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Abstract
Wind energy, an important component of clean energy, is highly dictated by the disposable wind
speed within the working regime of wind turbines (typically between 3 and 25 m s−1 at the hub
height). Following a continuous reduction (‘stilling’) of global annual mean surface wind speed
(SWS) since the 1960s, recently, researchers have reported a ‘reversal’ since 2011. However, little
attention has been paid to the evolution of the effective wind speed for wind turbines. Since wind
speed at hub height increases with SWS through power law, we focus on the wind speed frequency
variations at various ranges of SWS through hourly in-situ observations and quantify their
contributions to the average SWS changes over 1981–2021. We found that during the stilling
period (here 1981–2010), the strong SWS (⩾ 5.0 m s−1, the 80th of global SWS) with decreasing
frequency contributed 220.37% to the continuous weakening of mean SWS. During the reversal
period of SWS (here 2011–2021), slight wind (0 m s−1 < SWS< 2.9 m s−1) contributed 64.07% to
a strengthening of SWS. The strengthened strong wind (⩾ 5.0 m s−1) contributed 73.38% to the
trend change of SWS from decrease to increase in 2010. Based on the synthetic capacity factor
series calculated by considering commercial wind turbines (General Electric GE 2.5-120 model
with rated power 2.5 MW) at the locations of the meteorological stations, the frequency changes
resulted in a reduction of wind power energy (−10.02 TWh yr−1, p< 0.001) from 1981 to 2010
and relatively weak recovery (2.67 TWh yr−1, p< 0.05) during 2011–2021.

1. Introduction

Wind energy is a key component of the energymarket
and a potential way for climatemitigation (IEA 2020).
In 2021, the global wind industry reached 94 GW
power capacity addition, mainly driven by China,
Europe and the United States (Global Wind Energy
Council 2022). Yet, the current installation rates sug-
gest that it will still be challenging to meet the 1.5 ◦C
mitigation goal (Global Wind Energy Council 2022).
To promote wind energy expansion, understanding
the efficiency of wind power generation is necessary.

Wind power generation is particularly sensitive to
changes in wind speed as wind power is proportional
to the cubic ofwind speed (McElroy et al 2009, Sohoni
et al 2016, Eurek et al 2017, Pryor et al 2020). Global
annual mean near-surface wind speed (SWS) con-
tinuously declined over the past five decades before
2010, known as the period of ‘stilling’ (Roderick et al
2007, Vautard et al 2010, McVicar et al 2012), with
a decrease rate of −0.08 m s−1 decade−1 during
1978–2010 (Zeng et al 2019). But during the past ten
years (i.e. 2011 to∼2021), such stilling phenomenon
has been replaced by a ‘reversal’, with an increasing
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annualmean SWSof 0.24m s−1 decade−1 since (Zeng
et al 2019). However, how these SWS changes govern
wind power generation is uncertain.

Average SWS changes can be insufficient for
accurately assessing the wind power generation
change relating to the stilling and reversal periods,
given that wind power generation on a global scale
depends on the effective SWS characterized by its
range, frequency, and distribution. Generally, wind
speed ranging from 3 to 25 m s−1 at the hub height is
effective in wind power generation. Specifically, light
winds may fail to rotate the turbine blades, while
strong winds force wind turbines to shut down to
prevent damage (Lydia et al 2014). Moreover, most
wind power is produced by the SWS within the upper
half of the wind speed frequency distribution (Pryor
and Barthelmie 2010), which is typically positively
skewed (Jung and Schindler et al 2019a). To quantify
the portion of effective SWS evolution affecting gen-
erating wind power generation, wind frequency must
be considered. However, previous studies assessing
wind frequency change often ignored the statistical
distribution of SWS (e.g. Vautard et al 2010, Zha
et al 2017), leading to unrealistic assessments of its
influence on wind power generation.

