26,694 research outputs found

    Lecture notes: Semidefinite programs and harmonic analysis

    Full text link
    Lecture notes for the tutorial at the workshop HPOPT 2008 - 10th International Workshop on High Performance Optimization Techniques (Algebraic Structure in Semidefinite Programming), June 11th to 13th, 2008, Tilburg University, The Netherlands.Comment: 31 page

    Noise threshold for universality of 2-input gates

    Get PDF
    Evans and Pippenger showed in 1998 that noisy gates with 2 inputs are universal for arbitrary computation (i.e. can compute any function with bounded error), if all gates fail independently with probability epsilon and epsilon<theta, where theta is roughly 8.856%. We show that formulas built from gates with 2 inputs, in which each gate fails with probability at least theta cannot be universal. Hence, there is a threshold on the tolerable noise for formulas with 2-input gates and it is theta. We conjecture that the same threshold also holds for circuits.Comment: International Symposium on Information Theory, 2007, minor corrections in v

    Prediction Scores as a Window into Classifier Behavior

    Get PDF
    Most multi-class classifiers make their prediction for a test sample by scoring the classes and selecting the one with the highest score. Analyzing these prediction scores is useful to understand the classifier behavior and to assess its reliability. We present an interactive visualization that facilitates per-class analysis of these scores. Our system, called Classilist, enables relating these scores to the classification correctness and to the underlying samples and their features. We illustrate how such analysis reveals varying behavior of different classifiers. Classilist is available for use online, along with source code, video tutorials, and plugins for R, RapidMiner, and KNIME at https://katehara.github.io/classilist-site/.Comment: Presented at NIPS 2017 Symposium on Interpretable Machine Learnin

    Second-order Quantile Methods for Experts and Combinatorial Games

    Get PDF
    We aim to design strategies for sequential decision making that adjust to the difficulty of the learning problem. We study this question both in the setting of prediction with expert advice, and for more general combinatorial decision tasks. We are not satisfied with just guaranteeing minimax regret rates, but we want our algorithms to perform significantly better on easy data. Two popular ways to formalize such adaptivity are second-order regret bounds and quantile bounds. The underlying notions of 'easy data', which may be paraphrased as "the learning problem has small variance" and "multiple decisions are useful", are synergetic. But even though there are sophisticated algorithms that exploit one of the two, no existing algorithm is able to adapt to both. In this paper we outline a new method for obtaining such adaptive algorithms, based on a potential function that aggregates a range of learning rates (which are essential tuning parameters). By choosing the right prior we construct efficient algorithms and show that they reap both benefits by proving the first bounds that are both second-order and incorporate quantiles

    pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems

    Full text link
    pde2path is a free and easy to use Matlab continuation/bifurcation package for elliptic systems of PDEs with arbitrary many components, on general two dimensional domains, and with rather general boundary conditions. The package is based on the FEM of the Matlab pdetoolbox, and is explained by a number of examples, including Bratu's problem, the Schnakenberg model, Rayleigh-Benard convection, and von Karman plate equations. These serve as templates to study new problems, for which the user has to provide, via Matlab function files, a description of the geometry, the boundary conditions, the coefficients of the PDE, and a rough initial guess of a solution. The basic algorithm is a one parameter arclength continuation with optional bifurcation detection and branch-switching. Stability calculations, error control and mesh-handling, and some elementary time-integration for the associated parabolic problem are also supported. The continuation, branch-switching, plotting etc are performed via Matlab command-line function calls guided by the AUTO style. The software can be downloaded from www.staff.uni-oldenburg.de/hannes.uecker/pde2path, where also an online documentation of the software is provided such that in this paper we focus more on the mathematics and the example systems

    A Formal, Resource Consumption-Preserving Translation of Actors to Haskell

    Get PDF
    We present a formal translation of an actor-based language with cooperative scheduling to the functional language Haskell. The translation is proven correct with respect to a formal semantics of the source language and a high-level operational semantics of the target, i.e. a subset of Haskell. The main correctness theorem is expressed in terms of a simulation relation between the operational semantics of actor programs and their translation. This allows us to then prove that the resource consumption is preserved over this translation, as we establish an equivalence of the cost of the original and Haskell-translated execution traces.Comment: Pre-proceedings paper presented at the 26th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh, Scotland UK, 6-8 September 2016 (arXiv:1608.02534

    Minimum Description Length Induction, Bayesianism, and Kolmogorov Complexity

    Get PDF
    The relationship between the Bayesian approach and the minimum description length approach is established. We sharpen and clarify the general modeling principles MDL and MML, abstracted as the ideal MDL principle and defined from Bayes's rule by means of Kolmogorov complexity. The basic condition under which the ideal principle should be applied is encapsulated as the Fundamental Inequality, which in broad terms states that the principle is valid when the data are random, relative to every contemplated hypothesis and also these hypotheses are random relative to the (universal) prior. Basically, the ideal principle states that the prior probability associated with the hypothesis should be given by the algorithmic universal probability, and the sum of the log universal probability of the model plus the log of the probability of the data given the model should be minimized. If we restrict the model class to the finite sets then application of the ideal principle turns into Kolmogorov's minimal sufficient statistic. In general we show that data compression is almost always the best strategy, both in hypothesis identification and prediction.Comment: 35 pages, Latex. Submitted IEEE Trans. Inform. Theor

    Extrapolation-Based Implicit-Explicit Peer Methods with Optimised Stability Regions

    Get PDF
    In this paper we investigate a new class of implicit-explicit (IMEX) two-step methods of Peer type for systems of ordinary differential equations with both non-stiff and stiff parts included in the source term. An extrapolation approach based on already computed stage values is applied to construct IMEX methods with favourable stability properties. Optimised IMEX-Peer methods of order p = 2, 3, 4, are given as result of a search algorithm carefully designed to balance the size of the stability regions and the extrapolation errors. Numerical experiments and a comparison to other implicit-explicit methods are included.Comment: 21 pages, 6 figure

    High accuracy semidefinite programming bounds for kissing numbers

    Get PDF
    The kissing number in n-dimensional Euclidean space is the maximal number of non-overlapping unit spheres which simultaneously can touch a central unit sphere. Bachoc and Vallentin developed a method to find upper bounds for the kissing number based on semidefinite programming. This paper is a report on high accuracy calculations of these upper bounds for n <= 24. The bound for n = 16 implies a conjecture of Conway and Sloane: There is no 16-dimensional periodic point set with average theta series 1 + 7680q^3 + 4320q^4 + 276480q^5 + 61440q^6 + ...Comment: 7 pages (v3) new numerical result in Section 4, to appear in Experiment. Mat

    The Role of Monotonicity in the Epistemic Analysis of Strategic Games

    Get PDF
    It is well-known that in finite strategic games true common belief (or common knowledge) of rationality implies that the players will choose only strategies that survive the iterated elimination of strictly dominated strategies. We establish a general theorem that deals with monotonic rationality notions and arbitrary strategic games and allows to strengthen the above result to arbitrary games, other rationality notions, and transfinite iterations of the elimination process. We also clarify what conclusions one can draw for the customary dominance notions that are not monotonic. The main tool is Tarski's Fixpoint Theorem.Comment: 20 page
    • …
    corecore