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OBSERVABILITY OF PULSAR BEAM BENDING BY THE Sgr A* BLACK HOLE
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Center for Gravitational Wave Astronomy and Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520, USA
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ABSTRACT

According to some models, there may be a significant population of radio pulsars in the Galactic center. In principle,
a beam from one of these pulsars could pass close to the supermassive black hole (SMBH) at the center, be deflected,
and be detected by Earth telescopes. Such a configuration would be an unprecedented probe of the properties of
spacetime in the moderate- to strong-field regime of the SMBH. We present here background on the problem, and
approximations for the probability of detection of such beams. We conclude that detection is marginally possible
with current telescopes, but that telescopes that will be operating in the near future, with an appropriate multiyear
observational program, will have a reasonable chance of detecting a beam deflected by the SMBH.
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Online-only material: color figures

1. INTRODUCTION

Near-infrared observations of stars near our Galaxy’s central
supermassive black hole (SMBH) have revealed a larger number
of young, massive stars than can be explained by typical star
formation models (Ghez et al. 2005; Eisenhauer et al. 2005).
This “paradox of youth” (Ghez et al. 2005) has pointed to the
development of a possible continuing top-heavy initial mass
function (IMF) in the region near the central SMBH (Maness
et al. 2007; Nayakshin & Sunyaev 2005). A top-heavy IMF near
Sgr A* would imply the existence of a large number of neutron
stars in close proximity to the central SMBH. Current estimates
suggest that there could be �104 neutron stars within 1 pc of
Sgr A* (Muno et al. 2005), comprising one component of a
cusp of massive stellar remnants in the Galactic core (Freitag
et al. 2006; Hopman & Alexander 2006). X-ray observations
have been consistent with this number of neutron stars (Deegan
& Nayakshin 2007) but appear to have ruled out the presence of
a larger number of neutron stars (e.g., 40,000). In the innermost
regions, the number of pulsars within ∼0.017 pc of Sgr A* could
be as high as ∼1000 (Pfahl & Loeb 2004), where we take the
central SMBH mass to be 4 × 106 M�. For this paper, we will
assume the optimistic population density of 1000 pulsars within
0.017 pc of Sgr A*; our results can readily be scaled to more
conservative population estimates. We will also follow Pfahl &
Loeb in assuming that n(r), the density of pulsars as a function
of distance from the Galactic center, falls off as r−3/2, so that

n = 3

8π
× 106 pc−3 (r/1 pc)−3/2 . (1)

In this paper, we will consider the possibility that an appropri-
ate program to monitor pulsar beams from Sgr A* would detect
a beam that is strongly deflected by the central SMBH. Such a
system would be of great interest, as precision timing of the radio
pulses from such a system would measure the properties of the
spacetime through which they propagate. Preliminary work in
the case of Schwarzschild black holes, presented in Wang et al.
(2009b) and Wang et al. (2009a) (hereafter Paper I and Paper II),
has revealed a rich structure and multiplicity of pulses observed
in such geometries; subsequent work will look at how pulse
timing can be used to measure properties such as the mass and
spin of the SMBH, and measure or constrain deviations in the

higher multipoles of the spacetime from the predictions of gen-
eral relativity. In the present paper we will focus on determining
the likelihood of observing a pulsar in such a configuration. To
do this we will first calculate the probability that a single pulsar,
in orbit around the central SMBH, emits a signal in such a way
that it is strongly deflected by the central SMBH, and reaches
the Earth. From this we then infer the probability that the signal
from one of the assumed number of pulsars is strongly deflected,
reaches the Earth, and is detectable by radio telescopes.

The paper continues in Section 2 with a discussion of the
model for the pulsar–SMBH system, and with assumptions
about pulsar characteristics and telescope sensitivities. The heart
of the paper is the method of computation of probabilities
in Section 3. Numerical estimates of probability, based on
this approach, are given in Section 4, and considerations for
an observing program are given in Section 5. In Section 6
we conclude that an observing program, even with current
radio telescopes, would have some chance of detecting strongly
bent pulsar emissions, while later generations of telescopes
will significantly increase the likelihood of observing these
fascinating systems.