To fill these gaps, here we use the hourly SWS
data fromHadley Centre Integrated Surface Database
(HadISD, Dunn et al 2014, 2016) to derive global and
continental wind speed trends, to perform a compre-
hensive analysis of SWS frequency change over 1981
to 2021. SWSwas divided into nine ranges (see details
in section 2.2) to analyze the year-to-year SWS fre-
quency variations and quantify the influence of fre-
quency variations on the annual average SWS. We
also used the power law to extrapolate the SWS to the
wind speed at the hub height of a commercial wind
turbine to perform a power assessment and evaluate
the effect of SWS frequency changes on wind power
generation. Our research proposes a new method to
quantify the influence of frequency changes in aver-
age SWS changes. We revealed that the weakening of
strong wind was themain cause of global ‘stilling’ and
the slight winds are major parts of the SWS reversal.

2. Data andmethods

2.1. Dataset
We use the hourly SWS data provided by HadISD
(Dunn et al 2014, 2016), which is a subset of the
station data from the Integrated Surface Database
(ISD, Smith et al 2011). These data were subject to a
series of quality control procedures, including duplic-
ate checks, neighbor outliers and distribution gap
checks, to eliminate bad data and maintain data con-
tinuity (Dunn et al 2016). The HadISD has been
used for the annual monitoring of wind in the Bul-
letin of the America Meteorological Society State in
recent years (Dunn et al 2016) and has been widely
used in previous studies (Woolway et al 2019, Zhou

et al 2021, Millstein et al 2022). It is noteworthy that
Dunn et al (2022a) reported on erroneously missing
calm winds (SWS = 0 m s−1) in the ISD and hence
the HadISD since May 2013 for many stations out-
side of North America, which has an impact on the
magnitude of the reversal in winds occurring approx-
imately at the same time (see text S1 and figure S1
in the supplementary information for more detail,
Dunn et al 2022a). A simple correction was applied
for the HadISD in version v3.3.0.202201p and later,
which recovers many of the missing observations,
and our analyses are based on this corrected version
(v.3.3.0.202202p).

2.2. Methods
2.2.1. Homogenization and resample of SWS data
To ensure the continuity of the long-term decadal
analysis of SWS frequency, we implemented strict
selection criteria for SWS time series to use a final
subset of qualified stations. The final subset of sta-
tions is required to meet the following standards: (1)
each final station needs to have continuous monthly
records over 1981–2021; (2) each month should have
more than 15 d of records; (3) the daily values must
have at least four observations. After the data selec-
tion, the final subset of stations includes 1511 stations
in version (v3.3.0.202202p, see figure S1(c) for station
locations).

To obtain the frequency of SWS, we resampled the
time series data to address the issue that the observa-
tions have inconstant observation intervals. Accord-
ing to appendix figures S2 and S3, the observation
intervals vary from 8 h to 1 h for most stations, and
some stations have shorter observation intervals since
1990; the standard deviation of the observation inter-
vals is greater than 0.8 h for about 40% of the sta-
tions, implying variable observation intervals in one
year. Uneven observation intervals introduce biases
when counting frequencies of SWS on the annual
scale. Therefore, it becomes necessary to transform
SWS into equally time-spaced data. Here, we fill the
time gap by repeating the later value in the time gap.
The biases caused by this resampling method will
be discussed in supplementary text S2 and figures
S4 and 5.

2.2.2. Wind speed classification criteria
Cut-in and cut-out wind speeds are considered to
decide the classification criteria for categorizing the
SWS in power generation. The cut-in wind speed,
denoted as vi’, refers to the minimum wind speed
that results in the turbine to commencing rotating
and generating electricity. The cut-out wind speed,
marked as vf’, is the maximum wind speed to gen-
erate usable power. The cut-in and cut-out wind
speeds refer to the wind speed at the hub height
of the wind turbine. Here we use the parameters
of the General Electric GE 2.5-120 wind turbine
model (2.5 MW, 120 m diameter, hub height at
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Table 1. The classification criteria of SWS. The cut-in wind speed transformed from hub height (110 m) to ground (10 m) is 2.2 m s−1

and the cut-in wind speed transformed from hub height (110 m) to ground (10 m) is 17.7 m s−1. Here, square brackets denote closed
intervals, and round brackets denote open intervals. For example, the wind speed in class 3 is 2.2 m s−1 ⩽ SWS< 2.9 m s−1.

