92,009 research outputs found

    Comment on "Modified Coulomb Law in a Strongly Magnetized Vacuum"

    Get PDF
    This is a comment on Phys. Rev. Lett. 98, 180403 (2007) [arXiv:0704.2162].Comment: 1 page, comment on arXiv:0704.2162, published versio

    AMiBA: scaling relations between the integrated Compton-y and X-ray derived temperature, mass, and luminosity

    Full text link
    We investigate the scaling relations between the X-ray and the thermal Sunyaev-Zel'dovich Effect (SZE) properties of clusters of galaxies, using data taken during 2007 by the Y.T. Lee Array for Microwave Background Anisotropy (AMiBA) at 94 GHz for the six clusters A1689, A1995, A2142, A2163, A2261, and A2390. The scaling relations relate the integrated Compton-y parameter Y_{2500} to the X-ray derived gas temperature T_{e}, total mass M_{2500}, and bolometric luminosity L_X within r_{2500}. Our results for the power-law index and normalization are both consistent with the self-similar model and other studies in the literature except for the Y_{2500}-L_X relation, for which a physical explanation is given though further investigation may be still needed. Our results not only provide confidence for the AMiBA project but also support our understanding of galaxy clusters.Comment: Accepted by ApJ; 8 pages, 3 figures, 5 table

    Stress-energy Tensor Correlators in N-dim Hot Flat Spaces via the Generalized Zeta-Function Method

    Get PDF
    We calculate the expectation values of the stress-energy bitensor defined at two different spacetime points x,xx, x' of a massless, minimally coupled scalar field with respect to a quantum state at finite temperature TT in a flat NN-dimensional spacetime by means of the generalized zeta-function method. These correlators, also known as the noise kernels, give the fluctuations of energy and momentum density of a quantum field which are essential for the investigation of the physical effects of negative energy density in certain spacetimes or quantum states. They also act as the sources of the Einstein-Langevin equations in stochastic gravity which one can solve for the dynamics of metric fluctuations as in spacetime foams. In terms of constitutions these correlators are one rung above (in the sense of the correlation -- BBGKY or Schwinger-Dyson -- hierarchies) the mean (vacuum and thermal expectation) values of the stress-energy tensor which drive the semiclassical Einstein equation in semiclassical gravity. The low and the high temperature expansions of these correlators are also given here: At low temperatures, the leading order temperature dependence goes like TNT^{N} while at high temperatures they have a T2T^{2} dependence with the subleading terms exponentially suppressed by eTe^{-T}. We also discuss the singular behaviors of the correlators in the xxx'\rightarrow x coincident limit as was done before for massless conformal quantum fields.Comment: 23 pages, no figures. Invited contribution to a Special Issue of Journal of Physics A in honor of Prof. J. S. Dowke

    Theory of impedance networks: The two-point impedance and LC resonances

    Get PDF
    We present a formulation of the determination of the impedance between any two nodes in an impedance network. An impedance network is described by its Laplacian matrix L which has generally complex matrix elements. We show that by solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p} - u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting of inductances (L) and capacitances (C), the formulation leads to the occurrence of resonances at frequencies associated with the vanishing of lambda_a. This curious result suggests the possibility of practical applications to resonant circuits. Our formulation is illustrated by explicit examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63) correcte

    Two-dimensional gases of generalized statistics in a uniform magnetic field

    Full text link
    We study the low temperature properties of two-dimensional ideal gases of generalized statistics in a uniform magnetic field. The generalized statistics considered here are the parafermion statistics and the exclusion statistics. Similarity in the behaviours of the parafermion gas of finite order pp and the gas with exclusion coefficient g=1/pg=1/p at very low temperatures is noted. These two systems become exactly equivalent at T=0T=0. Qumtum Hall effect with these particles as charge carriers is briefly discussed.Comment: Latex file, 14 pages, 5 figures available on reques

    Planar Dirac Electron in Coulomb and Magnetic Fields

    Get PDF
    The Dirac equation for an electron in two spatial dimensions in the Coulomb and homogeneous magnetic fields is discussed. For weak magnetic fields, the approximate energy values are obtained by semiclassical method. In the case with strong magnetic fields, we present the exact recursion relations that determine the coefficients of the series expansion of wave functions, the possible energies and the magnetic fields. It is found that analytic solutions are possible for a denumerably infinite set of magnetic field strengths. This system thus furnishes an example of the so-called quasi-exactly solvable models. A distinctive feature in the Dirac case is that, depending on the strength of the Coulomb field, not all total angular momentum quantum number allow exact solutions with wavefunctions in reasonable polynomial forms. Solutions in the nonrelativistic limit with both attractive and repulsive Coulomb fields are briefly discussed by means of the method of factorization.Comment: 18 pages, RevTex, no figure

    Quantum Nucleation of Vortex String Loops

    Full text link
    We investigate quantum nucleation of vortex string loops in the relativistic quantum field theory of a complex scalar field by using the Euclidean path integral. Our initial metastable homogeneous field dominated by the O(3)O(3) symmetric bounce solution. The nucleation rate and the critical vortex loop size are obtained approximately. Gradually the initial current will be reduced to zero as the induced current inside vortex loops is opposite to the initial current. We also discuss a similar process in Maxwell-Higgs systems and possible physical implications.Comment: phyzzx.tex, 13 pages: A correction to the final state of the nucleation of local vortex string

    Effects of precipitation conditions on the membrane morphology and permeation characteristics

    Get PDF
    [[abstract]]The permeability and permselectivity of asymmetric and particulate membranes towards glucose and proteins of various molecular sizes were studied. It was found that the skin layer of asymmetric membranes was permeable to glucose and insulin but effectively prevent the permeation of immunoglobulins. This result parallels our interest for the development of artificial pancreas. It was also found that skinless particulate membranes exhibited not only high permeation rates with respect to albumin and immunoglobulins but also good selectivity between these components. Thus, particulate membranes has the potential to be used in separating albumin from immunoglobulins for treating disorders related to immunoglobulin abnormalities.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[incitationindex]]E

    A simple variational approach to the quantum Frenkel-Kontorova model

    Full text link
    We present a simple and complete variational approach to the one-dimensional quantum Frenkel-Kontorova model. Dirac's time-dependent variational principle is adopted together with a Hatree-type many-body trial wavefunction for the atoms. The single-particle state is assumed to have the Jackiw-Kerman form. We obtain an effective classical Hamiltonian for the system which is simple enough for a complete numerical solution for the static ground state of the model. Numerical results show that our simple approach captures the essence of the quantum effects first observed in quantum Monte Carlo studies.Comment: 12 pages, 2 figure

    Effective Affective User Interface Design in Games

    Get PDF
    It is proposed that games, which are designed to generate positive affect, are most successful when they facilitate flow (Csikszentmihalyi 1992). Flow is a state of concentration, deep enjoyment, and total absorption in an activity. The study of games, and a resulting understanding of flow in games can inform the design of nonleisure software for positive affect. The paper considers the ways in which computer games contravene Nielsen’s guidelines for heuristic evaluation (Nielsen and Molich 1990) and how these contraventions impact on flow. The paper also explores the implications for research that stem from the differences between games played on a personal computer and games played on a dedicated console. This research takes important initial steps towards defining how flow in computer games can inform affective design
    corecore