2. BACKGROUND, MODEL, AND ASSUMPTIONS

As a simplification in our probability estimates we take the
SMBH in Sgr A* to be a Schwarzschild hole. It is essentially
certain, of course, that the SMBH is rotating, but the angular
momentum J is currently thought to be less than or of order
half of its maximum possible value of GM2/c, where M is the
mass of the SMBH (Melia et al. 2001; Genzel et al. 2003),
with some authors finding that observations are consistent with
zero spin (Broderick et al. 2011). Typically, the astrophysical
properties of Kerr holes differ significantly from those of
Schwarzshcild holes only when J is very close to GM2/c. Our
preliminary investigations of Kerr holes, in work now underway,
confirm this.

While frame dragging by the black hole may slightly increase
the probability of detecting beams bent in the prograde sense,
and decrease the probability of retrograde-bent beams, these
effects largely cancel when considering the population as a
whole. Thus the Schwarzschild approximation would appear to
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Figure 1. Photon trajectory and the definitions of the angles φin and φout =
F (φin; r0).
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Figure 2. Geometry of the orbit, pulsar spin, and pulsar beam.

be justified for our purposes, in which it is the average properties
that are of importance.

We will rely heavily on results in Papers I and II for pulsar
beam deflection around a Schwarzschild hole. In those papers
φin is the angle between the direction of pulsar emission and
the direction radially outward from the central SMBH at the
emission event; the angle φout is the angle between that same
initial radial direction and the direction in which the pulsar
beam is moving when it is asymptotically far from the SMBH,
as sketched in Figure 1. In the absence of the bending of the
beam, the two angles φin and φout would be equal. The effect of
curvature of the beam is encoded in the function F defined by

φout = F (φin; r0) , (2)

where r0 is the distance of the emission point from the SMBH.
The computational method for finding the F function is dis-
cussed in Papers I and II. A practical approximation for F,
useful for the considerations of this paper, is presented in the
Appendix.

With the simplification to a nonrotating SMBH, we do not
need to consider any angle between the orbit of the pulsar and
the spin axis of the SMBH. The geometric parameters of interest
are pictured in Figure 2. The inclination of the pulsar spin axis
with respect to the orbital plane is denoted as λ; the beam of
pulsar emission is taken to have its center at angle α0 from
the spin axis, and to have width angular width 2Δα, so that
the pulsar emission is confined between conical surfaces with
opening angles α0 − Δα and α0 + Δα, as shown in Figure 2.

In Figure 2, r0 denotes the radial distance of the pulsar from
the SMBH at the moment of emission of a beam. We do not
assume circular orbits in our probability calculations except in
the calculations of orbital times in Section 4.

We will assume that there is no favored alignment of the
pulsar spin axis with the pulsar orbital plane, and will take λ
to be uniformly distributed over the sky. Within a fraction of a
pc from the central SMBH, we expect there to be no significant
alignment of the neutron star population with the disk of the
Galaxy, so we will take the orientation of the orbital plane also
to be randomly distributed over the sphere.
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Figure 3. Histogram of the FWHM of currently known pulsars in units of
fraction of duty cycle (ATNF Pulsar Catalog 2010).

We will assume the angle α0 between the pulsar beam and
the spin axis to be randomly distributed over the half sphere.
Although there is some debate over the alignment of magnetic
and spin axes over time (e.g., Weltevrede & Johnston 2008;
Young et al. 2010), this is by no means a settled issue, and we
therefore make the more generic assumption. We further assume
that for every choice of α0 there is also a beam at π − α0. (In
our probability estimates, we will avoid double counting in the
case when α0 + Δα > π/2 and the conical regions of the two
beams overlap.)

The angular width Δα of the pulsar emission is a crucial
parameter in the probability of observation of deflected beams.
This angular width, seen as the duty cycle in a pulsar reception,
depends on the details of the pulsar emission mechanism, which
are at best incompletely understood. Observations indicate
correlations of beam structure with period, and perhaps with age
(Rankin 1996). Here, of necessity, we make do with a simple
mean. Figure 3 shows a histogram, for currently known pulsars,
of the FWHM of the pulse as a fraction of the pulse duty cycle
(Australia Telescope National Facility (ATNF) Pulsar Catalog
2010). The mean of this distribution is 4.6%, so for probability
calculations in this paper we will use a duty cycle of 5%, and
therefore a value of 9◦ for Δα.

