22,872 research outputs found

    Stellar Population Models and Individual Element Abundances I: Sensitivity of Stellar Evolution Models

    Get PDF
    Integrated light from distant galaxies is often compared to stellar population models via the equivalent widths of spectral features--spectral indices--whose strengths rely on the abundances of one or more elements. Such comparisons hinge not only on the overall metal abundance but also on relative abundances. Studies have examined the influence of individual elements on synthetic spectra but little has been done to address similar issues in the stellar evolution models that underlie most stellar population models. Stellar evolution models will primarily be influenced by changes in opacities. In order to explore this issue in detail, twelve sets of stellar evolution tracks and isochrones have been created at constant heavy element mass fraction Z that self-consistently account for varying heavy element mixtures. These sets include scaled-solar, alpha-enhanced, and individual cases where the elements C, N, O, Ne, Mg, Si, S, Ca, Ti, and Fe have been enhanced above their scaled-solar values. The variations that arise between scaled-solar and the other cases are examined with respect to the H-R diagram and main sequence lifetimes.Comment: 33 pages, 13 figures, accepted to Ap

    Geometric and Measure-Theoretic Shrinking Targets in Dynamical Systems

    Get PDF
    We consider both geometric and measure-theoretic shrinking targets for ergodic maps, investigating when they are visible or invisible. Some Baire category theorems are proved, and particular constructions are given when the underlying map is fixed. Open questions about shrinking targets are also described

    High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays

    Get PDF
    A limiting factor in the development of mid-infrared optics is the lack of abundant materials that are transparent, low cost, lightweight, and easy to machine. In this paper, we demonstrate a metasurface device that circumvents these limitations. A flat lens based on antenna reflectarrays was designed to achieve near diffraction-limited focusing with a high efficiency (experiment: 80%, simulation: 83%) at 45(o) incidence angle at {\lambda} = 4.6 {\mu}m. This geometry considerably simplifies the experimental arrangement compared to the common geometry of normal incidence which requires beam splitters. Simulations show that the effect of comatic aberrations is small compared to parabolic mirrors. The use of single-step photolithography allows large scale fabrication.Comment: 9 page

    The Creation and Propagation of Radiation: Fields Inside and Outside of Sources

    Get PDF
    We present a new algorithm for computing the electromagnetic fields of currents inside and outside of finite current sources, for arbitrary time variations in the currents. Unexpectedly, we find that our solutions for these fields are free of the concepts of differential calculus, in that our solutions only involve the currents and their time integrals, and do not involve the time derivatives of the currents. As examples, we give the solutions for two configurations of current: a planar solenoid and a rotating spherical shell carrying a uniform charge density. For slow time variations in the currents, we show that our general solutions reduce to the standard expressions for the fields in classic magnetic dipole radiation. In the limit of extremely fast turn-on of the currents, we show that for our general solutions the amount of energy radiated is exactly equal to the magnetic energy stored in the static fields a long time after current creation. We give three associated problem statements which can be used in courses at the undergraduate level, and one problem statement suitable for courses at the graduate level. These problems are of physical interest because: (1) they show that current systems of finite extent can radiate even during time intervals when the currents are constant; (2) they explicitly display transit time delays across a source associated with its finite dimensions; and (3) they allow students to see directly the origin of the reaction forces for time-varying systemsComment: 25 pages, 5 figure

    Observation of Asymmetric Transport in Structures with Active Nonlinearities

    Get PDF
    A mechanism for asymmetric transport based on the interplay between the fundamental symmetries of parity (P) and time (T) with nonlinearity is presented. We experimentally demonstrate and theoretically analyze the phenomenon using a pair of coupled van der Pol oscillators, as a reference system, one with anharmonic gain and the other with complementary anharmonic loss; connected to two transmission lines. An increase of the gain/loss strength or the number of PT-symmetric nonlinear dimers in a chain, can increase both the asymmetry and transmittance intensities.Comment: 5 pages, 5 figure

    Observability of pulsar beam bending by the Sgr~A* black hole

    Get PDF
    According to some models, there may be a significant population of radio pulsars in the Galactic center. In principle, a beam from one of these pulsars could pass close to the supermassive black hole (SMBH) at the center, be deflected, and be detected by Earth telescopes. Such a configuration would be an unprecedented probe of the properties of spacetime in the moderate- to strong-field regime of the SMBH. We present here background on the problem, and approximations for the probability of detection of such beams. We conclude that detection is marginally probable with current telescopes, but that telescopes that will be operating in the near future, with an appropriate multiyear observational program, will have a good chance of detecting a beam deflected by the SMBH.Comment: 18 pages, 16 figure

    Absence of Landau-Peierls Instability in the Magnetic Dual Chiral Density Wave Phase of Dense QCD

    Get PDF
    We investigate the stability of the Magnetic Dual Chiral Density Wave (MDCDW) phase of cold and dense QCD against collective low-energy fluctuations of the order parameter. The appearance of additional structures in the system free-energy due to the explicit breaking of the rotational and isospin symmetries by the external magnetic field and the field-induced asymmetry of the lowest Landau level modes play a crucial role in the analysis. The new structures not only affect the condensate minimum equations, but also the spectrum of the thermal fluctuations, which lacks the transverse soft modes that typically affect single-modulated inhomogeneous phases in the absence of a magnetic field. Consequently, the long-range order of the MDCDW phase is preserved at finite temperature. The lack of Landau-Peierls instabilities in the MDCDW phase makes this inhomogeneous phase of dense quark matter particularly relevant for the physics of neutron stars.Comment: Typos corrected, new discussions adde

    The Sensitivity of the Parkes Pulsar Timing Array to Individual Sources of Gravitational Waves

    Get PDF
    We present the sensitivity of the Parkes Pulsar Timing Array to gravitational waves emitted by individual super-massive black-hole binary systems in the early phases of coalescing at the cores of merged galaxies. Our analysis includes a detailed study of the effects of fitting a pulsar timing model to non-white timing residuals. Pulsar timing is sensitive at nanoHertz frequencies and hence complementary to LIGO and LISA. We place a sky-averaged constraint on the merger rate of nearby (z<0.6z < 0.6) black-hole binaries in the early phases of coalescence with a chirp mass of 10^{10}\,\rmn{M}_\odot of less than one merger every seven years. The prospects for future gravitational-wave astronomy of this type with the proposed Square Kilometre Array telescope are discussed.Comment: fixed error in equation (4). [13 pages, 6 figures, 1 table, published in MNRAS

    A study on Quantization Dimension in complete metric spaces

    Get PDF
    The primary objective of the present paper is to develop the theory of quantization dimension of an invariant measure associated with an iterated function system consisting of finite number of contractive infinitesimal similitudes in a complete metric space. This generalizes the known results on quantization dimension of self-similar measures in the Euclidean space to a complete metric space. In the last part, continuity of quantization dimension is discussed

    Unidirectional Lasing Emerging from Frozen Light in Non-Reciprocal Cavities

    Get PDF
    We introduce a class of unidirectional lasing modes associated with the frozen mode regime of non-reciprocal slow-wave structures. Such asymmetric modes can only exist in cavities with broken time-reversal and space inversion symmetries. Their lasing frequency coincides with a spectral stationary inflection point of the underlying passive structure and is virtually independent of its size. These unidirectional lasers can be indispensable components of photonic integrated circuitry.Comment: 5 pages, 3 figure
    corecore