansion.

The density of lipids in region B at the boundary R is

determined from the force balance Eq. 2. Using Eq. 6, we

may write Eq. 2 as

rðRÞ ¼ � ft
aR

: (7)

Before the flow begins, the initial lipid density in region B
is s0, which implies that r ¼ 0. For this value of the lipid

density, there is zero tension in region B, the stalk does not

expand, and hemifusion does not develop. Due to the tension

gradient between region B and A, lipids flow out of region B
and a negative tension is built up. If at a certain time the lipid

density at r ¼ R is low enough so that Eq. 7 is satisfied, the

stalk begins to expand.

After the flow of lipids is initiated, lipids are removed

from region B as they flow toward region A and the lipid

density in region B is lower than s0. The lipid density in

region B cannot, however, be smaller than the value of sb,

because when s ¼ sb the free energies per lipid in regions A
and B are equal, and the flow stops. Thus, we require s0 $
s $ sb in all of region B if there is to be flow and stalk

expansion that leads to hemifusion. At an early time after the

stalk formation, although the stalk does not expand, the lipid

density in all of region B approaches the equilibrium density

profile s(r) ¼ sb. Using Eq. 7, the condition for the stalk to

begin to expand with a finite amount of time is:

�rb[
ft

aR0

; (8)

where rb ¼ (sb � s0)/s0 and R0 is the radius of the stalk. In

our model, we consider the process for R much larger than

the molecular size R0 that characterizes the size of the stalk.

The tilt energy ft is in general positive. From Eqs. 6 and 8, for

R � R0 we have jr(R)j � jrbj. Since we consider all

quantities only to first order in rb, we use the approximation

r(R) ¼ 0.

In Appendix B we use the integral continuity equation,

which expresses the conservation of the lipid number in the

system, to obtain a dynamic equation for the hemifusion

radius R. In Appendix C we show that the timescale that

governs the local dynamics is much faster then the rate of

change of R. We use an adiabatic approximation to solve the

dynamics. First, we fix R and find the asymptotic (t ! ‘)
lipid density profile

rðrÞ ¼ rb 1� logðr=RBÞ
logðR=RBÞ

� �
: (9)

We use this density profile (plotted in Fig. 2 for R/RB ¼ 0.2)

to obtain the dependence of the hemifusion radius R on the

time t to find:

arb

b
t ¼ R

2
log

R

RB

� 1

2

� �
: (10)

This predicts an approximately square root dependence of

the hemifusion region size on time (with logarithmic

corrections). The same temporal dependence was obtained

by Kumenko et al. (1999) under the assumption of constant

lateral lipid density. However, their result is quantitatively

different from ours since they have considered the mono-

layer viscosity as the main dissipative force, whereas we

have showed that it is negligible compared to the friction b.
From Eq. 10 we find that the time it takes the hemifusion

region to evolve from the initial stalk radius R ¼ R0 � RB to

a final radius of R ¼ RB is Dt ¼ �bR2
B/2arb. With rb ¼

�0.05 and a/b ¼ 5 � 10�7 cm2/s, we predict that the time for

expansion of the hemifusion zone to a scale of RB ¼ 50 mm
is Dt � 500 s. This is consistent with the experiment of Kuhl

et al. (1996) where a time of Dt ¼ 600 s was measured.

The time Dt found here can also be derived (up to

a numerical factor) from a simple scaling argument that does

not depend on the specific details of our model. As

hemifusion is initiated, the tension difference between the

bulk (at RB) and the hemifusion front (at R) is �arb. When

RB� R, the average tension gradient is =p � �arb=RB. For

a fully damped flow with a friction coefficient b, the average
lipid velocity is �vv ¼ =p=b. The hemifusion front (BC
boundary) advances with the velocity ;�vv of the lipids near

it. The time to advance a distance of RB with a velocity �vv is
RB=�vv ¼ �bR2

B=arb.