Of particular importance is the fact that a strongly bent beam
will generally be reduced in intensity in comparison with a
directly observed beam; thus our detection probabilities must
account for the reduced brightness of the source. In terms of
the bending function F of Paper I, the “amplification” factor
(generally less than unity) for intensity is given by

I

I0
= sin φin

sin (F ) (dF/dφin)
. (3)

As a step in understanding how much reduction can be allowed if
a pulsar beam is to be observed, we start with the radio luminos-
ity at 1.4 GHz (L band). We will choose our radio luminosities
from two separate distributions. The first distribution is from all
pulsars for which this quantity has been calculated in the ATNF
Pulsar Catalog (2010). In this case, the distribution of pulsar
L-band flux densities S, observed at the Earth, would be that
shown in Figure 4. Since there are likely to be selection effects
present in the distribution of known pulsar luminosities, we will
also calculate our probabilities from values chosen from a sec-
ond distribution described in Faucher-Giguère & Kaspi (2006,
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Figure 4. Distribution of pulsar L-band flux density S that would be seen on
Earth if all cataloged pulsars were located at the center of the Galaxy (ATNF
Pulsar Catalog 2010).

hereafter FGK). This second distribution is a lognormal distribu-
tion with μ = −1.1 and σlog L = 0.9, which when moved to the
Galactic center gives a lognormal distribution with μ = −2.9
while σlog L is unchanged. We present observability results sep-
arately for each assumed distribution in Section 4.

While we have used L-band luminosities above, a search
for pulsars near the Galactic center will require observations
at C band, X band, or Ku band (4–8 GHz, 8–12 GHz, and
12–18 GHz, respectively) to overcome the effects of scattering
from plasma in the Galactic cusp. Cordes & Lazio (1997) argue
that observations around 10 GHz are optimal, whereas Kramer
et al. (2000) contend that the frequency could be pushed as
low as 5 GHz. We scale pulsar luminosities to putative search
frequencies of 5 GHz, 10 GHz, or 15 GHz assuming a power-
law spectrum with spectral index −1.8 (Maron et al. 2000), and
give observability results for each case.

The minimum flux detectable at a telescope can be estimated
with the following equation in Lorimer & Kramer (2005,
hereafter LK), originally from Dewey et al. (1985):

Smin = (SNRmin)β0Ssys√
nptobsΔf

√
W

P − W
. (4)

Here W and P are, respectively, the pulsar pulse width
and period. From our assumption that W/P is 5% we get√

W/(P − W ) = 0.23. The parameter β0 is a correction
factor for imperfections in data collection. Most current pulsar
detection systems are multibit systems with β0 close to 1,
and this is the value we shall use. For np, the number of
polarizations recorded and summed in the detection process,
we will use np = 2 because typically two polarizations are
summed during pulsar detection scans. SNRmin is the minimum
detectable signal-to-noise ratio required in a search; we will take
this to be 8.

For the time pointed at the source, tobs, we will assume a
1 hr observing time. The bandwidth of the recorded data Δf
depends highly on the pulsar detection instruments used at a
particular telescope. Bandwidths at the frequencies in which we
are interested typically range from 500 MHz to 3 GHz. Ssys
is the system equivalent flux density, which depends strongly
on the collecting area of the telescope and the raw antenna
sensitivity (see LK). Table 1 details the relevant characteristics

Table 1
Theoretical Smin Values for Two Existing Radio Telescopes (Parkes, GBT) and

One Planned Radio Telescope (SKA) at Three Frequency Bands

Telescope Frequency Band Ssys Δf Smin

(Jy) (MHz) (mJy)

C band 43 500 .042
Parkes X band 46 500 .045

Ku band 120 500 .14

C band 8 2000 .0039
GBT X band 15 2400 .0066

Ku band 18 3500 .0066

C band .23 2000 .00007
SKA X band .23 2400 .00006

Ku band .23 3500 .00005

Notes. The Ssys values for the existing radio telescopes are measured system
equivalent flux densities and the Δf values are for current receivers. The Ssys

values for the SKA are theoretical values and the Δf values were chosen to be
the same as the GBT receivers.

of the current Parkes telescope in Australia and Green Bank
Telescope (GBT) in the USA, as well as the planned Square
Kilometre Array (SKA).