Class 1 2 3 4 5 6 7 8 9

Wind speed (m s−1) 0 (0−2.2) [2.2–2.9) [2.9–3.5) [3.5–4.1) [4.1–5.0) [5.0–6.2) [6.2–17.7) >17.7

110 m and 139 m) with vi’ of 3.0 m s−1 and vf’

of 25.0 m s−1 (https://en.wind-turbine-models.com/
turbines/310-ge-general-electric-ge-2.5-120).

The exponential wind profile power-law relation
is applied to transform vi’ and vf’ at 110mheight from
the 10mwind speed records. The power-law relation-
ship can be expressed as follows:

utb = us

(
ztb
zs

)α

(1)

where utb and us represent wind speed at height ztb
(110 m) and zs (10 m), and α is a nondimensional
parameter usually assumed to be constant 1/7, which
is broadly applicable to low surface roughness and
adopted by some studies involvingwind power assess-
ment (Islam et al 2011, Wang et al 2016, Liu et al
2019). The cut-in (vi) and cut-out (vf) wind speeds at
10 m above the ground surface transformed from the
wind profile power law are 2.2 m s−1 and 17.7 m s−1.

Thus, the classification criteria of SWS are based
on two aspects: (1) the cut-in and cut-outwind speeds
defining the range of efficient SWS used in power
generation; (2) the incrementing percentiles of SWS
among efficient SWS. The incrementing percentiles
refer to the values of 50th, 60th, 70th, 80th, and 90th
corresponding to 2.9 m s−1, 3.5 m s−1, 4.1 m s−1,
5.0 m s−1, and 6.2 m s−1. These values are obtained
by averaging values for 41 years and over global sta-
tions aiming to set a uniform standard of categoriz-
ation. At the same time, we consider zero SWS into
one separate group to verify the result of data cor-
rection (Dunn et al 2022a) and describe small wind
speeds more accurately. Then SWS data was divided
into nine ranges to show the changes in the SWS fre-
quency at different ranges (table 1). We denote SWS
in specific range i as class i (i= 1,2…9, table 1). Here,
SWS of class 3–8 is efficient wind speed.

2.2.3. Quantification of the influence of the SWS
frequency variation
To validate the categorization, we use the Pearson cor-
relation coefficient to compare the SWS from in-situ
data and weighted-average speed calculated by the
following formula:

Weightedv (t) =
9∑

i=1

ν̄ifi (t) (2)

where v̄ is the climatological mean of SWS of the
corresponding wind speed category over 41 years
(all the subscripts indicated the wind speed range),

Weightedv (t) and fi (t) are the wind speed and fre-
quency of year t accordingly.

To estimate the contribution of SWS frequency
changes of each class to the wind speed trend, we
keep the multiplication of frequency and mean SWS
in a specific class of SWS to be a constant value as
the 41 year climatology mean value, denoted as ν̄ifi,
to calculate the fixed weighted-average SWS (Fixedvi)
within class i:

Fixedvi (t) =Weightedv (t)− ν̄ifi (t)+ ν̄ifi. (3)

The difference (Diffvi) between the weighted-
average speed (Weightedv) and fixed weighted-
average SWS (Fixedvi) representing the influence of
the certain range of SWS to the weighted-average
wind speed, as shown in formula (4):

Diffvi (t) =Weightedv (t)− Fixedvi (t)

= ν̄ifi (t)− ν̄ifi. (4)

We calculate the ratio of the trend of Diffvi to the
trend of Weightedv according to the following for-
mula (5) representing the contributions of changes
of frequency in each class to the general changes of
weighted-average SWS:

∂ Weightedv
∂t

=
9∑

i=1

ν̄i
∂fi (t)

∂t
=

9∑
i=1

∂ (ν̄ifi (t)− ν̄ifi )

∂t

=
9∑

i=1

∂ Difffvi
∂t

. (5)

The trend of weighted SWS is the sum of the
trends of the nine classes of Diffvi , thus having little
chance to be close to zero as the denominator. The
trend of Diffvi is dependent on the only variable fre-
quency fi (t). In this way, for SWS at each class i, the
trend of Diffvi ends up to be a proportion of the trend
of Weightedv.

