
Journal of Engineering Science and Technology
Vol. 6, No. 4 (2011) 411 - 428
© School of Engineering, Taylor’s University

411

IMPLEMENTATION OF NEURAL - CRYPTOGRAPHIC
SYSTEM USING FPGA

KARAM M. Z. OTHMAN
1
, MOHAMMED H. AL JAMMAS

2,
*

1College of Computer Engineering and Science, Gulf University, Bahrain
2Computer Engineering and Information Department,

Electronics Engineering College, Mosul University, Iraq

*Corresponding Author: dr_mohammed_al_jammas@yahoo.com

Abstract

Modern cryptography techniques are virtually unbreakable. As the Internet and

other forms of electronic communication become more prevalent, electronic

security is becoming increasingly important. Cryptography is used to protect e-

mail messages, credit card information, and corporate data. The design of the

cryptography system is a conventional cryptography that uses one key for

encryption and decryption process. The chosen cryptography algorithm is

stream cipher algorithm that encrypt one bit at a time. The central problem in

the stream-cipher cryptography is the difficulty of generating a long

unpredictable sequence of binary signals from short and random key. Pseudo

random number generators (PRNG) have been widely used to construct this key

sequence. The pseudo random number generator was designed using the

Artificial Neural Networks (ANN). The Artificial Neural Networks (ANN)

providing the required nonlinearity properties that increases the randomness

statistical properties of the pseudo random generator. The learning algorithm of

this neural network is backpropagation learning algorithm. The learning process

was done by software program in Matlab (software implementation) to get the

efficient weights. Then, the learned neural network was implemented using

field programmable gate array (FPGA).

Keywords: Cryptography, Random number generator, Artificial neural

 network, FPGA.

1. Introduction

Cryptography is the science of securing data using mathematics to encrypt and

decrypt data. It enables to store sensitive information or to transmits it across

insecure networks (like the Internet), so that it cannot be read by anyone except the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/27035164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

412 K. M. Z. Othman and M. H. Al Jammas

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

Nomenclatures

bbk Bias of the output neuron k

bj Bias of the hidden neuron j

d Factor of shifting in bits between the sequence

f Activation function

f' Derivative of the activation function

I Initial value of the sequence

k Number of blocks

m Length of the block

Nh Number of hidden nodes

Np Number of input pattern

n0 Number of occurrence of 0’s in the N-bit sequence

n00 Number of occurrence of 00’s in the N-bit sequence

n01 Number of occurrence of 01’s in the N-bit sequence

n1 Number of occurrence of 1’s in the N-bit sequence

n10 Number of occurrence of 10’s in the N-bit sequence

n11 Number of occurrence of 11’s in the N-bit sequence

Q Equation that generate long sequence

tk Target output neuron k

vjk Weight between the hidden neuron j and the output neuron k

wij Weight between input neuron i and hidden neuron j

xi Input signal of the input neuron i

y Output of the neural-PRNG

yin Summation result of output node

yk Actual output of the neuron k

zj Actual output of the hidden neuron j

Greek Symbols

α

δj

Learning rate

Backpropagation error between the hidden and input layers

δk Backpropagation error between the output and hidden layers

χ
2 Distribution value of statistical test

⊕ XOR operator

Abbreviations

ANN Artificial neural networks

CLB Configurable logic block

CPS Connections per second

DES Data encryption standard

EDA Electronic design automation

FPGA Field programmable gate array

MCPS Mega of connections per second

MSB Most significant bit

PRNG Pseudo random number generator

RTL Register transfer logic

the intended recipient. A cryptographic algorithm, or cipher, is a mathematical function

used in the encryption and decryption process. A cryptographic algorithm works in

combination with a key. A key is used by a cipher as an input that controls the

Implementation of Neural-Cryptographic System using FPGA 413

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

encryption in a desirable manner. The same plaintext encrypts to different cipher text

with different keys. The security of encrypted data is entirely dependent on two things:

the strength of the cryptographic algorithm and the secrecy of the key [1]. Cryptography

found its way into many applications such as e-mail verification, identity authentication,

and copyright protection. At a lower level, cryptography is used to provide security for

packet cables, embedded system and many more. Owing to its wide use, it is therefore

desirable to design and implement efficient cryptographic systems that are robust in

various platforms. Many factors are taken into consideration when gauging efficiency,

these includes gate count for hardware design, memory requirements in software

implementation and cross platform performance.