3. PROBABILITY CALCULATIONS

In this section, we show how to calculate the probability that
radiation from a single pulsar is detectable by a telescope on
Earth, after having passed through the strong-field region of
the black hole. This calculation naturally breaks down into two
parts: determining what orientations of the pulsar and black hole
produce strongly bent beams, and determining where the Earth
must be positioned relative to the system in order to detect those
beams.

In Paper II, it was shown that for any relative position of
pulsar, black hole, and Earth, there are a set of directions,
called “keyholes,” in which a photon could be emitted from
the pulsar, pass around the black hole, and arrive at the Earth.
These keyholes are typically within a few Schwarzschild radii
of the black hole, so when the pulsar is far (many Schwarzschild
radii) from the black hole, we can treat the keyhole as co-located
with the black hole: that is, the pulsar beam must sweep across
the black hole. The first part of the probability calculation is to
determine for what fraction of the pulsar’s orbit it is in a position
to illuminate the black hole with its beam.

We view the system from the perspective of the pulsar, so
that the black hole traverses the sky of the pulsar along a great
circle corresponding to the orbital plane. (This great circle in
the pulsar sky does not imply that the pulsar–SMBH distance
is constant.) Meanwhile, the pulsar spins about its rotation axis,
and emits radiation in a cone offset from that axis: once per
pulsar rotation the cone sweeps out an annulus in the sky of the
pulsar. This is illustrated in Figure 5, where α0, Δα, and λ have
the meaning described in Section 2 and pictured in Figure 2.

With Figure 5(b) we introduce the angle β, the total arc length
(if any) over which the annulus intersects the orbital plane.
When calculating β, it is useful to focus on one hemisphere
at a time and to label the two edges of the pulsar’s radiation
cone. We will define these two edges as α1 = α0 − Δα and
α2 = α0 + Δα. We break the calculation of β into three cases,
with one case having two subcases. The first case is that in
which the orbital plane of the system is never illuminated by
the pulsar’s radiation, α2 < λ, as shown in Figure 6. In this
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Figure 5. Geometry of a pulsar–black-hole system as seen from the pulsar’s reference frame. Panel (a) shows how the pulsar beam sweeps out an annular region
in the pulsar’s sky, which may intersect with the orbital plane of the pulsar–black-hole system. Panel (b) shows the pulsar sky and labels the angles describing the
orientation: λ is the angle between the spin axis and orbital plane, α0 is the angle between the spin axis and the center of the illuminated annulus (or beam), and Δα is
the half-width of the annulus (or beam). The zoom on the right shows the region in the pulsar’s sky in which the Earth can lie if the photons reaching the Earth from
the strong-field regime are to be bent by no more than an angle δ.

λ

α1
α2

Orbital plane

Figure 6. Schematic of the pulsar sky for case 1, in which the orbital plane does
not intersect the annulus.

case, the value of β is trivially zero. The second case is the
case in which the orbital plane passes between the outer and
inner edges of the annulus: α1 � λ < α2. This case has
two subcases. In the first subcase, that for α2 > π/2, the
entire orbital plane is illuminated by the pulsar, as shown in
Figure 7(a). The value of β in this case is the entire range π that
lies in that hemisphere of the pulsar’s sky. (Remember that we
are assuming symmetric emission about the pulsar’s rotational
plane, so that the two beams together illuminate the full 2π
range of the orbital plane.) The second subcase, when α2 � π/2,
has the outer edge of the annulus intersecting the orbital plane
twice, as shown in Figure 7(b). In this case, β can be found
from the spherical triangle version of Pythagoras’s theorem,
applied to the triangle with hypotenuse α2 and sides λ and β/2:
cos α2 = cos λ cos β/2, whence β = 2 arccos(cos α2/ cos λ).
The final case has both the outer and inner edges of the annulus
crossing the orbital plane, α1 > λ, as illustrated in Figure 8. The

β/2
λ α1

α2

Orbital plane

Figure 8. Schematic of pulsar sky for case 3, in which the orbital plane intersects
both the inner and outer edges of the annulus.

calculation proceeds as in the previous case, but considers only
the range of β between the triangles with hypotenuses α2 and
α1: β = 2 arccos(cos α2/ cos λ) − 2 arccos(cos α1/ cos λ). The
cases and calculations for β are summarized in Table 2.

