613,347 research outputs found

    Stable carbon and radiocarbon isotope compositions of particle size fractions to determine origins of sedimentary organic matter in an estuary

    Get PDF
    Stable and radioactive carbon isotopic compositions of particle size fractions of a surface sediment from the Ems-Dollard estuary vary considerably with particle size. The organic material in the fine fractions (<20 µm) has considerably higher 14C values (14a~80%) than that in the coarse fractions (52%) and has higher δ13C values (average of -23‰ and -25.6‰, respectively). This shows that OM in the fine and the coarse fractions has different sources. The organic carbon in the fractions with particle sizes <20 µm is mainly imported from the North Sea. The contribution of material from the Ems river appears negligible. The carbon isotopic composition of the coarse fractions points to a terrestrial contribution. Discrete organic fragments are found of both terrestrial and marine/estuarine origin.

    A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility

    Get PDF
    The aim of this study was to investigate the role of the plant food matrix in influencing the extent of starch gelatinisation during hydrothermal processing, and its implications for starch digestibility. Differential scanning calorimetry (DSC) was used to provide a detailed examination of the gelatinisation behaviour of five distinct size fractions (diameters <0.21 to 2.58 mm) of milled chickpea and durum wheat. Gelatinisation parameters were obtained from the DSC thermograms and concomitant microscopy analyses were performed. The estimated terminal extent of gelatinisation (TEG) was compared with our previously published data for in vitro starch digestibility of the same food materials. We observed clear differences in the gelatinisation behaviour of matched size-fractions of chickpeas and durum wheat. In chickpea materials, the TEG values (34–100%) were inversely related to particle size, whereas in durum wheat, no sizedependent limitations on TEG were observed. The TEG values were completely consistent with the extent of starch amylolysis in all size fractions of both durum wheat and chickpea. Microstructural analysis following hydrothermal processing confirmed the presence of some partially gelatinised birefringent starch within intact chickpea cells. Birefringent starch granules were not present in any of the processed fractions of durum wheat. The differences in gelatinisation behaviour of these plant species seem to reflect the individual cell wall properties of these materials. These findings demonstrate the applicability of DSC to real food materials to provide insight into the mechanisms by which the food matrix (particularly the plant cell walls) influences gelatinisation, and consequently, starch amylolysis

    Selection of imprinted nanoparticles by affinity chromatography

    Get PDF
    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (Kd 6.6 × 10−8) M and were also able to discriminate between related functional analogues of the templ

    Evidence for the existence of powder sub-populations in micronized materials : Aerodynamic size-fractions of aerosolized powders possess distinct physicochemical properties

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Purpose: To investigate the agglomeration behaviour of the fine ( 12.8 µm) particle fractions of salmeterol xinafoate (SX) and fluticasone propionate (FP) by isolating aerodynamic size fractions and characterising their physicochemical and re-dispersal properties. Methods: Aerodynamic fractionation was conducted using the Next Generation Impactor (NGI). Re-crystallized control particles, unfractionated and fractionated materials were characterized for particle size, morphology, crystallinity and surface energy. Re-dispersal of the particles was assessed using dry dispersion laser diffraction and NGI analysis. Results: Aerosolized SX and FP particles deposited in the NGI as agglomerates of consistent particle/agglomerate morphology. SX particles depositing on Stages 3 and 5 had higher total surface energy than unfractionated SX, with Stage 5 particles showing the greatest surface energy heterogeneity. FP fractions had comparable surface energy distributions and bulk crystallinity but differences in surface chemistry. SX fractions demonstrated higher bulk disorder than unfractionated and re-crystallized particles. Upon aerosolization, the fractions differed in their intrinsic emission and dispersion into a fine particle fraction (< 5.0 µm). Conclusions: Micronized powders consisted of sub-populations of particles displaying distinct physicochemical and powder dispersal properties compared to the unfractionated bulk material. This may have implications for the efficiency of inhaled drug deliveryPeer reviewe

    Rare gas analysis of size fractions from the Fayetteville meteorite

    Get PDF
    Eight size separates of grains from the Fayetteville meteorite ranging from less than 20 microns to greater than 1 millimeter are being analyzed for their rare gas elemental and isotopic composition. Measurements on five samples were performed. All five reveal a mixture of solar, planetary, cosmic ray produced and radiogenic gases. The solar component is of particular interest since it suggest that the meteorite may represent a fragment of an ancient protoplanetary regolith which was exposed to the solar wind. Solar wind elements are implanted in the outer few hundred Angstroms of exposed grains and are therefore expected to be surface correlated. At present the data do not suggest that such a correlation exists, but the final conclusion must await further analyses and data reduction

    Random Packings of Frictionless Particles

    Full text link
    We study random packings of frictionless particles at T=0. The packing fraction where the pressure becomes nonzero is the same as the jamming threshold, where the static shear modulus becomes nonzero. The distribution of threshold packing fractions narrows and its peak approaches random close-packing as the system size increases. For packing fractions within the peak, there is no self-averaging, leading to exponential decay of the interparticle force distribution.Comment: 4 pages, 3 figure
    corecore