394,119 research outputs found

    Coronal loop seismology using multiple transverse loop oscillation harmonics

    Get PDF
    Context. TRACE observations (23/11/1998 06:35:57−06:48:43 UT) in the 171 Å bandpass of an active region are studied. Coronal loop oscillations are observed after a violent disruption of the equilibrium. Aims. The oscillation properties are studied to give seismological estimates of physical quantities, such as the density scale height. Methods. A loop segment is traced during the oscillation, and the resulting time series is analysed for periodicities. Results. In the loop segment displacement, two periods are found: 435.6 ± 4.5 s and 242.7 ± 6.4 s, consistent with the periods of the fundamental and 2nd harmonic fast kink oscillation. The small uncertainties allow us to estimate the density scale height in the loop to be 109 Mm, which is about double the estimated hydrostatical value of 50 Mm. Because a loop segment is traced, the amplitude dependence along the loop is found for each of these oscillations. The obtained spatial information is used as a seismological tool to give details about the geometry of the observed loop

    Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere

    Get PDF
    Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised. The lower chromosphere contains neutral atoms, the existence of which greatly increases the efficiency of the damping of waves due to collisional friction momentum transfer. More specifically the Cowling conductivity can be up to 12 orders of magnitude smaller than the Spitzer value, so that the main damping mechanism in this region is due to the collisions between neutrals and positive ions (Khodachenko et al. 2004, A&A, 422, 1073). Using values for the gas density and temperature as functions of height taken from the VAL C model of the quiet Sun (Vernazza et al. 1981, ApJS, 45, 635), an estimate is made for the dependance of the Cowling conductivity on height and strength of magnetic field. Using both analytic and numerical approaches the passage of Alfvén waves over a wide spectrum through this partially ionised region is investigated. Estimates of the efficiency of this region in the damping of Alfvén waves are made and compared for both approaches. We find that Alfvén waves with frequencies above 0.6 Hz are completely damped and frequencies below 0.01 Hz unaffected

    Observational evidence favors a resistive wave heating mechanism for coronal loops over a viscous phenomenon

    Get PDF
    Context. How coronal loops are heated to their observed temperatures is the subject of a long standing debate. Aims. Observational evidence exists that the heating in coronal loops mainly occurs near the loop footpoints. In this article, analytically and numerically obtained heating profiles produced by resonantly damped waves are compared to the observationally estimated profiles. Methods. To do that, the predicted heating profiles are fitted with an exponential heating function, which was also used to fit the observations. The results of both fits, the estimated heating scale heights, are compared to determine the viability of resonant absorption as a heating mechanism for coronal loops. Results. Two results are obtained. It is shown that any wave heating mechanism (i.e. not just resonant absorption) should be dominated by a resistive (and not a viscous) phenomenon in order to accomodate the constraint of footpoint heating. Additionally it is demonstrated that the analytically and numerically estimated heating scale heights for the resonant absorption damping mechanism fit the observations very well

    A stellar flare during the transit of the extrasolar planet OGLE-TR-10b

    Get PDF
    We report a stellar flare occurring during a transit of the exoplanet OGLE-TR-10b, an event not previously reported in the literature. This reduces the observed transit depth, particularly in the u'-band, but flaring could also be significant in other bands and could lead to incorrect planetary parameters. We suggest that OGLE-TR-10a is an active planet-hosting star and has an unusually high X-ray luminosity

    The effect of elliptic shape on the period ratio P-1/P-2 of emerging coronal loops

    Get PDF
    Aims. We determine the effect of an elliptical shape on the period ratio for the standing transversal oscillations of a longitudinally stratified coronal loop throughout its emergence from the low solar atmosphere into the ubiquitously magnetised corona. Methods. Under the assumption that elliptical curvature has a negligible effect on eigenfrequencies, the equation that describes the projection of a density profile onto a magnetic flux tube with elliptical shape is obtained in a gravitationally stratified atmosphere. The effect of the elliptical shape on the period ratio of the fundamental mode to the first harmonic (P-1/P-2) at various stages of emergence is determined, assuming that the oscillation periods are much shorter than the characteristic time scale of loop emergence. Results. We find that there are two separate cases of elliptical shape that occur, the minor ellipse and the major ellipse. It is then shown how the period ratio P-1/P-2 is dependent upon the ellipticity (epsilon), the parameter characterising the stage of emergence (lambda) and the density scale height (H). Ellipticity is found to make an important contribution to P-1/P-2 for the minor ellipse when compared to its counterpart of standing oscillations of stratified loops with semi-circle or circle-arc shape. The major ellipse was found to have a lesser effect on the period ratio of standing oscillations. We also find the value of P-1/P-2 is dependent upon the stage of emergence of the loop, where the greatest contribution from emergence to the ratio of P-1/P-2 is when the loop is almost fully emerged. The important implication for magneto-seismological interpretations of the observations of oscillating coronal loops is that measurements of ellipticity and stage of emergence should supplement observations of oscillation periods and should be considered when applying observed frequencies of the fundamental mode and first harmonic to determine the diagnostic properties of these oscillating loops, e. g. the density scale height or strength of magnetic field. Neglecting the determination of ellipticity and stage of emergence may result in a 35% error in estimating density scale height

