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Abstract: It is well-known that in finite strategic games true common belief (or common
knowledge) of rationality implies that the players will choose only strategies that survive
the iterated elimination of strictly dominated strategies. We establish a general theorem
that deals with monotonic rationality notions and arbitrary strategic games and allows to
strengthen the above result to arbitrary games, other rationality notions, and transfinite
iterations of the elimination process. We also clarify what conclusions one can draw for
the customary dominance notions that are not monotonic. The main tool is Tarski’s Fixpoint
Theorem.
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1. Introduction

1.1. Contributions

In this paper we provide an epistemic analysis of arbitrary strategic games based on possibility
correspondences. We prove a general result that is concerned with monotonic program properties1 used
by the players to select optimal strategies.

1The concept of a monotonic property is introduced in Section 2.
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More specifically, given a belief model for the initial strategic game, denote by RAT(φ) the property
that each player i uses a property φi to select his strategy (‘each player i is φi-rational’). We establish in
Section 3 the following general result:

Assume that each property φi is monotonic. The set of joint strategies that the players choose in the
states in which RAT(φ) is a true common belief is included in the set of joint strategies that remain after
the iterated elimination of the strategies that for player i are not φi-optimal.

In general, transfinite iterations of the strategy elimination are possible. For some belief models the
inclusion can be reversed.

This general result covers the usual notion of rationalizability in finite games and a ‘global’ version
of the iterated elimination of strictly dominated strategies used in [1] and studied for arbitrary games
in [2]. It does not hold for the ‘global’ version of the iterated elimination of weakly dominated strategies.
For the customary, ‘local’ version of the iterated elimination of strictly dominated strategies we justify
in Section 4 the statement

true common belief (or common knowledge) of rationality implies that the players will
choose only strategies that survive the iterated elimination of strictly dominated strategies

for arbitrary games and transfinite iterations of the elimination process. Rationality refers here to the
concept studied in [3]. We also show that the above general result yields a simple proof of the well-known
version of the above result for finite games and strict dominance by a mixed strategy.

The customary, local, version of strict dominance is non-monotonic, so the use of monotonic
properties has allowed us to provide epistemic foundations for a non-monotonic property. However,
weak dominance, another non-monotonic property, remains beyond the reach of this approach. In
fact, we show that in the above statement we cannot replace strict dominance by weak dominance.
A mathematical reason is that its global version is also non-monotonic, in contrast to strict dominance,
the global version of which is monotonic. To provide epistemic foundations of weak dominance the
only currently known approaches are [4] based on lexicographic probability systems and [5] based on a
version of the ‘all I know’ modality.

1.2. Connections

The relevance of monotonicity in the context of epistemic analysis of finite strategic games has already
been pointed out in [6]. The distinction between local and global properties is from [7] and [8].

To show that for some belief models an equality holds between the set of joint strategies chosen in the
states in which RAT(φ) is true common belief and the set of joint strategies that remain after the iterated
elimination of the strategies that for player i are not φi-rational requires use of transfinite ordinals. This
complements the findings of [9] in which transfinite ordinals are used in a study of limited rationality,
and [10], where a two-player game is constructed for which the ω0 (the first infinite ordinal) and ω0 + 1

iterations of the rationalizability operator of [3] differ.
In turn, [11] show that arbitrary ordinals are necessary in the epistemic analysis of arbitrary strategic

games based on partition spaces. Further, as shown in [2], the global version of the iterated elimination
of strictly dominated strategies, when used for arbitrary games, also requires transfinite iterations of the
underlying operator.
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Finally, [12] invokes Tarski’s Fixpoint Theorem, in the context of what the author calls “general
systems”, and uses this to prove that the set of rationalizable strategies in a finite non-cooperative
game is the largest fixpoint of a certain operator. That operator coincides with the global version of
the elimination of never-best-responses.

Some of the results presented here were initially reported in a different presentation, in [13].

