7,089 research outputs found

    Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi-Chebyshev algorithm

    Get PDF
    An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi-Chebyshev method. This method preserves the banded structure sparsity of matrices of the algebraic eigenvalue problem and thus decreases memory use and CPU-time consumption. The errors that affect computed eigenvalues and eigenvectors are due to the truncation in the discretization and to finite precision in the computation of the discretized problem. In this paper we analyze those two errors and the interplay between them. We use as a test case the two-dimensional eigenvalue problem yielded by the computation of inertial modes in a spherical shell. This problem contains many difficulties that make it a very good test case. It turns out that that single modes (especially most-damped modes i.e. with high spatial frequency) can be very sensitive to round-off errors, even when apparently good spectral convergence is achieved. The influence of round-off errors is analyzed using the spectral portrait technique and by comparison of double precision and extended precision computations. Through the analysis we give practical recipes to control the truncation and round-off errors on eigenvalues and eigenvectors.Comment: 15 pages, 9 figure

    Analysis of Round Off Errors with Reversibility Test as a Dynamical Indicator

    Full text link
    We compare the divergence of orbits and the reversibility error for discrete time dynamical systems. These two quantities are used to explore the behavior of the global error induced by round off in the computation of orbits. The similarity of results found for any system we have analysed suggests the use of the reversibility error, whose computation is straightforward since it does not require the knowledge of the exact orbit, as a dynamical indicator. The statistics of fluctuations induced by round off for an ensemble of initial conditions has been compared with the results obtained in the case of random perturbations. Significant differences are observed in the case of regular orbits due to the correlations of round off error, whereas the results obtained for the chaotic case are nearly the same. Both the reversibility error and the orbit divergence computed for the same number of iterations on the whole phase space provide an insight on the local dynamical properties with a detail comparable with other dynamical indicators based on variational methods such as the finite time maximum Lyapunov characteristic exponent, the mean exponential growth factor of nearby orbits and the smaller alignment index. For 2D symplectic maps the differentiation between regular and chaotic regions is well full-filled. For 4D symplectic maps the structure of the resonance web as well as the nearby weakly chaotic regions are accurately described.Comment: International Journal of Bifurcation and Chaos, 201

    Accurate and efficient evaluation of the a posteriori error estimator in the reduced basis method

    Full text link
    The reduced basis method is a model reduction technique yielding substantial savings of computational time when a solution to a parametrized equation has to be computed for many values of the parameter. Certification of the approximation is possible by means of an a posteriori error bound. Under appropriate assumptions, this error bound is computed with an algorithm of complexity independent of the size of the full problem. In practice, the evaluation of the error bound can become very sensitive to round-off errors. We propose herein an explanation of this fact. A first remedy has been proposed in [F. Casenave, Accurate \textit{a posteriori} error evaluation in the reduced basis method. \textit{C. R. Math. Acad. Sci. Paris} \textbf{350} (2012) 539--542.]. Herein, we improve this remedy by proposing a new approximation of the error bound using the Empirical Interpolation Method (EIM). This method achieves higher levels of accuracy and requires potentially less precomputations than the usual formula. A version of the EIM stabilized with respect to round-off errors is also derived. The method is illustrated on a simple one-dimensional diffusion problem and a three-dimensional acoustic scattering problem solved by a boundary element method.Comment: 26 pages, 10 figures. ESAIM: Mathematical Modelling and Numerical Analysis, 201

    Generating formally certified bounds on values and round-off errors

    Get PDF
    International audienceWe present a new tool that generates bounds on the values and the round-off errors of programs using floating point operations. The tool is based on forward error analysis and interval arithmetic. The novelty of our tool is that it produces a formal proof of the bounds that can be checked independently using an automatic proof checker such as Coq and a complete model of floating point arithmetic. For the first time ever, we can easily certify that simple numerical programs such as the ones usually found in real time applications do not overflow and that round-off errors are below acceptable thresholds. Such level of quality should be compulsory on safety critical applications. As our tool is easy to handle, it could also be used for many pieces of software

    Stochastically Resilient Observer Design for a Class of Continuous-Time Nonlinear Systems

    Get PDF
    This work addresses the design of stochastically resilient or non-fragile continuous-time Luenberger observers for systems with incrementally conic nonlinearities. Such designs maintain the convergence and/or performance when the observer gain is erroneously implemented due possibly to computational errors i.e. round off errors in computing the observer gain or changes in the observer parameters during operation. The error in the observer gain is modeled as a random process and a common linear matrix inequality formulation is presented to address the stochastically resilient observer design problem for a variety of performance criteria. Numerical examples are given to illustrate the theoretical results
    corecore