INITIATION OF HEMIFUSION

The change in the monolayer surface energy due to the

presence of PEG in region A is dg ¼ s0ð�mmðs0Þ � mðs0ÞÞ,
where m(s0) is the free energy per lipid in the absence of

PEG, and �mmðs0Þ is the free energy per lipid in the presence

of PEG. Since we have defined sb by the condition

mðsbÞ ¼ �mmðs0Þ, we can expand m around its minimal value

s¼ s0, and find that to lowest order in rb, the surface energy
difference dg and the tension difference dp induced by the

PEG are

dg ¼ 1

2
ar

2

b; dp ¼ arb: (11)

In Kuhl et al. (1996), a change of rb ��0.05 in lipid density

was deduced from the measured thinning of the bilayer.

Using the value a ¼ 50 erg/cm2, we estimate dg � 0.06 erg/

cm2, and dp � 2.5 erg/cm2.

Initiation of stalk expansion is relevant not only to events
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of mesoscopic fusion, but also to in vivo fusion events,

where a fusion pore is formed soon after stalk expansion. In

many cases of biological interest, the fusion process is

regulated by fusion proteins that promote stalk formation and

expansion. One hypothesized biomolecular mechanism that

promotes expansion is the penetration of hydrophobic fusion

protein domains into the membrane and its subsequent

destabilization (Bentz and Mittal, 2000). The protein do-

mains may increase the membrane surface energy by

inducing an effective attraction of the hydrophobic head-

groups, similar to the effect of PEG (Safran et al., 2001); they

may also penetrate the membrane, increasing the intra-

membrane tension. Our theory suggests that the former

mechanism, which works to increase in dg, may be more

effective energetically than the latter, which increases dp.
That is, for a given change in lipid density, rb, a smaller

energy is involved (Eq. 11).

SNARE (soluble N-ethylmaleimide-sensitive factor-at-

tachment protein receptors) proteins that promote exocytosis

in nerve synapses are thought to induce stalk expansion

through a conformational change by which the proteins pull

on the stalk to widen it (Scales et al., 2001). Another possible

cause for stalk expansion is calcium ions induced membrane

tension (Arnold, 1995). We conclude from our theory that

the latter mechanism may be more effective energetically.

In the preceding section, we found that for expansion of

the hemifusion region to occur, the driving force due to the

negative tension in region B must be large enough to

overcome the tendency of the boundary of region C to

shrink. We thus deduced that the normalized lipid density at

RB must obey

�rb[
ft

aR0

: (12)

From this condition, we estimate the minimum stalk radius

R0 for which the lateral tension in the monolayer can induce

expansion. The energy of the lipid tails’ tilt at the hemifusion

front is estimated by Markin and Albanes (2002) as ft ¼
2 � 10�6 erg/cm. For the values of a and rb given above, we

find that the mechanism described here is sufficient to cause

hemifusion for R0$ 8 nm, which is of the order of the typical

radius of a thermally nucleated stalk (Yang and Huang,

2002). Note that if rb vanishes (that is, no polymer is present

in region A), hemifusion will not be initiated for any finite

(reasonable) stalk radius.

THE ROLE OF PRESSURE

Experiments have demonstrated that hemifusion may be

caused by sufficiently large normal pressure (Helm et al.,

1989) or by negative pressure in the water layer (MacDon-

ald, 1985; Yang and Huang, 2002). We shall now determine

the conditions under which pressure induced in region B can

in and of itself (i.e., with no surface tension effects as

induced by the added polymer) cause hemifusion expansion

by forcing water to flow out of the contact zone. We do this

by using the simplifying assumption that the water in region

B is under a constant pressure pw ¼ pn 1 po, where pn is the
normal pressure on the bilayers and po is the osmotic

pressure induced by the solute in the bulk. The finite

thickness of the water layer in region B (whose thickness is

on the order of a nanometer) is always maintained because of

hydration forces: the water molecules are organized around

the polar headgroups of the lipids to partially cancel their

electric dipole; removing the water layer would increase the

free energy because of the energetic cost of these electric

dipoles whose normal components, in general, point to the

same direction due to the hydrophobic nature of the lipid

layer. Thus the water flow out of region B and into region A
is possible only by the expansion of region C.
The energy (per unit area) difference associated with

a pressure difference of pw is pwd, where d is the distance

between the two proximal monolayers. This should be

compared with the energy difference dg associated with the

free energy gradient in the monolayer. In the experiment of

Kuhl et al., (1996) that yields pwd � 0.08 erg/cm2, which is

of the same order of dg. Nevertheless, we show below that

the external normal pressure has only a minor effect on the

pressure in the monolayer and on its density. We will thus

show that under the experimental conditions of Kuhl et al.