2. Cryptographic Systems

A cryptographic system is a method of hiding data so that only certain people can

view it. Cryptography is the practice of creating and using cryptographic systems.

The original data is called plaintext. The protected data is called ciphertext.

Encryption is a procedure to convert plaintext into ciphertext. Decryption is a

procedure to convert ciphertext into plaintext. The Cryptography can be used to

provide confidentiality, data integrity, and authentication [2].

There are two basic types of cryptographic systems: conventional cryptography

and public key cryptography. In conventional cryptography, also called secret-key or

symmetric-key encryption, one key is used both for encryption and decryption. The

Data Encryption Standard (DES) is an example of a conventional cryptosystem that is

widely employed by the Federal Government. The second type is a Public key

cryptography (introduced by Martin Hellman in 1975) is an asymmetric scheme that

uses a pair of keys for encryption a public key, which encrypts data, and a

corresponding private, or secret key for decryption. The public key cryptography was

used by the British secret service in military secret [3]. A cryptographic system

typically consists of algorithms and keys. There are two types of Cryptography

Systems: Block Cipher System and Stream Cipher System. In this research, the design

of the cryptographic system is the stream cipher system.

Stream ciphers play an especially important role in cryptographic applications

that protracts communication in very high frequency domain. The Stream cipher

process data one bit at a time. The bit size of the stream cipher is typically one bit

or byte. The key size is longer or equal to the message size. They are used in

applications where plaintext comes in quantities of unknown length [3]. In stream

cipher, the key is fed into an algorithm called the pseudo random number

generator to create a long sequence of binary signals. This “key-stream“ is then

mixed with the plaintext sequence, usually by XOR operation, to produce the

cipher text. Figure 1 shows the stream cipher cryptography process.

Fig. 1. Stream Cipher Cryptography Process.

414 K. M. Z. Othman and M. H. Al Jammas

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

3. Pseudo Random Number Generator (PRNG)

A pseudo random number generator (PRNG) is an algorithm for generating a

sequence of numbers that approximates the properties of random numbers. The

security of most cryptographic algorithms and protocols using PRNGs is based on

the assumption that it is infeasible to distinguish use of a suitable PRNG from a

random sequence. The simplest examples of this dependency are stream ciphers,

which (most often) work by XOR the plaintext of a message with the output of a

PRNG, producing ciphertext. Pseudo-random number generators play an

important role in the use of encryption various network security applications. A

sequence generator is pseudo-random if its have the following properties [4]:

• It looks random. This means that it passes all the statistical test

of randomness.

• It is unpredictable. It must be computationally infeasible to predict what

the next random bit will be, given complete knowledge of the algorithm

or hardware generating the sequence and the entire previous bit in the

stream. The output of a generator satisfying these properties will be good

pseudo-random key generation, and any other cryptographic applications

that required a truly random number generator.

4. The Statistical Tests

The statistical randomness tests which are usually used in checking the

randomness properties of the PRNG. Some complexity measure can be applied to

binary sequence to test if this sequence appears to be random sequences or not

and that explained in appendix A. The basic statistical tests are: Frequency test,

serial test, poker test and autocorrelation test [5, 6].

5. Artificial Neural Network

A neural network is an interconnected net of individual neurons. Each neuron is

equipped with a specific function which is then used to evaluate the data coming

in to it. The data coming into the neuron can either be a specific input, or an

output from another neuron. Most types of neural network have multi-layer: an

input layer through which data is given to the network, an output layer that holds

the response relative to the input, and optional layer between the input and output

layer called hidden layer where learning takes place. The number of the neuron in

the input and output layers can be determined by the number of input and output

variables in the physical system. The number of hidden layers and the number of

neurons in this layer are arbitrary and can vary according to the application [7].

Neural network has the possibility of learning. The process of determining the

weights by which the best match between the desired output and the artificial

neural network output is called training process. Training will be most effective if

the training data is spread throughout the input space. Learning algorithms are

classified into supervised learning process and unsupervised learning process.

Supervised learning is the learning with a "teacher" in the form of a function that

provides continuous feedback on the quality of solutions. These tasks include

pattern classification, function approximation and speech recognition, etc.