2.2.4. Wind power assessment
The theoretical power assessment of wind turbines
requires complex parameters such as air density and
turbine parameters, which introduces vast complex-
ity to set influencing parameters properly (Sohoni
et al 2016), especially when considering the global
spatial extent of our study. The power curve of
wind turbines is helpful for wind energy forecast-
ing without further technical details of wind power
operating conditions (Lydia et al 2014). It is widely
used in wind power assessment (Wang et al 2016,
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Pryor et al 2020, Millstein et al 2022). We assume the
wind turbine GE 2.5-120 was installed around each
observation site and use its power curve to derive
the wind power output under the wind regime at
observation sites.Wind turbines at higher hubheights
tend to experience better wind regimes with stronger
wind and generate more energy (Yang et al 2018). In
this research, we considered hub heights of 110 m
and 139 m to ensure that the results are compre-
hensive and convincing. Yearly wind power genera-
tion (Energy, unit: GW·h) is calculated by combining
the global wind turbine installations and the capa-
city factor based on formula (6), that is, the ratio of
wind power output (Preal, unit: MW) to rated power
(Prated = 2.5MW)multiplied by the installed capacity
(837 GW). Installed capacity data is from the Global
Wind Energy Council (2022),

Energy= Capacity× Preal
Prated

× 365× 24. (6)

3. Results and discussion

3.1. Wind speed changes
We found that global SWS in the corrected HadISD
showed a continuous decline during 1980–2010 with
a rate of −0.08 m s−1 decade−1 (p < 0.001). The
turning year was near 2010, and then SWS increased
at a rate of 0.096 m s−1 decade−1 (p < 0.001,
figure 1(a)). At the continental scale, the changes
in SWS from 1980 to around 2010 varied and
turning points marking the different SWS trends
are found in most continents except for Africa. In
North America, Europe and Asia, a turning point
marking the declining trend transferring to an
increasing trend can be identified (figures 1(b)–(d)).
The declining SWS trends in America and Europe
were close, with −0.118 m s−1 decade−1 and
−0.112 m s−1 decade−1 (both p < 0.001), respect-
ively. The slowing down of SWS was faster in Asia,
with a trend of −0.136 m s−1 decade−1 (p < 0.001).
Moreover, the turning point indicating the wind
speed reversal occurred early in 2000 in Asia, for
example, in southwestern China (Xiaomei et al 2012).
While in Europe and North America, the turning
points occurred later in 2012 and 2010, respectively.
From 2011 to 2021, the reversed increasing trends
of SWS in North America and Europe were not sig-
nificant, being respectively 0.084 m s−1 decade−1

(p > 0.05), 0.056 m s−1 decade−1 (p > 0.05), while
the trend in Asia is 0.091m s−1 decade−1 (p< 0.001).
The asymmetry between the SWS weakening trend
and the SWS reversal trend is consistent with the pre-
vious studies (Wu et al 2018, Zeng et al 2019, Deng
et al 2021, Liu et al 2022). Exploring the trends of SWS
aids in the comprehensive analysis of SWS frequency
variation.