2. Preliminaries

2.1. Strategic Games

Given n players (n > 1) by a strategic game (in short, a game) we mean a sequence
(S1, . . ., Sn, p1, . . ., pn), where for all i ∈ {1, . . ., n}

• Si is the non-empty set of strategies available to player i,

• pi is the payoff function for the player i, so pi : S1 × . . . × Sn→R, where R is the set of
real numbers.

We denote the strategies of player i by si, possibly with some superscripts. We call the elements
of S1 × . . . × Sn joint strategies. Given a joint strategy s we denote the ith element of s by si, write
sometimes s as (si, s−i), and use the following standard notation:

• s−i := (s1, . . ., si−1, si+1, . . ., sn),

• S−i := S1 × . . .× Si−1 × Si+1 × . . .× Sn.

Given a finite non-empty set A we denote by ∆A the set of probability distributions over A and call
any element of ∆Si a mixed strategy of player i.

In the remainder of the paper we assume an initial strategic game

H := (H1, . . ., Hn, p1, . . ., pn)

A restriction of H is a sequence (G1, . . ., Gn) such that Gi ⊆Hi for all i ∈ {1, . . ., n}. Some of Gis can
be the empty set. We identify the restriction (H1, . . ., Hn) withH . We shall focus on the complete lattice
that consists of the set of all restrictions of the game H ordered by the componentwise set inclusion:

(G1, . . ., Gn)⊆ (G′1, . . ., G
′
n) iff Gi ⊆G′i for all i ∈ {1, . . ., n}

So in this lattice H is the largest element in this lattice.

2.2. Possibility Correspondences

In this and the next subsection we essentially follow the survey of [14]. Fix a non-empty set Ω of
states. By an event we mean a subset of Ω.

A possibility correspondence is a mapping from Ω to the powerset P(Ω) of Ω. We consider three
properties of a possibility correspondence P :
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(i) for all ω, P (ω) 6= ∅,

(ii) for all ω and ω′, ω′ ∈ P (ω) implies P (ω′) = P (ω),

(iii) for all ω, ω ∈ P (ω).

If the possibility correspondence satisfies properties (i) and (ii), we call it a belief correspondence
and if it satisfies properties (i)–(iii), we call it a knowledge correspondence.2 Note that each knowledge
correspondence P yields a partition {P (ω) | ω ∈ Ω} of Ω.

Assume now that each player i has at its disposal a possibility correspondence Pi. Fix an event E.
We define

�E := �1E := {ω ∈ Ω | ∀i ∈ {1, . . ., n} Pi(ω)⊆ E}

by induction on k ≥ 1

�k+1E := ��kE

and finally

�∗E :=
∞⋂
k=1

�kE

If all Pis are belief correspondences, we usually write B instead of � and if all Pis are knowledge
correspondences, we usually write K instead of �. When ω ∈ B∗E, we say that the event E is common
belief in the state ω and when ω ∈ K∗E, we say that the event E is common knowledge in the state ω.

An event F is called evident if F ⊆�F . That is, F is evident if for all ω ∈ F we have Pi(ω)⊆ F for
all i ∈ {1, . . ., n}. In what follows we shall use the following alternative characterizations of common
belief and common knowledge based on evident events:

ω ∈ �∗E iff for some evident event F we have ω ∈ F ⊆�E (1)

where � = B or � = K (see [16], respectively Proposition 4 on page 180 and Proposition on
page 174), and

ω ∈ K∗E iff for some evident event F we have ω ∈ F ⊆ E (2)

([17], page 1237).

2.3. Models for Games

We now relate these considerations to strategic games. Given a restriction G := (G1, . . ., Gn) of
the initial game H , by a model for G we mean a set of states Ω together with a sequence of functions
si : Ω→Gi, where i ∈ {1, . . ., n}. We denote it by (Ω, s1, . . ., sn).

In what follows, given a function f and a subset E of its domain, we denote by f(E) the range of f
on E and by f |E the restriction of f to E.

By the standard modelM for G we mean the model in which

2Note that the notion of a belief has two meanings in the literature on epistemic analysis of strategic games, so also in this
paper. From the context it is always clear which notion is used. In the modal logic terminology a belief correspondence is a
frame for the modal logic KD45 and a knowledge correspondence is a frame for the modal logic S5, see, e.g. [15].