    Globular cluster systems in fossil groups: NGC6482, NGC1132 and ESO306-017

    Full text link
    We study the globular cluster (GC) systems in three representative fossil group galaxies: the nearest (NGC6482), the prototype (NGC1132) and the most massive known to date (ESO306-017). This is the first systematic study of GC systems in fossil groups. Using data obtained with the Hubble Space Telescope Advanced Camera for Surveys in the F475W and F850LP filters, we determine the GC color and magnitude distributions, surface number density profiles, and specific frequencies. In all three systems, the GC color distribution is bimodal, the GCs are spatially more extended than the starlight, and the red population is more concentrated than the blue. The specific frequencies seem to scale with the optical luminosities of the central galaxy and span a range similar to that of the normal bright elliptical galaxies in rich environments. We also analyze the galaxy surface brightness distributions to look for deviations from the best-fit S\'ersic profiles; we find evidence of recent dynamical interaction in all three fossil group galaxies. Using X-ray data from the literature, we find that luminosity and metallicity appear to correlate with the number of GCs and their mean color, respectively. Interestingly, although NGC6482 has the lowest mass and luminosity in our sample, its GC system has the reddest mean color, and the surrounding X-ray gas has the highest metallicity.Comment: 16 pages, 13 figures. Accepted for publication in A&

    Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    Full text link
    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Program Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.Comment: 64 page

    Single nonmagnetic impurity resonance in FeSe-based 122-type superconductors as a probe for pairing symmetry

    Full text link
    We study the effect of a single non-magnetic impurity in Ay_{y}Fe2−x_{2-x}Se2_{2} (A=K, Rb, or Cs) superconductors by considering various pairing states based on a three-orbital model consistent with the photoemission experiments. The local density of states on and near the impurity site has been calculated by solving the Bogoliubov-de Gennes equations self-consistently. The impurity-induced in-gap bound states are found only for attractive impurity scattering potential, as in the cases of doping of Co or Ni, which is characterized by the strong particle-hole asymmetry, in the nodeless dx2−y2d_{x^2-y^2} wave pairing state. This property may be used to probe the pairing symmetry of FeSe-based 122-type superconductors.Comment: 7 pages, 7 figure

    Socio-economical dynamics as a solvable spin system on co-evolving networks

    Full text link
    We consider social systems in which agents are not only characterized by their states but also have the freedom to choose their interaction partners to maximize their utility. We map such systems onto an Ising model in which spins are dynamically coupled by links in a dynamical network. In this model there are two dynamical quantities which arrange towards a minimum energy state in the canonical framework: the spins, s_i, and the adjacency matrix elements, c_{ij}. The model is exactly solvable because microcanonical partition functions reduce to products of binomial factors as a direct consequence of the c_{ij} minimizing energy. We solve the system for finite sizes and for the two possible thermodynamic limits and discuss the phase diagrams.Comment: 5 pages 3 fig

    The geometry of the close environment of SV Psc as probed by VLTI/MIDI

    Full text link
    Context. SV Psc is an asymptotic giant branch (AGB) star surrounded by an oxygen-rich dust envelope. The mm-CO line profile of the object's outflow shows a clear double-component structure. Because of the high angular resolution, mid-IR interferometry may give strong constraints on the origin of this composite profile. Aims. The aim of this work is to investigate the morphology of the environment around SV Psc using high-angular resolution interferometry observations in the mid-IR with the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI). Methods. Interferometric data in the N-band taken at different baseline lengths (ranging from 32-64 m) and position angles (73- 142{\deg}) allow a study of the morphology of the circumstellar environment close to the star. The data are interpreted on the basis of 2-dimensional, chromatic geometrical models using the fitting software tool GEM-FIND developed for this purpose. Results. The results favor two scenarios: (i) the presence of a highly inclined, optically thin, dusty disk surrounding the central star; (ii) the presence of an unresolved binary companion at a separation of 13.7 AU and a position angle of 121.8{\deg} NE. The derived orbital period of the binary is 38.1 yr. This detection is in good agreement with hydrodynamic simulations showing that a close companion could be responsible for the entrainment of the gas and dust into a circumbinary structure.Comment: 10 pages, 12 figure
    • …
    corecore