The second part of the probability calculation is to determine
how often the Earth will be in a position to detect strongly bent
beams from the system. This imposes geometric limitations
to ensure that we are considering beams that are significantly
deflected by the black hole, but that are not deflected so strongly
that they are attenuated to a flux too low to be detected. These
constraints turn out to place limits on the acceptable range
of φout.

The determination of this range is shown in Figure 9 for the
case r0 = 100M . This figure shows the dramatic amplification
at φout = π , corresponding to strong lensing. For φout slightly
less than π , the attenuation factor is unity, and the bending is
not significant. There is bending for φout < π , but the range of
φout for which there is significant bending is small. Moreover,

λ
α1

α2

Orbital plane

(a)

β/2

λ
α1α2

Orbital plane

(b)

Figure 7. Schematic of pulsar sky for case 2, in which the orbital plane passes between the outer and inner edges of the annulus. In panel (a), the orbital plane is
entirely contained within the annulus. In panel (b), it crosses the outer edge of the annulus at two points symmetric about the meridian containing the spin axis.
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Table 2
Formulae for the Overlap Angle β of the Pulsar Beam with the Orbital Plane

Case Condition β Calculation

1 α2 � λ β = 0

2a
2b

α1 � λ < α2

{
α2 � π/2

α2 < π/2

β = π

β = 2 arccos
( cos α2

cos λ

)
3 λ < α1 β = 2 arccos

( cos α2
cos λ

) − 2 arccos
( cos α1

cos λ

)

Phi_out

lo
g(

A
m

pl
ifi

ca
tio

n)

0.42

-2.79

0.94

-2.16

1.46

-1.52

1.98

-0.88

2.49

-0.24

3.01

0.40

3.53

1.04

4.05

1.68

4.57

2.32

δ

Not strongly bent Too weak to be detected

Figure 9. Intensity ratio I/I0 as a function of φout, for r0 = 100 M . The shaded
regions show the ranges of φout that are not of interest either because the pulsar
beam is too weakly deflected or because it is too strongly attenuated.

this range is even smaller than in Figure 9 for the larger,
more relevant values of r0/M . As a convenient approximation,
therefore, we will consider “strong bending” only for φout � π .
The figure shows that as φout increases beyond π the attenuation
becomes greater and greater.

Our approach will be to specify a radius of emission r0 and
a minimum acceptable value of I/I0. From a calculation like
that shown in Figure 9 we then find the value of the angle δ,
the value of φout − π at which the attenuation is that of the
minimum acceptable value of I/I0. This value of δ determines
the range of directions in which the Earth must be located if an
Earth telescope is to detect the beam: the Earth must lie no more
than an angle δ from the pulsar–black-hole axis.

The corresponding region on the pulsar sky is illustrated in
Figure 5(b). Since δ is typically very small, we can express
this area using a flat-space approximation: 2βδ + πδ2. The
probability that observers on Earth can detect strongly bent
beams from a given pulsar is given by the size of this area over
the angular area of one hemisphere (again, we assume symmetry
across the rotation plane of the pulsar):

P1 = 2βδ + πδ2

2π
. (5)

This of course assumes nonzero β: if β = 0, the black hole
is not illuminated by the pulsar, and there are no strongly bent
beams, so P1 = 0. Note that β is a function of the underlying
parameters λ, α0, and Δα, and δ is a function of the underlying
parameters r0/M and Imin/I0.

