4,593 research outputs found

    Spatiotemporal Changes of China's Carbon Emissions

    Get PDF
    Spatiotemporal changes in China's carbon emissions during the 11th and 12th Five‐Year Plan periods are quantified for the first time through a reconstructed nationwide high‐resolution gridded data set. The hot spots of carbon emissions in China have expanded by 28.5% (toward the west) in the north and shrunk by 18.7% in the south; meanwhile, the emission densities in North and South China have increased by 15.7% and 49.9%, respectively. This suggests a clear transition to a more intensive economic growth model in South China as a result of the energy conservation and emission reduction policies, while the expanded carbon hot spots in North China are mainly dominated by the Grand Western Development Program. The results also show that China's carbon emissions exhibit a typical spatially intensive, high‐emission pattern, which has undergone a slight relaxation (up to 3%) from 2007 to 2012 due to a typical urbanization process

    Spatiotemporal changes in biomass after selective logging in a lowland tropical rainforest in peninsular Malaysia

    Get PDF
    We studied biomass changes in a lowland tropical rain forest in the Pasoh Forest Reserve of Peninsular Malaysia after selective logging in 1958. A tree census was undertaken every 2 years from 1998 to 2012 in a 6-ha logged forest plot. Total aboveground biomass (AGB) was 72 % of that in a primary forest plot within the same reserve in 1998, but reached 87 % in 2012. AGB regrowth was spatially variable within the logged forest plot and was much less in swampy areas than in upland areas. The overall annual growth rate of AGB in the logged forest throughout the study period was 1.5 % and slowed (to 0.6 %) in a dry period (2004-2006). The biomass of large trees (DBH ≥ 50 cm) increased by 56 % during the study period, but amounted to only 58 % of the biomass of the corresponding size class in the primary forest, suggesting that stand structure is still recovering from logging. Spatiotemporal variation in AGB recovery after logging needs to be taken into account for logging and subsequent management of the tropical lowland forest biome

    Spatiotemporal Changes Posttreatment in Peripheral Arterial Disease

    Get PDF
    Accumulating evidence suggests revascularization of peripheral arterial disease (PAD) limbs results in limited improvement in functional gait parameters, suggesting underlying locomotor system pathology. Spatial and temporal (ST) gait parameters are well studied in patients with PAD at baseline and are abnormal when compared to controls. The purpose of this study was to systematically review and critically analyze the available data on ST gait parameters before and after interventions. A full review of literature was conducted and articles were included which examined ST gait parameters before and after intervention (revascularization and exercise). Thirty-three intervention articles were identified based on 154 articles that evaluated ST gait parameters in PAD. Four articles fully assessed ST gait parameters before and after intervention and were included in our analysis. The systematic review of the literature revealed a limited number of studies assessing ST gait parameters. Of those found, results demonstrated the absence of improvement in gait parameters due to either exercise or surgical intervention.Our study demonstrates significant lack of research examining the effectiveness of treatments on ST gait parameters in patients with PAD. Based on the four published articles, ST gait parameters failed to significantly improve in patients with PAD following intervention

    Macroscopic Equations of Motion for Two Phase Flow in Porous Media

    Full text link
    The established macroscopic equations of motion for two phase immiscible displacement in porous media are known to be physically incomplete because they do not contain the surface tension and surface areas governing capillary phenomena. Therefore a more general system of macroscopic equations is derived here which incorporates the spatiotemporal variation of interfacial energies. These equations are based on the theory of mixtures in macroscopic continuum mechanics. They include wetting phenomena through surface tensions instead of the traditional use of capillary pressure functions. Relative permeabilities can be identified in this approach which exhibit a complex dependence on the state variables. A capillary pressure function can be identified in equilibrium which shows the qualitative saturation dependence known from experiment. In addition the new equations allow to describe the spatiotemporal changes of residual saturations during immiscible displacement.Comment: 15 pages, Phys. Rev. E (1998), in prin

    Inferring land use from mobile phone activity

    Full text link
    Understanding the spatiotemporal distribution of people within a city is crucial to many planning applications. Obtaining data to create required knowledge, currently involves costly survey methods. At the same time ubiquitous mobile sensors from personal GPS devices to mobile phones are collecting massive amounts of data on urban systems. The locations, communications, and activities of millions of people are recorded and stored by new information technologies. This work utilizes novel dynamic data, generated by mobile phone users, to measure spatiotemporal changes in population. In the process, we identify the relationship between land use and dynamic population over the course of a typical week. A machine learning classification algorithm is used to identify clusters of locations with similar zoned uses and mobile phone activity patterns. It is shown that the mobile phone data is capable of delivering useful information on actual land use that supplements zoning regulations.Comment: To be presented at ACM UrbComp201

    Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson’s disease

    Get PDF
    This study aimed to investigate the spatiotemporal changes in neuromelanin-sensitive MRI signal in the substantia nigra and their relation to clinical scores of disease severity in patients with early or progressing Parkinson’s disease and patients with idiopathic rapid eye movement sleep behaviour disorder (iRBD) exempt of Parkinsonian signs compared to healthy control subjects. Longitudinal T1-weighted anatomical and neuromelanin-sensitive MRI was performed in two cohorts, including patients with iRBD, patients with early or progressing Parkinson’s disease, and control subjects. Based on the aligned substantia nigra segmentations using a study-specific brain anatomical template, parametric maps of the probability of a voxel belonging to the substantia nigra were calculated for patients with various degrees of disease severity and controls. For each voxel in the substantia nigra, probability map of controls, correlations between signal-to-noise ratios on neuromelanin-sensitive MRI in patients with iRBD and Parkinson’s disease and clinical scores of motor disability, cognition and mood/behaviour were calculated. Our results showed that in patients, compared to the healthy control subjects, the volume of the substantia nigra was progressively reduced for increasing disease severity. The neuromelanin signal changes appeared to start in the posterolateral motor areas of the substantia nigra and then progressed to more medial areas of this region. The ratio between the volume of the substantia nigra in patients with Parkinson’s disease relative to the controls was best fitted by a mono-exponential decay. Based on this model, the pre-symptomatic phase of the disease started at 5.3 years before disease diagnosis, and 23.1% of the substantia nigra volume was lost at the time of diagnosis, which was in line with previous findings using post-mortem histology of the human substantia nigra and radiotracer studies of the human striatum. Voxel-wise patterns of correlation between neuromelanin-sensitive MRI signal-to-noise ratio and motor, cognitive and mood/behavioural clinical scores were localized in distinct regions of the substantia nigra. This localization reflected the functional organization of the nigrostriatal system observed in histological and electrophysiological studies in non-human primates (motor, cognitive and mood/behavioural domains). In conclusion, neuromelanin-sensitive MRI enabled us to assess voxel-wise modifications of substantia nigra’s morphology in vivo in humans, including healthy controls, patients with iRBD and patients with Parkinson’s disease, and identify their correlation with nigral function across all motor, cognitive and behavioural domains. This insight could help assess disease progression in drug trials of disease modification

    Spatiotemporal Changes in Nuclear Strain Measured by Traction Force Microscopy

    Get PDF
    The knowledge of how cells interact with and sense their surroundings is missing the key components of time dependency and how substrate stiffness affects amount and rate of strain. This new knowledge of cell-substrate interaction can be applied further to research regarding chromatin spatiotemporal dynamics to better understand gene accessibility for transcription. Studying how the cell functions on a deeper level will provide understanding of cellular morphological changes and proliferation. This study uses the methods of optical microscopy and traction force microscopy (TFM) to image substrate deformation as well as analyze its strain profile to find where forces are interacting with the substrate the most. A 60X objective on a confocal microscope was used to image the cell membrane, nucleus, and fluorescent beads in PDMS gels of varying stiffness on which the cells were placed. Based on how the nucleus deforms as well as how the beads move due to cell-substrate interaction, a strain profile of the gel along with traction force analysis can be determined to quantify how the cell is interacting with its substrate. The results are that as the cell is trypsinized after spreading along the substrate, the focal adhesions made by the cell will disconnect, causing the beads to spread out locally around the cell. It was also found that as substrate stiffness increases, the rate of cell spreading increases. From these findings, it can be concluded that the cell responds more positively in environments of higher stiffness and spreads at a faster rate