On the other hand, SWS in SouthAmerica, Africa,
and Australia did not show the first weakening and
then reversing trend. The SWS in South America

has a nonsignificant trend before 1990 (p > 0.05),
then following a continuous increasing trend with
a rate of 0.14 m s−1 decade−1 (p < 0.05) till 2021
(figure 1(e)). Yet, neither an increase nor decrease
trend of SWS is found in Africa (p> 0.05, figure 1(f)).
The SWS in Australia first increases at a rate of
0.39 m s−1 decade−1 (p < 0.05) during 1981–1998,
then such increase slows down after 1998 with a rate
of 0.12 m s−1 decade−1 (p < 0.05, figure 1(g)). The
SWS trend from in-situ observations in the South-
ernHemisphere remains highly uncertain, whichmay
be due to the lack of enough long-term observations,
relocation of in-situ stations or changes in the obser-
vational practices (Lucas 2010, Wu et al 2018). For
instance, the increasing trend of SWS was found in
Australia based on the observations from 14 stations
during 1975–2006 (Troccoli et al 2012). Meanwhile, a
decreasing trend of SWS is found using observations
from 163 stations for the same period (McVicar et al
2008).

3.2. Frequency changes of global and regional SWS
Wind speed trends are closely associated with fre-
quency. We found that the wind speed distribution
had changed during the past decades (figure 2(a)),
implying the frequency change at different SWS cat-
egories. Notably, 90th SWS has been decreased from
6.6 m s−1 to 6.2 m s−1 from 1982 to 2021, indic-
ating that the SWS frequency tends to increase and
centralize in relatively small winds from 1 to 3 m s−1

(figure 2(a)). Moreover, the peak of the wind speed
distribution shifts towards smaller values as time
passes (figure 2(a)), implying an increase in the skew-
ness in SWS frequency. A similar increase of skewness
and kurtosis of SWS distribution was found during
2006–2019, as was predicted in 2020–2099 under the
representative concentration pathway RCP8.5 (Jung
and Schindler 2019a).

After the SWS resampling, resampled SWS was
divided into nine ranges based on the positive-skewed
wind speed distribution and contribution to wind
energy generation (see section 2.2). To validate the
categorization of SWS, theweighted-average SWS cal-
culated from formula (2) was compared with the
observed mean SWS after resampling (figure 2(b)).
The Pearson correlation coefficient of weighted-
average SWS and the observed average was 0.998
(p < 0.01; figure S7), implying that the classifica-
tion criteria of SWS categorizationwere rather satisfy-
ing. Notice, however, that there was a slight deviation
between the weighted-average SWS and the observed
SWS. This was because we used the climatological
mean value of SWS to multiply the changing fre-
quency when calculating weighted-average SWS.

The change in SWS frequency during the past
decades is shown in figure 3. Calm wind frequency
decreased (−2.61% decade−1, p< 0.001) for the past
41 years (figure 3(a)). An increase with a rate of 3.47%
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Figure 1. Decadal variation of global and continental mean SWS. (a) Global mean SWS trend during 1981–2021 (black dots and
line). The red line is the piecewise linear regression (p< 0.005). The grey lines (n= 400) are the mean value of SWS of a
randomly selection (40%) from global stations. The turning point of SWS is statistically indicated in 2011 in piecewise linear
regression model. (b)–(g) Continental mean SWS trend during 1981–2021, being North America, Europe, Asia, South America,
Africa, Australia, respectively. The regions were defined based on the administrative division. The red lines are piecewise linear
regression in (b)–(e), (g) and simple linear regression in (e)–(g). The red line in (f) is simple linear regression since the p> 0.05
in piecewise linear regression fit for the average SWS in Africa. The legend in (a) applies to all other sub-parts.

decade−1 (p < 0.001) was found in class 2 (0.1–
2.1 m s−1) wind frequency (figure 4(b)). However,
the class 2 wind was smaller than the cut-in wind
speed and thus did not contribute to the wind power
generation. The frequency of class 9 (> 17.7 m s−1)
wind was so small that the decrease rate was only
−0.01% decade−1 (p < 0.001). Up to 60% of wind
speed records fall in class 3–8 that can be used for
wind power generation (figures 3(c)–(h)). Among
them, SWS frequency at class 3 and class 5 increased at
a rate of 0.18% decade−1 and 0.37% decade−1 (both
p< 0.001, figures 3(c) and (e)), while SWS frequency
at class 7 and class 8 decreased at a rate of −0.71%
decade−1 and −0.68% decade−1 (both p < 0.001,
figures 3(g) and (h)). increase in wind speed fre-
quency mainly occurred for relatively low winds, we
suggest that the reversal of global SWS was attributed
to the decreasing frequency of calm winds and the
increasing frequency of light winds. However, light
winds are generally smaller than vi (2.2 m s−1), which
has a limited effect on promoting wind power gener-
ation (Pryor and Barthelmie 2010).