Unsupervised learning refers to the learning with old knowledge as the prediction

Implementation of Neural-Cryptographic System using FPGA 415

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

reference. These tasks include estimation problem, clustering, compression or

filtering [8]. In this work, the architecture of the neural network is the

backpropagation neural network and the learning algorithm is back propagation

learning algorithm (see Appendix B) [8] (i.e., supervised training process).

The aspiration to build intelligent systems complemented with the advances in

high speed computing has proved through simulation the capability of artificial

neural networks (ANN) to map, model and classify nonlinear systems. The

learning capability of the network has opened its application to various fields of

engineering, science, economics, etc. Neural networks can be implemented using

analog or digital systems. The digital implementation is more popular as it has the

advantage of higher accuracy, better repeatability, lower noise sensitivity, better

testability, higher flexibility, and compatibility with other types of preprocessors.

The digital NN hardware implementations are based on FPGA (field

programmable gate array) [9].

FPGA is a suitable hardware for neural network implementation as it

preserves the parallel architecture of the neurons in a layer and offers flexibility in

reconfiguration. FPGA-based reconfigurable computing architectures are well

suited to implement ANNs as one can exploit concurrency and rapidly

reconfigure to adapt the weights and topologies of an ANN [10].

6. The Artificial Neural Network Based Stream Cipher

The stream cipher cryptography need to a long unpredictable sequence of binary

signals called key that used for encryption process. The Pseudo random number

generators have been widely used to construct this key sequence that shown in

Fig. 1. Today a common secret key based on number theory could be created over

a public channel accessible to any opponent but it might not be possible to

calculate the discrete logarithm of sufficiently large numbers. DES, 3DES, and

Rivest, Shamir and Adleman (RSA) are the well-known and the mostly used

(preferred) encryption and decryption systems. In general the cost of these

systems is high and it requires more time for computation and applications.

Artificial neural networks (ANNs) have been applied to solve many problems:

Learning, generalization, less data requirement, fast computation, ease of

implementation, and software and hardware availability features have made

ANNs very attractive for the applications [11].

7. Software Implementation of Neuro-crypto System

As mentioned, the stream cipher is a symmetric cipher in which the plaintext

digits are ciphered one at a time, and the transformation of successive digits

varies during the ciphering algorithm. If these variations are based on a nonlinear

function, the encryption algorithm becomes strongly unbreakable. Building an

efficient pseudo random number generator (PRNG) that possesses randomness

properties will lead to have a stream cipher algorithm with random keys.

The designing PRNG use the nonlinear characteristics of neural network.

MATLAB computer simulation test has been carried to learn the neural network

PRNG using backpropagation learning algorithm and check the randomness of

416 K. M. Z. Othman and M. H. Al Jammas

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

the Neural PRNG sequence generator through the statistical tests. Moreover, this

simulation is also important in finding the minimum ANN architecture since

minimum FPGA hardware is an important task of this work.

8. The Proposed Neural PRNG

The proposed neural pseudo random number generator consists of two stages.

The first stage is generating a long sequence of patterns from perfect equation

and initial value. So these patterns possess the randomness and unpredictable

properties. The total number of equations and initial values depend on the number

of bits that represent the initial value. For example, if the initial value is

represented in 10 bits (N=10), the total number of possible equations is

1023=2
10

-1 and the total number of patterns is 1023 patterns. The following

algorithm describes the generation of patterns from any equation:

1- Select the initial value (I) of 1
st
 pattern from 1 to 1023.

2- Select an equation (Q) from 1 to 1023 and convert the number of equations

to binary code.

3- Determine the locations of 1’s from the binary code of the equation.

4- Make an XOR operation of the initial value between the locations selected

from step 3.

5- The result of XOR operation is the most significant bit (MSB) of the pattern.

6- Find the new pattern from the following

New pattern= shift right the old pattern by the MSB

7- For the next step, the new pattern = the initial value.

Repeat from step 4 to step 7.

The algorithm above was applied to all possible values and equations to

determine the efficient equations that used to generate long random patterns.

Figure 2 shows the generating random patterns for the neural-PRNG.

Fig. 2. Generating Input Patterns for the Neural-PRNG.