(1996), the external pressure is insufficient to cause hemi-

fusion expansion.

In the experiment of Kuhl et al. (1996), the applied normal

pressure is pn ¼ 0.3 atm and the osmotic pressure is po ; 0.1

atm, so the total pressure between the bilayers is pw � 0.4

atm. We now estimate the contribution of this pressure to

the lipid density variation in the experiment. For a fluid

membrane, the relation between the tension p—the two-

dimensional pressure in the membrane—to the three-di-

mensional pressure pw is pw ¼ p/h, where h is the thickness

of the monolayer. To induce the observed density variation

rb ¼ 0.05, the tension needed is jpj ¼ 2.5 erg/cm2. For h¼ 5

nm, the pressure required to induce such tension is 5

atm—much larger than the actual pressure in the experiment.

Thus, the contribution of the normal and the osmotic

pressures to the density variation is negligible compared with

the surface tension effects due to the PEG-lipid interactions

that result in densification of the lipids. This result under-

scores the point made in the preceding section: changes in

the pressure are much less effective than surface energy

variation for the initiation of stalk expansion.

We now estimate the pressure pw needed to initiate

hemifusion, without a lipid density gradient (that is, with

rb ¼ 0). The radial force per unit length on the boundary at R
due to the external normal pressure is

�1

2pR

@ðpwVÞ
@R

¼ pwd: (13)

From Eq. 1, the condition for spontaneous fusion is pwd[
ft/R0. For the values given above, we require pw $ 107 dyne/
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cm2 ¼ 10 atm. Experimental results in different conditions

are within that range. The pressure needed for the hemifusion

of bilayers directly supported on mica (with no added

polymer or other mechanisms that give rise to lipid density

gradients) was found by Helm et al. (1989) to be pw ; 40

atm. Wong et al. (1999) used a surface-forces apparatus to

apply pressure on DMPC bilayers supported on polymer

layers. The polymer layer allowed the bilayers some lateral

conformational freedom, thus permitting more freedom for

the adjustment of stalk shape and size (Kozlovsky and

Kozlov, 2002; Markin and Albanes, 2002). In that case,

where the stalk geometry could easily adjust, the cost for

forming the stalk was reduced and hemifusion was observed

at a much lower pressure of pw ¼ 2 atm. In the experiment of

Kuhl et al. (1996), the pressure pw � 0.4 atm is too low to be

the driving force for hemifusion.

Pressure in itself is not enough to cause hemifusion, but it

is sometimes necessary. (In the experiments, it is difficult to

distinguish between applied pressure and time in contact

effects (T. Kuhl, private communication)). Leckband et al.

(1993) showed that the amount of pressure needed for

hemifusion is directly related to the lipid density near the

contact area. In that experiment, two bilayers were brought

into contact using a surface-forces apparatus. When Ca21

ions were introduced, there was a phase separation in the

bilayers. The density of lipids in the bilayer regions that were

brought into contact was characterized by the hydrophobic

adhesion energy. When thinner regions were brought to-

gether (characterized by adhesion energy of Ead ¼ 3.8

erg/cm2), they either hemifused spontaneously or required

only a small amount of pressure (pn # 1 atm) to induce

hemifusion. For denser bilayers (Ead ¼ 0.15 erg/cm2),

a pressure of pn ¼ 4 atm was required for hemifusion.

Yang and Huang (2002) induced negative osmotic pres-

sure on the water layer between the bilayers by lowering the

relative humidity of the environment of diphytanoyl phos-

phatidylcholine. At 80% humidity, the lipids were at the

lamellar phase. As the relative humidity was decreased, the

water was expelled from between the bilayers by the osmotic

pressure and the lamella were connected by stalks, directly

observed by x-ray diffraction. In this experiment, the dehy-

dration was due to negative pressure of the water layer

induced by the reduced relative humidity and not by normal

pressure, but the physical effect of the two is similar.