4. RESULTS

Now that we have shown how to calculate the probability of
Earth-based detection of a particular pulsar, we will describe
how we estimated the number of pulsars that would be detected

Table 3
Minimum Detectable Fluxes Smin and Number of Detectable Pulsars P ATNF

tot ,
P FGK

tot (assuming intrinsic luminosity distributions from ATNF and FGK,
respectively) for Two Existing Radio Telescopes (Parkes, GBT) and One

Planned Radio Telescope (SKA)

Telescope Name Frequency Band Smin (mJy) P ATNF
tot P FGK

tot

C band .042 8.21 .189
Parkes X band .045 3.53 .0490

Ku band .14 .839 .00548

C band .0039 27.0 1.45
GBT X band .0066 11.5 .331

Ku band .0066 7.61 .167

C band .00007 113 16.6
SKA X band .00006 79.1 9.58

Ku band .00005 65.7 7.05

given assumptions about the distributions of pulsar character-
istics. We ran Monte Carlo simulations that selected λ from a
uniform distribution of cos λ, so that the direction of the pul-
sar spin axis was uniformly distributed over the sky; similarly,
α0 was chosen from a uniform distribution of cos α0. Then a
value for the pulsar’s flux, S, was chosen from the distribution
shown in Figure 4. Lastly, a value of r0/M was chosen from
the distribution in Equation (1); we cut this distribution off at
r0/M = 400,000 since pulsars beyond that point contribute
little to the total probability (see below).

The simulations took the pulsar parameters (r0, S) chosen
by the Monte Carlo method. From these a determination of
the minimum value of I/I0 was made (equivalently Smin/S)
that can be detected for those pulsar parameters. From I/I0
and r0, the value of δ was determined. The value of β was
determined through the calculations described in the previous
section applied to the values of λ and α0 chosen by the Monte
Carlo method. The justification for using Δα = 9◦ has been
explained in Section 2. P1 was then calculated with Equation (5).
This gives us the probability that a single pulsar’s beam will
explore the black hole’s strong gravitational field and still be
detectable once it reaches the Earth. Monte Carlo simulations
were repeated to ensure that results were consistent to better
than 1%. We then multiplied our result by the total number
of pulsars out to r0 = 400,000, according to the Pfahl and
Loeb distribution of Equation (1). The result is the total number
of pulsars (Ptot) that will, at some point in their orbit about the
central SMBH, both illuminate the strong gravitational field and
be detectable at Earth. Table 3 gives this number for the three
telescopes considered in Section 2, in three different frequency
bands, for the two luminosity distributions ATNF and FGK.

The number of pulsars that are observable at some point in
their orbit is not directly relevant if the orbital time is much
larger than the duration of an observing program. For this
reason we introduce a more useful number, the “observability,”
Pobs, to describe the expected number of pulsars detectable in
a limited-time observing program. In order to calculate this
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Figure 10. Expected number of pulsars observed having strongly bent beams as a function of observational program duration for three different telescopes (Parkes,
GBT, SKA) and two luminosity distributions (ATNF, FGK). Curves are labeled with the observing frequency band.

(A color version of this figure is available in the online journal.)

number, we ran the Monte Carlo simulations with a specified
observational program duration (L). Once P1 was calculated, we
then compared the pulsar’s orbital period (T) to L. If T was less
than or equal to L, then Pobs was taken to be P1. If T was greater
than L, then P1 was replaced by

Pobs = P1 × L

T
, (6)

and the result was multiplied by the total number of pulsars.
Figure 10 shows the results of the Monte Carlo simulations for
observational program durations ranging from one year to seven
years.

Figure 11 shows the variation in the number of pulsars
detected, for Smin = 0.0066 mJy at 5 GHz, as the cutoff radius is
changed, and justifies our use of the cutoff at r0/M = 4 × 105.

Other values of Smin and observing frequency give similar
results.

5. OBSERVING PROGRAMS AND STRATEGIES

A natural first question about observing strongly deflected
beams is “how will we know that they are strongly deflected?”
The answer starts with the fact that the angle through which the
beam is “strongly” deflected is not large. For our paradigmatic
case, r0 = 104 M , the bending is approximately 0.036 rad. For
larger r0 the deflection, for a given Smin, is even smaller.

Since the “strong” deflection is small, we will receive a
deflected beam only when the emitting pulsar, the SMBH, and
the Earth are almost on a straight line. Since pulsar beam widths
are large compared to the deflection, this means that if the Earth
receives the deflected beam, it will also receive the direct beam.
The geometry of the direct and deflected beams is shown in

6



The Astrophysical Journal, 744:143 (8pp), 2012 January 10 Stovall et al.

