205 research outputs found

    High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring

    Get PDF
    Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30–40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation

    Low-resource synchronous coincidence processor for positron emission tomography

    Get PDF
    We developed a new FPGA-based method for coincidence detection in positronemissiontomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs

    Thoroughly analyzing the use of ring oscillators for on-chip hardware trojan detection

    Get PDF
    International audienceWith the globalization of the IC design flow, structural integrity verification to detect parasitic electrical activities has emerged as an important research domain for testing the genuineness of an Integrated Circuit (IC). Sensors like Ring Oscil-lators (RO) have been proposed to precisely monitor the internal behaviour of the ICs. In this paper we propose an experimental analysis of the impact of parasitic electrical activities on the frequencies of ROs and on the internal supply voltages measured. Our observations lead us to identify the limits of the usability of ROs for practical and embedded detection of Hardware Trojans

    Image Enhancement using Hardware co-simulation for Biomedical Applications

    Get PDF
    Digital image enhancement techniques are to improving the visual quality of images. Main objective of image enhancement is to process an image so that result is more suitable than original image for specific application. Image is one of the most fundamental and significant features. The correctness and reliability of its results affect directly the comprehension machine system made for objective world. The implementation of image enhancement algorithms on a field programmable gate array (FPGA) is having advantage of using large memory and embedded multipliers. FPGAs are providing a platform for processing real time algorithms on application-specific hardware with substantially higher performance than programmable digital signal processors (DSPs). This project focus on implementation issues of image enhancement algorithms like brightness control, contrast stretching, negative transformation, thresholding, filtering techniques on FPGA that have become a competitive alternative for high performance digital signal processing applications. This project will use System Generator tool and modular construction methods to build a image algorithm platform in MATLAB. By a brief analysis about display image and resource consumption after achieving on Spartan-3E development board, we can see the image using System Generator for FPGA algorithm design superiority, have the vast application prospects. DOI: 10.17762/ijritcc2321-8169.15029

    IMPLEMENTATION OF NEURAL - CRYPTOGRAPHIC SYSTEM USING FPGA

    Get PDF
    Modern cryptography techniques are virtually unbreakable. As the Internet and other forms of electronic communication become more prevalent, electronic security is becoming increasingly important. Cryptography is used to protect e-mail messages, credit card information, and corporate data. The design of the cryptography system is a conventional cryptography that uses one key for encryption and decryption process. The chosen cryptography algorithm is stream cipher algorithm that encrypt one bit at a time. The central problem in the stream-cipher cryptography is the difficulty of generating a long unpredictable sequence of binary signals from short and random key. Pseudo random number generators (PRNG) have been widely used to construct this key sequence. The pseudo random number generator was designed using the Artificial Neural Networks (ANN). The Artificial Neural Networks (ANN) providing the required nonlinearity properties that increases the randomness statistical properties of the pseudo random generator. The learning algorithm of this neural network is backpropagation learning algorithm. The learning process was done by software program in Matlab (software implementation) to get the efficient weights. Then, the learned neural network was implemented using field programmable gate array (FPGA)
    corecore