The second stage is an artificial neural network (ANN) that gets the outputs

of the previous stage and set it as input to the NN. The generation process of the

key using backpropagation neural network [8] consists of three phases. The first

phase is the feedforward, the second phase is a backpropagation of the associated

error and the third phase is related with weights adjustments. The proposed ANN

for PN sequence generator is a (Np: Nh: 1) backpropagation network with initial

Implementation of Neural-Cryptographic System using FPGA 417

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

weight randomly set where Np is the number of input patterns and Nh is the

number of the hidden nodes. Each input neuron delivered a binary bit randomly

generated. The target is "1" if the net input MSB (the bit of node number Np) is

"1”, otherwise the target is "0''. NN output is compared with the target and the

error is backpropagated to update the weights. The output is entered a binary step

function to produce the first bit of key stream.

To enter 2nd pattern, the bits (1,4,5,6,7,8,9,10) of the previous pattern are

XOR-ing to generate the MSB of the 2nd NN input with shifting other bits

upwards so that: (MSB)old pattern = (MSB-1)new pattern

This process is repeated until the required key length which is equal to the

number of inputs (Np) is obtained. Figure 3 shows the Neural PRNG structure.

Fig. 3. Neural PRNG Structure.

The randomness of the generated key from the backpropagation neural

network can be justified using statistical tests. If the justification passes, the key

can be used for data encryption.

9. Matlab Results

The matlab results contain two states. The first state is the training process that shows

the efficient weights and learning the neural network using back-propagation learning

algorithm. The second state is the key generation process that used in the encryption

process, then check this key if it passes the statistical tests or not.

9.1. Training process

Neural- PRNG would be designed for a key length of 1024 bits. Several attempts

had been performed to reach to a minimum architecture with input nodes equal 8.

It was found that Nh=1 is quite sufficient to have the required Neural-PRNG.

Since it is required to implement such designed Neural-PRNG generator in an

FPGA environment, it is important to have minimum hardware (minimizing the

architecture). Therefore, a backpropagation learning algorithm is simulated in

MATLAB using a binary data representation until minimum mismatch cases

between the output and the target patterns are reached (error =0). Then, the

obtained weights are saved and they are very important to design a hardware

leaned neural network. Figure 4(a) represents a Neural-PRNG of [8:8:1] NN that

is learned to obtain efficient weights. It runs for 23 epochs to get complete

418 K. M. Z. Othman and M. H. Al Jammas

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

matching between the output and the target patterns (zero mismatch cases).

Figures 4(b) and 4(c) show the training process of [8:2:1] and [8:1:1] neural

network that are run for (28 and 72) respectively to get complete matching

between the output and the target patterns (error=0).

 (a) (b)

(c)

Fig. 4. The learning Process of

(a) ANN [8:8:1], (b) ANN [8:2:1], (c) ANN [8:1:1].

In the training process, the elapsed time to get the efficient weights in the

training process of [8:1:1] neural network is longer than the elapsed time of the

training process in [8:8:1] and [8:2:1] neural networks. Choosing the [8:1:1]

neural network architecture in the design of the pseudo random number generator

is came from the following reasons:

• The elapse time of training process is not important because this work

deals with the learning-off chip process (Designing leaned neural network).

• In the hardware implementation, the [8:1:1] NN decreased the hardware

recourses like multipliers (for each neuron) and memory (to store the

efficient weights) that is limited in FPGA card.

9.2. Key generation process

When the neural network was learned and the weights were saved, the next stage is

the key generation process. In this process, the weights are very important to run the

neural network and generate random binary keys. The representation of the weights

has two ways: the floating- point representation and the integer representation.

Implementation of Neural-Cryptographic System using FPGA 419

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

9.2.1. Floating point representation

The weights that resultant from the learned neural network are represented using

the floating point representation. This type of representation is a favourite in

software because it has precision that is always maintained with a wide dynamic

range. Then, the trained neural network was applied with saving the efficient

weights in order to generate randomness binary keys that used in the encryption

process. The generated random keys must be checked to ensure that the binary

keys have high randomness properties. The disadvantage of the floating point

representation is the floating point takes up almost three times the hardware

resources of integer representation. Consequently, the efficient weights are

represented using the integer representation to get minimum hardware resources

and efficient implementation of the design [10, 12].