Games 2010, 1 385

• Ω := G1 × . . .×Gn

• si(ω) := ωi, where ω = (ω1, . . ., ωn)

So the states of the standard model for G are exactly the joint strategies in G, and each si is a projection
function. Since the initial game H is given, we know the payoff functions p1, . . ., pn. So in the context
of H the standard model is an alternative way of representing a restriction of H .

Given a (not necessarily standard) modelM := (Ω, s1, . . ., sn) for a restriction G and a sequence of
events E = (E1, . . ., En) inM (i.e., of subsets of Ω) we define

GE := (s1(E1), . . ., sn(En))

and call it the restriction of G to E. When each Ei equals E we write GE instead of GE .
Finally, we extend the notion of a model for a restriction G to a belief model for G by assuming that

each player i has a belief correspondence Pi on Ω. If each Pi is a knowledge correspondence, we refer
then to a knowledge model. We write each belief model as

(Ω, s1, . . ., sn, P1, . . ., Pn)

2.4. Operators

Consider a fixed complete lattice (D, ⊆ ) with the largest element>. In what follows we use ordinals
and denote them by α, β, γ. Given a, possibly transfinite, sequence (Gα)α<γ of elements of D we denote
their join and meet respectively by

⋃
α<γ Gα and

⋂
α<γ Gα.

Let T be an operator on (D, ⊆ ), i.e., T : D→D.

• We call T monotonic if for all G,G′, G⊆G′ implies T (G)⊆ T (G′), and contracting if for all G,
T (G)⊆G.

• We say that an element G is a fixpoint of T if G = T (G) and a post-fixpoint of T if G⊆ T (G).

• We define by transfinite induction a sequence of elements Tα of D, where α is an ordinal,
as follows:

– T 0 := >,

– Tα+1 := T (Tα),

– for all limit ordinals β, T β :=
⋂
α<β T

α.

• We call the least α such that Tα+1 = Tα the closure ordinal of T and denote it by αT . We call
then TαT the outcome of (iterating) T and write it alternatively as T∞.

So an outcome is a fixpoint reached by a transfinite iteration that starts with the largest element. In
general, the outcome of an operator does not need to exist but we have the following classic result due
to [18].3

3We use here its ‘dual’ version in which the iterations start at the largest and not at the least element of a complete lattice.
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Tarski’s Fixpoint Theorem Every monotonic operator T on (D, ⊆ ) has an outcome, i.e., T∞ is
well-defined. Moreover,

T∞ = νT = ∪{G | G⊆ T (G)}

where νT is the largest fixpoint of T .

In contrast, a contracting operator does not need to have a largest fixpoint. But we have the following
obvious observation.

Note 1. Every contracting operator T on (D, ⊆ ) has an outcome, i.e., T∞ is well-defined. 2

In Section 4 we shall need the following lemma, that modifies the corresponding lemma from [8]
from finite to arbitrary complete lattices.

Lemma 1. Consider two operators T1 and T2 on (D, ⊆ ) such that

• for all G, T1(G)⊆ T2(G),

• T1 is monotonic,

• T2 is contracting.

Then T∞1 ⊆ T∞2 .

Proof. We first prove by transfinite induction that for all α

Tα1 ⊆ Tα2 (3)

By the definition of the iterations we only need to consider the induction step for a successor ordinal.
So suppose the claim holds for some α. Then by the first two assumptions and the induction hypothesis
we have the following string of inclusions and equalities:

Tα+1
1 = T1(T

α
1 )⊆ T1(Tα2 )⊆ T2(Tα2 ) = Tα+1

2

This shows that for all α (3) holds. By Tarski’s Fixpoint Theorem and Note 1 the outcomes of T1 and
T2 exist, which implies the claim. 2

2.5. Iterated Elimination of Non-Rational Strategies

In this paper we are interested in analyzing situations in which each player pursues his own notion
of rationality and this information is common knowledge or true common belief. As a special case we
cover then the usually analyzed situation in which all players use the same notion of rationality.