The decreasing frequency of relatively strong
wind is noteworthy because a majority of wind
power generation depends on the strong SWS (Tian
et al 2019). To quantify the influence of the chan-
ging SWS frequency on wind speed trend, we
combined the frequency with climatological mean
SWS at each class. Regarding a significant turn-
ing point around 2010, the trend of Diffv is ana-
lyzed separately in 1981–2010 and 2011–2021. Dur-
ing 1981–2010, a substantial change is found in
class 2, class 7, and class 8 (figure 4(a)). The Diffv
at class 2 had significantly increased at a rate of
5.82%m s−1 decade−1 (p< 0.001), meaning that the
increase in class 2 wind contributes 99.94% to off-
set part of the global wind stilling trend (figure 4(b),
table 2). Nevertheless, the Diffv at class 7 and
class 8 decreased by −4.90% m s−1 decade−1 and
−6.85% m s−1 decade−1 (p < 0.001), respectively,
meaning that the decrease in class 7 and class 8 winds
contributed 89.00% and 124.52% to the wind stilling
(figure 4(b), table 2). After 2011, almost SWS in
all classes has positive contribution to wind speed
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Figure 2. Distribution change of SWS frequency and comparision between observed mean SWS, mean SWS after resampling,
weighted-average SWS. (a) The density plot is based on the observations of all stations in each year. The line plot for each year is
derived from the kernel density estimation with band width of 3.4 with default ‘Gaussian’ smoothing kernel. The lines correspond
to the frequency which is also shaded in green and pink for visualization. The SWS large than 15 m s−1 are not shown in the graph
because it is too rare. (b) Black line with solid dots represents observed global mean SWS changes, grey line represents mean SWS
after resampling the time series to a refined 1 h timestamp from observed data and brown line represents weighted-average SWS.

reversal, but the contribution of slight wind (class 2–
3) are larger, accounting for 33.17%, 30.90% respect-
ively for class 2, 3. Since the strong winds of class
7 and class 8 had an apparent trend change from
−11.50% m s−1 yr−1 (p < 0.001, 1981–2010) to an
increased rate of 3.00%m s−1 yr−1 (p< 0.001, 2011–
2020), they had the largest contribution (i.e. 73.38%)
to the trend changes of average SWS from stilling state
to reversal state. The substantial decrease of strong

winds during 1981–2010 and slight increasewith fluc-
tuation during 2011–2021 concords with the results
of Dunn et al (2022b). Here, the Diffv in figure 4(a) is
always zero because class 1 only contains calm wind,
though the frequency of calms does show variations.

Regionally, the calm wind frequency in Asia
and South America decreased from over 25% to
below 10% from 1990 to 2010 (figure 5(a)). The
decrease was smaller for Africa, Australia and Europe
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Figure 4. The change of the difference (Diffv) between weighted-average SWS (Weightedv) and fixed weighted-average SWS
(Fixedv). (a) The trend of Diffv in the nine wind speed classes. (b) Rate of deviations (Diffv) during 1981–2010 and 2011–2021.
Positive (negative) values indicate the specific classes of fixed weighted-average SWS increases (decreases). The star represents that
the trend is significant with p value< 0.05. The symbol ‘n.s.’ means the trend is not significant. Error bars show the standard
error of the slope in simple linear regression.

Table 2. The rate of Diffv and the contribution to weighted-average SWS changes. The rate of Diffv is calculated before 2010 (i.e.
1980–2010) and after 2011 (i.e. 2011–2021) for each wind speed class. The trend of Diffv at class 1 is not shown due to that class 1 only
contains SWS= 0 m s−1, resulting in Diffv is always zero though the frequency of calm wind changes.

