822 research outputs found

    Twisted Alexander polynomials of 2-bridge knots

    Get PDF
    We investigate the twisted Alexander polynomial of a 2-bridge knot associated to a Fox coloring. For several families of 2-bridge knots, including but not limited to, torus knots and genus-one knots, we derive formulae for these twisted Alexander polynomials. We use these formulae to confirm a conjecture of Hirasawa and Murasugi for these knots.Comment: 29 pages, 2 figure

    Polynomial Invariants for Arbitrary Rank DD Weakly-Colored Stranded Graphs

    Full text link
    Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollob\'as-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D3D\geq3 a modified Euler characteristic with D2D-2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank DD weakly-colored stranded graphs.Comment: Basic definitions overlap with arXiv:1301.198

    Majorana Fermion Quantum Mechanics for Higher Rank Tensors

    Full text link
    We study quantum mechanical models in which the dynamical degrees of freedom are real fermionic tensors of rank five and higher. They are the non-random counterparts of the Sachdev-Ye-Kitaev (SYK) models where the Hamiltonian couples six or more fermions. For the tensors of rank five, there is a unique O(N)5O(N)^5 symmetric sixth-order Hamiltonian leading to a solvable large NN limit dominated by the melonic diagrams. We solve for the complete energy spectrum of this model when N=2N=2 and deduce exact expressions for all the eigenvalues. The subset of states which are gauge invariant exhibit degeneracies related to the discrete symmetries of the gauged model. We also study quantum chaos properties of the tensor model and compare them with those of the q=6q=6 SYK model. For q>6q>6 there is a rapidly growing number of O(N)q1O(N)^{q-1} invariant tensor interactions. We focus on those of them that are maximally single-trace - their stranded diagrams stay connected when any set of q3q-3 colors is erased. We present a general discussion of why the tensor models with maximally single-trace interactions have large NN limits dominated by the melonic diagrams. We solve the large NN Schwinger-Dyson equations for the higher rank Majorana tensor models and show that they match those of the corresponding SYK models exactly. We also study other gauge invariant operators present in the tensor models.Comment: 36 pages, 19 figures, 2 tables, v3: some clarifications and references adde

    Parametric Representation of Rank d Tensorial Group Field Theory: Abelian Models with Kinetic Term sps+μ\sum_{s}|p_s| + \mu

    Full text link
    We consider the parametric representation of the amplitudes of Abelian models in the so-called framework of rank dd Tensorial Group Field Theory. These models are called Abelian because their fields live on U(1)DU(1)^D. We concentrate on the case when these models are endowed with particular kinetic terms involving a linear power in momenta. New dimensional regularization and renormalization schemes are introduced for particular models in this class: a rank 3 tensor model, an infinite tower of matrix models ϕ2n\phi^{2n} over U(1)U(1), and a matrix model over U(1)2U(1)^2. For all divergent amplitudes, we identify a domain of meromorphicity in a strip determined by the real part of the group dimension DD. From this point, the ordinary subtraction program is applied and leads to convergent and analytic renormalized integrals. Furthermore, we identify and study in depth the Symanzik polynomials provided by the parametric amplitudes of generic rank dd Abelian models. We find that these polynomials do not satisfy the ordinary Tutte's rules (contraction/deletion). By scrutinizing the "face"-structure of these polynomials, we find a generalized polynomial which turns out to be stable only under contraction.Comment: 69 pages, 35 figure

    A reverse Sidorenko inequality

    Full text link
    Let HH be a graph allowing loops as well as vertex and edge weights. We prove that, for every triangle-free graph GG without isolated vertices, the weighted number of graph homomorphisms hom(G,H)\hom(G, H) satisfies the inequality hom(G,H)uvE(G)hom(Kdu,dv,H)1/(dudv), \hom(G, H ) \le \prod_{uv \in E(G)} \hom(K_{d_u,d_v}, H )^{1/(d_ud_v)}, where dud_u denotes the degree of vertex uu in GG. In particular, one has hom(G,H)1/E(G)hom(Kd,d,H)1/d2 \hom(G, H )^{1/|E(G)|} \le \hom(K_{d,d}, H )^{1/d^2} for every dd-regular triangle-free GG. The triangle-free hypothesis on GG is best possible. More generally, we prove a graphical Brascamp-Lieb type inequality, where every edge of GG is assigned some two-variable function. These inequalities imply tight upper bounds on the partition function of various statistical models such as the Ising and Potts models, which includes independent sets and graph colorings. For graph colorings, corresponding to H=KqH = K_q, we show that the triangle-free hypothesis on GG may be dropped; this is also valid if some of the vertices of KqK_q are looped. A corollary is that among dd-regular graphs, G=Kd,dG = K_{d,d} maximizes the quantity cq(G)1/V(G)c_q(G)^{1/|V(G)|} for every qq and dd, where cq(G)c_q(G) counts proper qq-colorings of GG. Finally, we show that if the edge-weight matrix of HH is positive semidefinite, then hom(G,H)vV(G)hom(Kdv+1,H)1/(dv+1). \hom(G, H) \le \prod_{v \in V(G)} \hom(K_{d_v+1}, H )^{1/(d_v+1)}. This implies that among dd-regular graphs, G=Kd+1G = K_{d+1} maximizes hom(G,H)1/V(G)\hom(G, H)^{1/|V(G)|}. For 2-spin Ising models, our results give a complete characterization of extremal graphs: complete bipartite graphs maximize the partition function of 2-spin antiferromagnetic models and cliques maximize the partition function of ferromagnetic models. These results settle a number of conjectures by Galvin-Tetali, Galvin, and Cohen-Csikv\'ari-Perkins-Tetali, and provide an alternate proof to a conjecture by Kahn.Comment: 30 page
    corecore