9.2.2. Integer representation

The integer representation has less precision than the floating point

representation. The learned neural network was applied with fixing the efficient

weights in order to generate randomness binary keys. And the statistical tests are

applied to check the randomness of these keys.

10. Field Programmable Gate Array (FPGA)

A Field Programmable Gate Array (FPGA) is completely reconfigurable logic

chip. This logic chip consists of millions of configurable logic block (CLB) which

can be linked together to form complex digital logic implementation. The

individual units are interconnected by a matrix of wires and programmable

switches. A user’s design is implemented specifying the simple logic function for

each logic block and selectively closing the switches in the interconnected matrix

[13]. A typical computer aided design (CAD) for an FPGA would include

software for certain tasks like the behavioral design, functional simulation,

verification, placing and routing. Using Xilinx ISE for simulation environment

and VHDL (VHSIC Hardware Description Language) also provides a consistent

and portable design instrument pointing FPGAs [14].

• The advantages of FPGA over a microprocessor chip for neural computing

can be listed as in [10]:

• Developing hardware systems using design tools for FPGA is as easy as

developing a software system.

• FPGA can be reprogrammed on the field.

• The new FPGA support hardware that required more than one million gates.

• A custom circuit built on an FPGA operates faster than microprocessor chip.

These advantages make FPGA now viable alternatives to other technology

implementations for high speed neural applications.

11. FPGA Design Flow

The design flow broadly refers to the sequence of activities encompassing various

design tools that begin with some abstract specification of a design and ends with

a configured FPGA [14]. The design flow was described in Fig. 5.

420 K. M. Z. Othman and M. H. Al Jammas

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

The core generation utilities are divided in three categories: HDL editor,

machine editor and schematic capture. Number of EDA (Electronic Design

Automation) tools provides these functionalities, such as Xilinx ISE and ModelSim.

In VHDL environment, behavioural design and synthesis are necessary and help to

check the correctness and logicality of the program. After functional simulation, the

verification and place and routing are start on the FPGA. Once the verification is

completed, the program can be downloaded onto the FPGA [14].

Fig. 5. FPGA Design Flow.

12. Hardware Implementation of Neuro-crypto System

Implementing neuro-crypto system and especially the neural PRNG onto an

FPGA is a relatively hard process. However, due to the limited space available on

an FPGA, some restrictions have to be made:

• Once the training is completed and the correct network weights determined

these weights will have to be coded onto the FPGA. The accuracy in which

these weights can be coded will depend upon the number of bits available to

implement the weights. The weights will then have to be scaled to values that

can be coded within this restriction. The method used to convert the weights

from floating-point representation to binary code representation is

multiplying the floating-point number by the wanted resolution (8192=2
13

)

that gets minimum error. For example: let weight = 0.2385 and the resolution

is 8192 (2
0
-2

13
) to make the representation of the weight is 14 bit.

0.2385 * 8192= 1953.792 = 1954

1954 = (00011110100010) 14 bit

Implementation of Neural-Cryptographic System using FPGA 421

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

• To calculate the neuron outputs on an FPGA, it will be necessary to

implement some combination of adders and multipliers. These will be used

according to Eq. (1) to determine the neuron outputs.

bwxy i

n

i

iin +=∑
=1

 (1)

In FPGA, the number of hardware multipliers is 18 multiplier resources. So

the multiplication method must to be simplified in to a form like adders [15].

Special attention must be paid to an efficient approximation of the sigmoid

function in implementing FPGA-based reprogrammable hardware-based artificial

neural networks. The equation that expresses the sigmoid activation function is:

iny
e

y
−+

=
1

1 (2)

• The sigmoid activation function has several ways of implementation in VHDL.

The method that re-expresses the sigmoid Eq. (2) into simple equations is

piecewise second-order approximation [16, 17] that shown in Eq. (3).

4 when 0

04-n whe
4

1
-1

2

1
1

40n whe
4

1
-1

2

1
1

4 when 1

2

2

−<=

<<







−=

<<







−=

>=

in

inin

inin

in

yy

yyy

yyy

yy

 (3)

13. The Neuro-Crypto System Design based FPGA

The design of neuro-crypto system consists of two parts. The first part is

designing an input generator logic circuit to prepare input patterns to ANN stream

cipher. Figure 6 illustrates the circuit diagram of the input generator logic circuit

in RTL (Register Transfer logic) level. The logic circuit was designed and

implemented in Spartan3e FPGA (XC3S500efg320-4).