Trend of Diffv before
2011 (m s−1 decade−1)

Contribution
percentage

Trend of Diffv after
2011 (m s−1decade−1)

Contribution
percentage

Class 2 5.82% −99.94% 3.88% 33.17%
Class 3 −0.43% 7.89% 3.61% 30.90%
Class 4 0.31% −5.67% −0.71% −5.95%
Class 5 1.36% −24.78% 1.32% 11.00%
Class 6 −0.75% 13.72% 1.80% 15.00%
Class 7 −4.90% 89.00% 0.89% 7.44%
Class 8 −6.85% 124.52% 0.97% 8.08%
Class 9 −0.38% 6.85% −0.13% −1.10%

(figure 5(a)). Calm wind frequency did not show a
noticeable change in North America, instead hav-
ing significant interannual variations. In Asia, most
winds were found to be the light wind of class
2, and the frequency of class 2 wind reached over
50% in 2005–2021 (figure 5(b)). South America and

Europe has the largest increment in the frequency
of moderate wind (class 3–6), which increased form
29.48% and 29.44% in 1981 to 41.46% and 42.37% in
2021 (figures 5 (c)–(f)). The frequency of moderate
wind has no apparent change in North America and
Europe for 41 years. Australia is an exception for
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Figure 6. Power curve of wind turbine and changes of global average wind power potential. (a) Assume wind turbine GE 2.5-110
was installed at every in-situ station to derive wind power output under specific wind regime of station. (b) Power curve of wind
turbine GE 2.5-110. (c) Global wind power potential is denoted by block point. The grey lines (n= 400) are the mean value of
SWS of a randomly selection (40%) from global stations. The turning point in piecewise linear regression model of wind power
also happened in 2011 (R2 = 94%, p< 0.001). The trend before and after turning point of wind power are shown in the inset,
where the increase trend after turning point is at incredibly low rate. Mean SWS shown by brown line is in a comparison with the
increase rate of the average power.

the observed increasing frequency of strong wind at
classes 6–8, yet this is obtained by only 26 stations
(figures 5(f)–(h)). As for the class 9 wind frequency,
a consistent decrease is found in nearly all continents
(figure 5(i)). This rapid decrease in strong wind con-
cords with a series of earlier regional studies conduc-
ted in America (Pryor et al 2007, 2009), China (Guo
et al 2011, Zha et al 2017), Central Asia (Dunn et al
2022b), the United Kingdom (Earl et al 2013) and
Spain and Portugal (Azorin-Molina et al 2016).

3.3. Effect of wind speed frequency change on wind
power potential
To understand the role of continuously decreasing
strong winds in wind energy generation, we made
an effort to quantify the above results in terms of
wind power generation potential both at global and
continental scales without considering the influence
of technological improvement. Based on global wind
power capacity in 2021 (837 GW) and the power
curve of wind turbine GE 2.5-120 at 110 m hub
height, the wind energy was estimated to have a
continued decline with a rate of −10.02 TWh yr−1

(p < 0.001) during 1981–2010, and then a reversal
with a rate of 2.67 TWh yr−1 (p < 0.05) during
2011–2021 (figure 6(c)). Wind energy was gener-
ally larger than 100 TWh when the hub height was
139 m, with decreasing trend of 10.36 TWh yr−1

(p < 0.001) during 1981–2010 and an increasing

trend of 2.95 TWh yr−1 (p < 0.05) during 2011–
2021 (appendix figure S8), which suggested that hub
height has a little impact on trend changes of wind
energy. The wind energymentioned below is all based
on hub height = 110 m. Compared to the reversal
trend of SWS, the recovery of wind power is much
slighter. Re-analysis data also report no noticeable
changes in mean annual global wind energy genera-
tion (Jung et al 2019b). Wind power’s reversal trend
is relatively weak due to the decline in strong wind
frequency.