    The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson’s disease

    Get PDF
    Dopamine transporter; Iron; NeuromelaninTransportador de dopamina; Hierro; NeuromelaninaTransportador de dopamina; Ferro; NeuromelaninaIn Parkinson’s disease, there is a progressive reduction in striatal dopaminergic function, and loss of neuromelanin-containing dopaminergic neurons and increased iron deposition in the substantia nigra. We tested the hypothesis of a relationship between impairment of the dopaminergic system and changes in the iron metabolism. Based on imaging data of patients with prodromal and early clinical Parkinson’s disease, we assessed the spatiotemporal ordering of such changes and relationships in the sensorimotor, associative and limbic territories of the nigrostriatal system. Patients with Parkinson’s disease (disease duration < 4 years) or idiopathic REM sleep behaviour disorder (a prodromal form of Parkinson’s disease) and healthy controls underwent longitudinal examination (baseline and 2-year follow-up). Neuromelanin and iron sensitive MRI and dopamine transporter single-photon emission tomography were performed to assess nigrostriatal levels of neuromelanin, iron, and dopamine. For all three functional territories of the nigrostriatal system, in the clinically most and least affected hemispheres separately, the following was performed: cross-sectional and longitudinal intergroup difference analysis of striatal dopamine and iron, and nigral neuromelanin and iron; in Parkinson’s disease patients, exponential fitting analysis to assess the duration of the prodromal phase and the temporal ordering of changes in dopamine, neuromelanin or iron relative to controls; and voxel-wise correlation analysis to investigate concomitant spatial changes in dopamine-iron, dopamine-neuromelanin and neuromelanin-iron in the substantia nigra pars compacta. The temporal ordering of dopaminergic changes followed the known spatial pattern of progression involving first the sensorimotor, then the associative and limbic striatal and nigral regions. Striatal dopaminergic denervation occurred first followed by abnormal iron metabolism and finally neuromelanin changes in the substantia nigra pars compacta, which followed the same spatial and temporal gradient observed in the striatum but shifted in time. In conclusion, dopaminergic striatal dysfunction and cell loss in the substantia nigra pars compacta are interrelated with increased nigral iron content.The ICEBERG study was funded by grants from the Investissements d'Avenir, IAIHU-06 (Paris Institute of Neurosciences – IHU), ANR-11-INBS-0006, Fondation d’Entreprise EDF, Biogen Inc., Fondation Thérèse and René Planiol, Fondation Saint Michel, Unrestricted support for Research on Parkinson’s disease from Energipole (M. Mallart), M.Villain and Société Française de Médecine Esthétique (M. Legrand)

    Global assessment of spatiotemporal changes of frequency of terrestrial wind speed

    Get PDF
    Wind energy, an important component of clean energy, is highly dictated by the disposable wind speed within the working regime of wind turbines (typically between 3 and 25 m s−1 at the hub height). Following a continuous reduction ('stilling') of global annual mean surface wind speed (SWS) since the 1960s, recently, researchers have reported a 'reversal' since 2011. However, little attention has been paid to the evolution of the effective wind speed for wind turbines. Since wind speed at hub height increases with SWS through power law, we focus on the wind speed frequency variations at various ranges of SWS through hourly in-situ observations and quantify their contributions to the average SWS changes over 1981–2021. We found that during the stilling period (here 1981–2010), the strong SWS (⩾ 5.0 m s−1, the 80th of global SWS) with decreasing frequency contributed 220.37% to the continuous weakening of mean SWS. During the reversal period of SWS (here 2011–2021), slight wind (0 m s−1 < SWS < 2.9 m s−1) contributed 64.07% to a strengthening of SWS. The strengthened strong wind (⩾ 5.0 m s−1) contributed 73.38% to the trend change of SWS from decrease to increase in 2010. Based on the synthetic capacity factor series calculated by considering commercial wind turbines (General Electric GE 2.5-120 model with rated power 2.5 MW) at the locations of the meteorological stations, the frequency changes resulted in a reduction of wind power energy (−10.02 TWh yr−1, p < 0.001) from 1981 to 2010 and relatively weak recovery (2.67 TWh yr−1, p < 0.05) during 2011–2021.This study was supported by the National Natural Science Foundation of China (Grant No. 42071022), Guangdong Basic and Applied Basic Research Fund (2022A1515240070) and the start-up fund provided by Southern University of Science and Technology (no. 29/Y01296122). C A-M was supported by the IBER-STILLING (RTI2018-095749-A-I00, MCIU/AEI/FEDER,UE); VENTS (GVA-AICO/2021/023); the CSIC Interdisciplinary Thematic Platform (PTI) Clima (PTI-CLIMA); and the 2021 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation. RJHD was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and by the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. SJ was supported by the Ramon y Cajal program and the OPEN project (RYC2020-029993-I and TED2021-131074B-I00, MCIU/AEI/FEDER,UE)
    corecore