Fig. 6. Circuit Diagram of the Input Generator.

422 K. M. Z. Othman and M. H. Al Jammas

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

Figure 7 shows the timing simulation design results of the input generator

logic circuit using Xilinx ModelSim XE II 5.8c program.

Fig. 7. The Simulation Design Results of the Input Generator Logic Circuit.

The second part of the design is the Pseudo Random Number Generator

(PRNG) based Artificial Neural Network (ANN). This PRNG is simulated and

synthesized in ModelSim XE II 5.8c and implemented in Spartan3E FPGA. Figure

8 shows the diagram circuit of the PRNG based ANN in RTL Schematic viewer.

Fig. 8. The Circuit Diagram of PRNG Based ANN.

The timing diagram of the implemented pseudo random generator is shown in

Fig. 9. Figure 10 shows the internal structure of the Neural – PRNG .

Implementation of Neural-Cryptographic System using FPGA 423

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

Fig. 9. The Timing Diagram of the System.

Fig. 10. The Internal Structure of the Neural – PRNG.

14. Hardware Performance Evaluation

The traditional approach for quantifying the hardware design performance is to

measure the number of accumulate operations performed in the unit time that

measured in MCPS (Mega of Connections Per Second) [17]. The calculation of

CPS is shown below:

CPS= frequency × number of bits of the weight × number of inputs

Then, the CPS = 50MHz × 15 × 8 = 6000 MCPS.

The execution time is very important in the calculation of the design

performance. In this work, the processing time of software simulation is equal to

94 msec that is simulated in personal computer has the following properties:

1.7GHz CPU Celeron and 512MB RAM. The processing time of hardware

implementation is equal to 0.0736 msec that is simulated in spartan3e FPGA card

and has the following properties:

424 K. M. Z. Othman and M. H. Al Jammas

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

Frequency =50 MHz, Total CLB=1164 and (18×18) multipliers = 20.

In order to ensure the parallel processing performance in comparison to the

sequential processing one, Fig. 11 shows the processing time (in ms) of parallel

(FPGA) and sequential (PC) processors.

Fig. 11. The Processing Time of Parallel (FPGA) and Sequential (PC) Processors.

In hardware evaluation, the term speedup refers to how much a parallel

procedure is faster than a corresponding sequential procedure. The speedup can

be calculated by the following formula, Eq. (4) [17]:

 timehardtware

 timesoftware
speedup = (4)

Then, the speedup = 94 ms/0.07336 ms=1281. This value means that the

hardware performance is faster than the software performance in 1281 times. So

this is taking an advantage for hardware parallelism.

15. Conclusions

In this work, a Pseudo Random Number Generator (PRNG) based on artificial

Neural Networks (ANN) has been designed. This PRNG has been used to design

stream cipher system with high statistical randomness properties of its key

sequence using ANN. Software simulation has been build using MATLAB to

firstly, ensure passing four well-known statistical tests that guaranteed

randomness characteristics. Secondly, such stream cipher system is required to be

implemented using FPGA technology, therefore, minimum hardware

requirements has to be considered. In order to ensure the FPGA-based PRNG

performance in comparison to the MATLAB-based one, Table 1 indicates the

statistical properties of both software and hardware PRNG versions.

Table 1. The Statistical Properties of both Software and Hardware PRNG Versions.

Test Name Obtained Value Average

value

Comments

Matlab

Results

FPGA

Result

Frequency Test 0.009 2.347 <=3.841 Pass

Serial Test 0.0108 3.422 <= 5.99 Pass
Poker Test 4.3607 5.299 <= 14.6 Pass

Autocorrelation Test 0.0628 0.062 1.96 Pass

Implementation of Neural-Cryptographic System using FPGA 425

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

Taking advantage of hardware parallelism, the hardware performance is faster

than the software performance in 1281 times. So FPGAs exceed the computing

power of personal computers by breaking the paradigm of sequential execution.

References

1. Alder, M.; and Gailly, J.L. (2004). An introduction to cryptography. PGP

Corporation, USA.

2. Konheim, A.G. (2007). Computer security and cryptography. Wiley Inc.

3. Daswani, N.; Kern, C.; and Kesavan, A. (2007). Foundation of security:

What every programmer needs to know. (1
st
 Ed.) Apress Inc.