SUMMARY

In this paper, we used a model based on lipid density

gradients induced by surface energy variation that occur far

from the hemifusion zone to predict the conditions for the

initiation of hemifusion by stalk expansion and the dynamics

of mesoscopic hemifusion. Our theory was motivated by the

experiments of Kuhl et al. (1996). However, the quantitative

scheme presented here can be generalized to any system of

two lipid bilayers initially connected by a stalk, where

a perturbation in region A, mesoscopically far from the stalk,

causes tension in the membrane in that region. For example,

one can apply our results to tension induced by the elec-

trostatic interactions caused by calcium ions (Leckband et al.,

1993), tension induced by laser tweezers (Bar-Ziv and

Moses, 1994; Moroz et al., 1996), or the effective tension

induced by the attraction of oppositely charged bilayers

(Pantazatos and MacDonald, 1999).

We have compared the effect of the friction of the two

monolayers, the water viscosity, and the intramonolayer

viscosity on the two-dimensional lipid motion and showed

that the friction dominates. Thus, the lipid dynamics depend

on the friction and not on hydrodynamics. This means that

the spacing between the two layers is irrelevant for the lipid

dynamics.

Experiments similar to those of Kuhl et al. (1996) can test

the predictions of the model for the timescales as functions of

the lipid density and friction as well as the value of the

driving force due to the tension induced in region A. One
could vary each of the parameters rb (the relative change in
lipid density), a (related to the induced tension), and b (the

interlayer friction) independently, and measure the ‘‘hemi-

fusion radius’’ R(t), the final radius RB, and the time to

complete the process Dt as functions of these parameters.

In particular, the friction b can be varied independently of

a by changing the composition of the distal bilayers while

maintaining the same composition of the proximal bilayers.

The friction can be varied by varying those interactions

among the chains that most directly affect the friction, such

as variations of the chain length or temperature (Yoshizawa

et al., 1993).

Once an empirical, temporal profile for the hemifusion

expansion, R(t), is measured for systems with known param-

eters, one can use the same experiment to estimate the

effective diffusion constant for the lipid flow, a/b, for

different lipid bilayers. One can easily vary the lipid density

at the boundary, sb, by changing the polymer (or calcium

ions) concentration since the density sb is determined by the

equality of the chemical potentials of the lipids exposed to

the polymer and those exposed only to the water.

The static part of our theory deals with the initial con-

ditions required for stalk expansion. We have evaluated

the necessary density variation rb ¼ �ft /aR0 and demon-

strated that the related surface energy ð1=2Þar2b is much

smaller then the surface tension arb. This result is not sur-
prising, since it is a general result of a first order expansion

around an energetic minimum. Still, it does give a new in-

sight regarding biological fusion mechanisms. It suggests

that mechanisms working through the change of the surface

energy dg are much more effective than mechanisms that

exert force or normal pressure on the stalk.

The predicted dependence of stalk expansion on the lipid

density can be tested by measuring the critical density rb at
which stalk expansion occurs. The results may serve to learn

more about the stalk structure and energetics.
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We expect that near the end of the process of hemifusion

expansion, when R(t) � RB, experimental results may differ

from our predictions, since the density profile of the polymer

(or calcium ions in the case of Leckband et al. (1993)) may

vary in a gradual manner around RB; in our theory we

assumed a sharp (‘‘step function’’) decrease of the polymer

density at RB. We also expect a deviation from our theory

when the radius R(t) of the hemifusion region is close to its

initial, molecular stalk radius R0, due to microscopic details

of the lipid structure in the stalk.

We distinguish between hemifusion induced by surface

tension gradients, which we consider in our model, and

hemifusion induced by pressure. Hemifusion may be

induced by normal pressure on the bilayers (Helm et al.,

1989; Wong et al., 1999) or by dehydration, which induces

negative pressure in the water layer between them (Yang and

Huang, 2002). We showed that this pathway to hemifusion

requires much more energy (per unit area) than fusion that is

induced by surface tension gradients.

We have shown that the induced pressure pw in the

experiment of Kuhl et al. (1996) cannot be the primary direct

cause of hemifusion. Still, pressure does play an important

role in stalk formation. It may also affect stalk expansion

through its effect on the lipid tilt energy ft and on the initial

stalk radius R0.

APPENDIX A: LOCAL LIPID DYNAMICS

We present here the full calculation of the local lipid dynamics. Note that

though in our final result we leave only the terms linear in r, one may also

calculate in the same framework the nonlinear terms in the case r is not

small.

