518 research outputs found

    On the Classification of All Self-Dual Additive Codes over GF(4) of Length up to 12

    Get PDF
    We consider additive codes over GF(4) that are self-dual with respect to the Hermitian trace inner product. Such codes have a well-known interpretation as quantum codes and correspond to isotropic systems. It has also been shown that these codes can be represented as graphs, and that two codes are equivalent if and only if the corresponding graphs are equivalent with respect to local complementation and graph isomorphism. We use these facts to classify all codes of length up to 12, where previously only all codes of length up to 9 were known. We also classify all extremal Type II codes of length 14. Finally, we find that the smallest Type I and Type II codes with trivial automorphism group have length 9 and 12, respectively.Comment: 18 pages, 4 figure

    Self-Dual Codes

    Get PDF
    Self-dual codes are important because many of the best codes known are of this type and they have a rich mathematical theory. Topics covered in this survey include codes over F_2, F_3, F_4, F_q, Z_4, Z_m, shadow codes, weight enumerators, Gleason-Pierce theorem, invariant theory, Gleason theorems, bounds, mass formulae, enumeration, extremal codes, open problems. There is a comprehensive bibliography.Comment: 136 page

    Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with respect to the {I,H,N}^n Transform

    Full text link
    We enumerate the inequivalent self-dual additive codes over GF(4) of blocklength n, thereby extending the sequence A090899 in The On-Line Encyclopedia of Integer Sequences from n = 9 to n = 12. These codes have a well-known interpretation as quantum codes. They can also be represented by graphs, where a simple graph operation generates the orbits of equivalent codes. We highlight the regularity and structure of some graphs that correspond to codes with high distance. The codes can also be interpreted as quadratic Boolean functions, where inequivalence takes on a spectral meaning. In this context we define PAR_IHN, peak-to-average power ratio with respect to the {I,H,N}^n transform set. We prove that PAR_IHN of a Boolean function is equivalent to the the size of the maximum independent set over the associated orbit of graphs. Finally we propose a construction technique to generate Boolean functions with low PAR_IHN and algebraic degree higher than 2.Comment: Presented at Sequences and Their Applications, SETA'04, Seoul, South Korea, October 2004. 17 pages, 10 figure

    Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions

    Full text link
    We investigate the average bipartite entanglement, over all possible divisions of a multipartite system, as a useful measure of multipartite entanglement. We expose a connection between such measures and quantum-error-correcting codes by deriving a formula relating the weight distribution of the code to the average entanglement of encoded states. Multipartite entangling power of quantum evolutions is also investigated.Comment: 13 pages, 1 figur

    Additive Asymmetric Quantum Codes

    Full text link
    We present a general construction of asymmetric quantum codes based on additive codes under the trace Hermitian inner product. Various families of additive codes over \F_{4} are used in the construction of many asymmetric quantum codes over \F_{4}.Comment: Accepted for publication March 2, 2011, IEEE Transactions on Information Theory, to appea

    Some new Results for Additive Self-Dual Codes over GF(4)

    Get PDF
    * Supported by COMBSTRU Research Training Network HPRN-CT-2002-00278 and the Bulgarian National Science Foundation under Grant MM-1304/03.Additive code C over GF(4) of length n is an additive subgroup of GF(4)n. It is well known [4] that the problem of finding stabilizer quantum error-correcting codes is transformed into problem of finding additive self-orthogonal codes over the Galois field GF(4) under a trace inner product. Our purpose is to construct good additive self-dual codes of length 13 ≤ n ≤ 21. In this paper we classify all extremal (optimal) codes of lengths 13 and 14, and we construct many extremal codes of lengths 15 and 16. Also, we construct some new extremal codes of lengths 17,18,19, and 21. We give the current status of known extremal (optimal) additive self-dual codes of lengths 13 to 21

    Quantum Error Correction via Codes over GF(4)

    Get PDF
    The problem of finding quantum error-correcting codes is transformed into the problem of finding additive codes over the field GF(4) which are self-orthogonal with respect to a certain trace inner product. Many new codes and new bounds are presented, as well as a table of upper and lower bounds on such codes of length up to 30 qubits.Comment: Latex, 46 pages. To appear in IEEE Transactions on Information Theory. Replaced Sept. 24, 1996, to correct a number of minor errors. Replaced Sept. 10, 1997. The second section has been completely rewritten, and should hopefully be much clearer. We have also added a new section discussing the developments of the past year. Finally, we again corrected a number of minor error
    • …
    corecore