The wind power changes are quite different from
the trend of SWS in Asia and Africa. After a sub-
stantial decrease trend (−6.29 TWh yr−1, p < 0.05),
the wind power was still decrease (−0.79 TWh yr−1,
p < 0.05) after the turning year of SWS in Asia,
since the rebound of SWS mainly driven by the
small wind at class 2 (figure 5(b)). Wind power in
Africa also decreased in the past decade with a rate
of −0.001 TWh yr−1 (p < 0.05, figure 7(e)). Tian
et al (2019) also reported a decline in wind power
potential in half of the stations in Africa. For other
continents, the decreasing rates of wind power in
America and Europe were −2.06 TWh yr−1 and
−3.31 TWh yr−1 (p < 0.001) before turning years of
SWS. After the turning years, the increasing rates were
only 0.86 TWh yr−1 and 0.76 TWh yr−1. Studies have
also shown a slow increase in average wind energy
in the United States over the last decades (Jung et al
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2019b). Australia and South America still maintained
increasing trends of wind power during 1981–2021,
both with comparable rates of 0.11 TWh yr−1 after
the turning years (figures 7(d) and (f)). Overall, the
increase in wind power after the turning point of SWS
was not as strong as the reversal of SWS in the recent
decade for the reason that the weakening of strong
winds hinders the upward trajectory of the global
wind energy industry.

Other factors may affect our analysis of wind
power assessment. The atmospheric stability and
topography (e.g. mountainous and coastal regions)
can affect wind power generation by shaping themain
parameter α in the power law (Pryor et al 2020,
Pacheco de Sá Sarmiento et al 2022), while we assume
a constant and homogenousα in calculation. In addi-
tion, the wake effect in wind farms can also be an
important factor. It has been suggested that the wake
effect cause an average energy loss of around 5.8%
in downwind wind farms (Wang et al 2022a, 2022b).
Given our estimation does not consider the wake
effects, thus our wind energy analysis may overestim-
ate the global power potential. Although there are still
uncertainties, this study offers a broad andworldwide
estimate; meanwhile, more detailed regional assess-
ments of wind energy help quantify the impact of
continuing strong wind declines and benefit invest-
ment decisions.

4. Conclusion

We conducted a global spatiotemporal analysis on the
variation of SWS trend and SWS frequency in recent
decades (i.e. 1981–2021) and evaluated its impact on
wind power generation. Analysis of wind speed fre-
quencies emphasized that the decrease of strong wind
frequency (SWS > 5.0 m s−1) is a dominant cause of
wind stilling with a contribution of 215.96%. After
the turning year of 2010, the continuous increase
of the light wind (0.1 m s−1 < SWS < 2.9 m s−1)
accompanying the decreasing calm wind mainly con-
tributes 63.65% to wind speed reversal. Notably, the
continuous increase in the frequency of light wind
made a negligible contribution to wind power gen-
eration. Therefore, the rise in wind power poten-
tial was not as optimistic as subjectively estim-
ated based on the reversal trend of average SWS.
Global mean annual wind power potential only
showed a slight increase at a rate of 2.67 TWh yr−1

(p< 0.05) from 2011 to 2021 (the 1981–2010 rate was
−10.02 TWh yr−1, p < 0.001) compared to the sub-
stantial reversal of mean SWS at 0.09 m s−1 decade−1

(p < 0.001) over 2011–2021 (the 1981–2010 rate is
−0.08 m s−1 decade−1, p< 0.001) of mean SWS.

Several issues deserve further research: firstly, syn-
optic phenomena like wind gusts (e.g. 3 s maximum
wind speed) are not included in our results and
discussions as the dataset used do not have the

higher temporal resolution needed for their study.
Secondly, the cause(s) of the continuously decreas-
ing strong wind is yet to be fully explored and
understood. Finally, finer-scale regional assessments
of wind energy can help supplement the uncertain-
ties associated with large-scale assessments, taking
into account the effects of atmospheric stability and
topography.
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