The force balance equation is

�=p� bv ¼ 0; (A1)

and the continuity equation is

@s

@t
1=ðsvÞ ¼ 0: (A2)

Writing the energy per lipid as m(s), the surface tension is

p ¼ � @ðNmðsÞÞ
@A

����
N

¼ s
2
m9ðsÞ; (A3)

where A is the a macroscopic area and N¼ sA is the number of lipids in this

area.

From Eqs. A1, A2, and A3, we have

b
@s

@t
¼ =ðs=pÞ
¼ ð2s2

m9sÞ1s
3
m0ðsÞÞ=2

s

1 ð4sm9ðsÞ1 5s
2
m0ðsÞ1s

3
m90ðsÞÞð=sÞ2: (A4)

To first order in the density variation r, Eq. A4 has the form

@r

@t
¼ a

b
=

2
r1Oðr2Þ; (A5)

where a ¼ s0
3m0(s0).

APPENDIX B: GLOBAL LIPID DYNAMICS

In the section ‘‘Boundary Conditions and Global Dynamics’’, we consider

the boundary conditions for the lipid density. To fully predict the dynamics

of hemifusion expansion, we also need to determine the flow at the

boundaries. For this we use the integral form of the continuity equation:

@

@t

ðRB
R

2pr dr sðrÞ ¼ �
I
RB

s~vv � d~ll: (B1)

The left side of Eq. B1 describes the rate of change of the lipid number in

region B whereas the right side gives the flow of lipids through the boundary

RB. We assume cylindrical symmetry, so~vv ¼ vr r̂r. From Eqs. A1 and A3, we

obtain

vrðrÞ ¼ � 1

b
ð2m9ðsÞ1sm0ðsÞÞs @s

@r
: (B2)

We now use Eq. A5 to calculate the left side of Eq. B1:

@

@t

ðRB
R

2pr dr sðrÞ ¼ 2p
a

b
RB

@s

@r

����
RB

� R
@s

@r

����
R

 !

� 2pRsðRÞ @R
@t

: (B3)

If we take only terms linear in r, Eq. B1 gives:

@R

@t
¼ a

b

RB

2R

@r

@r

����
RB

� @r

@r

����
R

 !
: (B4)

APPENDIX C: ADIABATIC SOLUTION

Equations B4 and A5 along with the boundary conditions completely

determine the time evolution of the monolayers to first order in r. From these

equations, we can calculate R(t) and predict the temporal profile of

hemifusion expansion. We write these two equations using dimensionless

variables and scale the spatial variables so that they are of order of unity to

get an estimate of the timescales. The natural spatial scale is the final size of

the hemifusion region, RB. We thus define: x ¼ r/RB, �RR ¼ R=RB, and

�rr ¼ r=rb as well as two time variables: a ‘‘fast’’ time t ¼ at/bRB
2 at which

the local lipid flow occurs, and a ‘‘slow’’ (since rb is small) time �tt ¼ jrbjt,
which is the scale over which the hemifusion region expands. Equations. B4

and A5 become

@�rr

@t
¼ @

2
�rr

@x
2 1

1

x

@�rr

@x
; (C1)

@�RR

@�tt
¼ @�rr

@x

����
x¼�RR

� 1

2�RR

@�rr

@x

����
x¼1

: (C2)

Since all the variables that appear on the right side of Eqs. C1 and C2 are of

order unity, the units of t and �tt suggest the timescales of the processes

described by the equations. For jrbj � 1 we have t � �tt, which implies that

we can use an adiabatic approximation: the local lipid flow occurs quickly so

that the lipid density is instantaneously given by the asymptotic equilibrium

solution of Eq. C1 for t ! ‘. We then use this solution to determine the

slower time evolution of the hemifusion radius R from Eq. C2.

At asymptotically long times, both sides of Eq. C1 vanish. The adiabatic

density profile reached is

�rrðxÞ ¼ 1� logðxÞ
logð�RRÞ : (C3)
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Plugging this solution into Eq. C2, we obtain

@�RR

@�tt
¼ �1

2�RR logð�RRÞ : (C4)

The solution of this equation is implicitly given by

2�tt ¼ �RR2ð1� 2 log �RRÞ: (C5)
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