4. Shackleford, B.; Tanaka, M.; Carter, R.J.; and Snider, G. (2002). FPGA

implementation of neighbourhood-of-four cellular automata random number

generators. Technical Report, HP Laboratories Palo Alto, HPL-2001-290.

5. Menezes, A.J.; van Oorschot, P.C.; and Vanstone, S.A. (1996). Handbook of

applied cryptography. CRC Press Inc.

6. Rukhin, A.; Soto, Juan; Nechvatal, J.; Smid, M.; and Barker, E. (2001). A

statistical test suite for random and pseudorandom number generators for

cryptographic applications. NIST special publication.

7. Negnevitsky, M. (2005). Artificial intelligence: a guide to intelligent system.

(2005). (2
nd

 Ed.), Pearson Education.

8. Laurene Fausett (1993). Fundamentals of neural network architecture,

algorithm and applications. Available via internet at:

http://www.scribd.com/doc/4471440/Fundamentals of Neural-Networks

Laurene Fausett .

9. Omondi, A.R.; and Rajapakse, J.C. (2006). FPGA implementations of neural

networks. (1
st
 Ed.) Springer.

10. Khalifa, Y.M.A.; and Fan Y.J. (2005). An FPGA-based general purpose

neural network chip with on-chip learning. Proceedings of Fourteenth

Genetic and Evolutionary Computation Conference..

11. Seref Sagisroglu; and Necla Ozkaya (2007). Neural solutions for information

security. Journal of Polytechnic, 10(1), 21-25.

12. Brown, S.; and Vranesic, Z. (2005). Fundamentals of digital logic design

using VHDL design. (2
nd

 Ed.), McGraw-Hill Inc.

13. Wolf, W. (2004). FPGA-based system design. PTR Prentice Hall.

14. Pedroni, V.A. (2004). Circuit design with VHDL. MIT press, London.

15. A. Muthuramalingam; S. Himavathi; and E. Srinivasan (2007). Neural

network implementation using FPGA: issues and application. International

Journal of Information Technology, 4(2), 86-92.

16. Tommiska, M.T. (2003). Efficient digital implementation of the sigmoid

Function for reprogrammable logic. IEE Proceedings on Computers and

Digital Techniques, 150(6), 403-411.

17. Rajah, A. (2005). VLSI design of a neurohardware processor implementing

the Kohonen neural network algorithm. M.Sc. Thesis, Faculty of Electrical,

Engineering, University of Technology Malaysia.

426 K. M. Z. Othman and M. H. Al Jammas

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

Appendix A

Statistical Tests

The statistical randomness tests are usually used in checking the randomness

properties of the PRNG. Some complexity measure can be applied to binary

sequence to test if this sequence appears to be random sequences or not. The

Table A-1 shows the values of the χ2
-distribution of the statistical tests [5]:

Table A-1 χχχχ2
- Distribution Values of the Statistical Tests.

Test Name The χχχχ2
 value Degree of Freedom

Frequency Test 3.841 1

Serial Test 5.99 2

Poker Test 14.6 when m =3 7

Autocorrelation Test 1.96 10

A-1 Frequency Test

In a randomly generated N-bit sequence, we would expect approximately half the

bits in the sequence to be ones and approximately half to be zeroes. The

frequency test involves the calculation of χ2
 using [5]:

() Nnn /
2

10

2 −=χ (A.1)

where n0 is the number of occurrences of 0’s in the N-bit sequence.

 n1 is the number of occurrences of 1’s in the N-bit sequence.

Table A-1 shows the values of the χ2
-distribution of the statistical tests. From

this table it is found that the value of χ2
 for a 5% significant level is 3.841. The

random property of the key sequence generation is accepted if the value of the χ2

is less than 3.841, otherwise it fails. If no=n1 then χ2
=0. To decide if the value

obtained from the sequence is good enough for the sequence to pass the test, we

need to compare the value of χ2
 with values of a table of χ2

-distribution for one

degree of freedom [5, 6].

A-2 Serial Test

The serial test checks that the frequencies of the different transitions in a binary

sequence (00, 01, 10 and 11) are approximately equal. Let n00 , n01, n10 and n11 be

the number of occurrence of 00,01,10 and 11 respectively in the N-bit sequence.