0 2e+05 4e+05 6e+05 8e+05 1e+06

Cutoff value of r
0
/M

0

0.5

1

1.5

2

2.5
N

um
be

r 
of

 p
ul

sa
rs

 e
xp

ec
te

d

7

5

3

2

1

Figure 11. Number of pulsars expected, for Smin = 0.0066 mJy, at 5 GHz as a
function of the cutoff r0/M for the distribution in Equation (1) and the ATNF
luminosity distribution. Each curve is labeled with the number of years assumed
for the search.

(A color version of this figure is available in the online journal.)
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Figure 12. Geometry of the observation of direct and deflected beams.

Figure 12, where we see that the angle, at reception, of the
direct and deflected beams is not of order r0 divided by the
Earth–SMBH distance (8 kpc), but rather is of order of that
number multiplied by the deflection angle. The result, an angle
of order 10−8 rad, is less than the resolution of radio telescopes.
We conclude that any monitoring of the innermost region of
Sgr A∗ for a deflected beam will also monitor for a direct beam.

The criterion for the detection of a strongly deflected beam
will be that it is one of a pair of pulses detected with very similar
pulse periods, differing only due to a phase modulation caused
by variations in the propagation times along the two paths: the
two sets of pulses will differ in pulse period by a fractional
amount of order the pulsar velocity divided by c. (See Papers I
and II for more detail on phase effects and intensity effects of
deflection.) If a deflected beam is detected we therefore assume
that it will be relatively simple to identify it as deflected.

If the Pfahl and Loeb distribution of Equation (1) is approx-
imately valid with a pulsar luminosity distribution similar to
known (ATNF) pulsars, the results of the previous section, es-
pecially Figure 10, suggest that there is a reasonable chance
of observing one or more strongly deflected pulsar beams with
an observing program of 3–5 years using existing telescopes,
particularly if Kramer et al. (2000) are correct and the search
can be carried out at 5 GHz. More pessimistically, if we assume
luminosity selection effects from FGK, the chances of detecting
such beams with existing telescopes are slim, and we must await
more sensitive instruments such as the SKA.

An appropriate multiyear observing program can be carried
out “in background” at a telescope. Observations must be made
sufficiently frequently not to miss the relatively short epoch
during which the pulsar/SMBH/Earth alignment leads to a
strongly deflected beam meeting the I/I0 criterion. This epoch

φ

r

R0

0

(r  )

in

φ
(R  )

in
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photon
 path

 direction 
of outgoing
  photon
at infinity

φ
(R  )

out

0
0

0

Figure 13. Flat spacetime propagation from large radius to very large radius.
Angles φin for the large and the very large emission radius are distinguished
with the superscripts (R0) and (r0), respectively.

is of order of the orbital time multiplied by the ratio δ/(2π ). For
our prototypical choice r0 = 104 M , this epoch is on the order
of a week. Searches for deflected beams in Sgr A∗, therefore,
would have to be made every other day. The observing session
would be of a duration of that used for any other pulsar search,
on the order of 1 hr. Longer observations might be considered,
in view of the effect shown in Equation (4) of tobs on Smin and
hence on the I/I0 cutoff.

An important question to ask is why we do not yet have
evidence of the assumed large population of pulsars in Sgr A∗.
Surveys of the Galactic center at 3.1 GHz and 8.4 GHz with the
Parkes observatory (Johnston et al. 2006), and at 2 GHz with
the GBT (Deneva et al. 2009), discovered a total of five highly
dispersed pulsars, but none within 10′ of Sgr A∗. It is quite
possible, however, that these surveys are limited by scattering
at low frequencies due to plasma at the Galactic center, and
by reduced sensitivity at higher frequencies due to the negative
spectral index of pulsar emissions. Overcoming these effects
might require observations at frequencies of 5 GHz (Kramer
et al. 2000) or 10 GHz (Cordes & Lazio 1997), using the most
sensitive telescopes and receivers available at those frequencies.

It should be noted that, at least to some extent, monitoring the
Galactic center for strongly deflected beams would constitute a
more general search for pulsars in that region. The possibility
of detecting deflected beams and making measurements of the
parameters of the SMBH provides added scientific motivation
for such a survey.

6. CONCLUSIONS

Our estimates suggest that a multiyear program that monitors
Sgr A∗ with radio observations for 1 hr every other day has a very
small but non-negligible probability of detecting pulsar beams
that have been strongly deflected by our Galaxy’s SMBH. With
instruments coming in the near future, in particular the SKA,
the probability should become high enough so that a three-year
observational program might optimistically detect such beams
from multiple pulsars, or, in the absence of detections, would
constrain the more optimistic models for the pulsar population
in the Galactic cusp.

Our estimates in this paper constitute a first step in the
study of probabilities of detection of a strongly deflected beam.
The intention was to establish whether the probabilities are so
small that observations are out of the question, or so large that

7
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current observations rule out models, like that of Pfahl & Loeb
(2004), with a significant density of pulsars in Sgr A∗. The
estimates in this paper establish neither extreme: a concerted
observing program with the best current telescopes would not
be guaranteed to make a detection, but under optimistic models
or with improved instruments could plausibly detect strongly
bent beams from a (small) number of pulsars. This provides
motivation for such a program and also for further study of the
problem of pulsar beam deflection by SMBHs.

Such an improved study would have to include effects of spin
of the SMBH, and of eccentricity of orbits. While our approach
of using averages and simple assumptions was appropriate
for the purpose of this paper, effects due to SMBH spin, and
high eccentricity, could increase the parameter space of pulsar
configurations whose beams can reach the Earth. Such work is
now underway.

The most exciting result of these preliminary estimates is
their indication that we are potentially on the verge of detecting
a new phenomenon: pulsar beams that have passed through the
strong-field region of the SMBH at the center of our Galaxy,
beams that can bring us information about the properties of the
SMBH and its surrounding spacetime might be inaccessible in
any other way.

We gratefully acknowledge support by the National Sci-
ence Foundation under grants AST0545837, PHY0554367, and
HRD0734800. We thank the Center for Gravitational Wave As-
tronomy at the University of Texas at Brownsville. We also
thank an anonymous referee for many helpful suggestions.

APPENDIX

We are primarily interested in values of φin that are only
slightly smaller than π . In this case the photon path starting at
some very large radius will penetrate to small radii, and almost
all the bending will take place at small radii. We can then find
the bending for emission from the very large radius, say r0 =
10,000 M , by considering the bending only interior to a smaller
large radius, say R0 = 100 M . In effect, we are considering the
large radius region from R0 to r0 to be flat space, as illustrated in
Figure 13. From the curve F (φin; r) for R0 = 100 M , therefore,
we can infer the curve for r0 = 10,000 M , and for all larger
radii (provided, of course, that φin is near π so that both R0 and
r0 are much larger than the radii at which the bending occurs).

To find φ
(r0)
out for a photon emitted at a very large r0, we

choose the smaller R0 along the future path of the photon to be a
radius for which we know the curve φ

(R0)
out = F (φ(R0)

in ;R0). Here
superscripts (r0) and (R0) distinguish the angles associated with
the two radii. The Euclidean geometry relating φ(r0)

in and φ(R0)
in is

given by the law of sines to be

φ(R0)
in = sin−1

(
r0

R0
sin φ(r0)

in

)
, (A1)

and we choose the branch of sin−1 so that φ(R0)
in > π/2.

We next note that φout for the photon starting at R0 is less than
φout for that same photon world line considered to start at r0, in
flat space, according to

φ
(r0)
out = φ

(R0)
out + γ . (A2)

With γ evaluated in terms of the ingoing angles, this becomes

φ
(r0)
out = φ

(R0)
out + φ(r0)

in − φ(R0)
in . (A3)
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Figure 14. Bending function φout = F (φin) for bending angles near π , for an
initial radius R0 = 100 M .

From a combination of Equations (A1) and (A3), written in
terms of the function F (φ; r), the full expression can be given
as

F (φ; r0) = φ+F

[
sin−1

(
r0

R0
sin φ

)
;R0

]
−sin−1

(
r0

R0
sin φ

)
.

(A4)
Thus, knowing the F function for any (sufficiently large) R0,

we can evaluate it for any larger r0, and thus determine the
maximum deflection angle δ via Equation (3). Figure 14 shows
our reference bending function for a radius R0 = 100 M .
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