Ideally n00 =n01=n10 = n11= (N-1)/4. The serial test involves the calculation of χ2

using [5]:

Implementation of Neural-Cryptographic System using FPGA 427

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

1)(
2

)(
1

4 2

1

2

0

2

11

2

10

2

01

2

00

2 ++−−+++
−

= nn
N

nnnn
N

χ (A.2)

From Table A-1 it is found that the value of χ2
 for a 5% significant level is

5.99. The random property of the key sequence generation is accepted if the value

of the χ2
 is less than 5.99, otherwise it fails [5]. To decide if the value obtained

from the sequence is good enough for the sequence to pass the test, we need to

compare the value of χ2
 with values of a table of χ2

-distribution for two degrees

of freedom.

A-3 Poker Test

The poker test is a generalization of the frequency test and the serial test. The

frequency test studies the number of occurrences of both of the 1-bis patterns, and

the serial test studies the number of each of the four 2-bit patterns. The poker test

studies the number of occurrences of each 2
m
, m-bit patterns, for some integer m.

The poker test involves the calculation of χ2
using [5]:

kn
k

m

i

i

m

−









= ∑

=

2
2

1

22 2
χ (A.3)

where k is the number of blocks

 m is the length of block.

In this test, the calculated value should be compared with Table A-1 for χ2

with 2
m
-1 degrees of freedom. This test can be applied many times for different

values of m. The random property of the key sequence generation is accepted if

the value of the χ2
 is less than 14.6 with m=3, otherwise it fails [5].

A-4 Autocorrelation Test

The autocorrelation test equation is [5, 6]:

() ∑
−

=

+⊕=
dN

i

dii UUdA
1

 (A.4)

where N-bit sequence is U =U1 U2 …..Un. The factor d is shift in bits

between the sequence Ui with Ui+d, where ⊕ denotes the XOR operator. The

calculation of χ2
 in this test is:

dN
dN

dA −






 −

−= /
2

)(22χ (A.5)

The random property of the key sequence generation is accepted if the value

of the χ2
 is less than 1.96, otherwise it fails.

428 K. M. Z. Othman and M. H. Al Jammas

Journal of Engineering Science and Technology August 2011, Vol. 6(4)

Appendix B

The Backpropagation Algorithm

The algorithm below shows the procedure to achieve the process of PN sequence

generator based on NN [8]:

1- Network weight values initialization (set to small random values).

2- Sum weights input and apply activation function to compute the output of the

hidden layer using:

)(
1

jij

n

i

ij bwxfz += ∑
=

 (B.1)

where: zj is the actual output of the hidden neuron j.

 xj is the input signal of the input neuron i.

 wij is the weight between input neuron i and hidden neuron j.

 bj is the bias of the hidden neuron j.

 f is the activation function.

3- Sum the weight output of the hidden layer and apply the activation function

to compute the result of the output layer neuron using:

)(
1

kjk

n

j

jk bbvhfy += ∑
=

 (B.2)

where yk is the actual output of the neuron k.

 vjk is the weight between the hidden neuron j and the output neuron k.

 bbk is the bias of the output neuron k.

4- Compute the back propagation error using:

)(')(
1

kjk

n

k

jkkk bbvzfyt +−= ∑
=

δ (B.3)

where: f’ is the derivative of the activation function.

 tk is the target output neuron k.

5- calculate weight and bias correction output layer using :

jkjk zv αδ=∆ (B.4)

kkbb δα=∆ (B.5)

where α is the learning rate.

6- Add the delta input for each hidden unit and calculate the error term using:











+= ∑∑

==

jij

n

j

ijk

n

j

kj bwxfv
11

'δδ (B.6)

7- Calculate the weight and the bias correction for the hidden layer using:

ijij xw αδ=∆ (B.7)

jjb αδ=∆ (B.8)

8- Update weights and biases using the following equations:

() ()
jkoldjknewjk vvv ∆+= (B.9)

() () koldknewk bbbbbb ∆+= (B.10)

() ()
ijoldijnewij www ∆+= (B.11)

() ()
joldjnewj bbb ∆+= (B.12)

Repeat steps 2 to 8 until output converge from the target (i.e., the error rate < 0.0005).