Given player i in the initial strategic game H := (H1, . . ., Hn, p1, . . ., pn) we formalize his notion of
rationality using an optimality property φ(si, Gi, G−i) that holds between a strategy si ∈ Hi, a set Gi of
strategies of player i and a set G−i of joint strategies of his opponents. Intuitively, φi(si, Gi, G−i) holds
if si is an ‘optimal’ strategy for player i within the restriction G := (Gi, G−i), assuming that he uses
the property φi to select optimal strategies. In Section 4 we shall provide several natural examples of
such properties.
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We say that the property φi used by player i is monotonic if for all G−i, G′−i ⊆H−i and si ∈ Hi

G−i ⊆G′−i and φ(si, Hi, G−i) imply φ(si, Hi, G
′
−i)

So monotonicity refers to the situation in which the set of strategies of player i is set to Hi and the set of
joint strategies of player i’s opponents is increased.

Each sequence of properties φ := (φ1, . . ., φn) determines an operator Tφ on the restrictions of H
defined by

Tφ(G) := G′

where G := (G1, . . ., Gn), G′ := (G′1, . . ., G
′
n), and for all i ∈ {1, . . ., n}

G′i := {si ∈ Gi | φi(si, Hi, G−i)}

Note that in defining the set of strategies G′i we use in the second argument of φi the set Hi of player’s
i strategies in the initial game H and not in the current restriction G. This captures the idea that at every
stage of the elimination process player i analyzes the status of each strategy in the context of his initial
set of strategies.

Since Tφ is contracting, by Note 1 it has an outcome, i.e., T∞φ is well-defined. Moreover, if each φi
is monotonic, then Tφ is monotonic and by Tarski’s Fixpoint Theorem its largest fixpoint νTφ exists and
equals T∞φ . Finally, G is a fixpoint of Tφ iff for all i ∈ {1, . . ., n} and all si ∈ Gi, φi(si, Hi, G−i) holds.

Intuitively, Tφ(G) is the result of removing from G all strategies that are not φi-rational. So the
outcome of Tφ is the result of the iterated elimination of strategies that for player i are not φi-rational.

3. Two Theorems

We now assume that each player i employs some property φi to select his strategies, and we analyze
the situation in which this information is true common belief or common knowledge. To determine
which strategies are then selected by the players we shall use the Tφ operator.

We begin by fixing a belief model (Ω, s1, . . ., sn, P1, . . ., Pn) for the initial game H . Given
an optimality property φi of player i we say that player i is φi-rational in the state ω if
φi(si(ω), Hi, (GPi(ω))−i) holds. Note that when player i believes (respectively, knows) that the state
is in Pi(ω), the set (GPi(ω))−i represents his belief (respectively, his knowledge) about other players’
strategies. That is, (Hi, (GPi(ω))−i) is the restriction he believes (respectively, knows) to be relevant to
his choice.

Hence φi(si(ω), Hi, (GPi(ω))−i) captures the idea that if player i uses φi to select his strategy in the
game he considers relevant, then in the state ω he indeed acts ‘rationally’.

To reason about common knowledge and true common belief we introduce the event

RAT(φ) := {ω ∈ Ω | each player i is φi-rational in ω}

and consider the following two events constructed out of it: K∗RAT(φ) and RAT(φ) ∩B∗RAT(φ). We
then focus on the corresponding restrictions GK∗RAT(φ) and GRAT(φ)∩B∗RAT(φ).

So strategy si is an element of the ith component ofGK∗RAT(φ) if si = si(ω) for some ω ∈ K∗RAT(φ).
That is, si is a strategy that player i chooses in a state in which it is common knowledge that each player
j is φj-rational, and similarly for GRAT(φ)∩B∗RAT(φ).
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The following result then relates for arbitrary strategic games the restrictions GRAT(φ)∩B∗RAT(φ) and
GK∗RAT(φ) to the outcome of the iteration of the operator Tφ.

Theorem 1.

(i) Suppose that each property φi is monotonic. Then for all belief models for H

GRAT(φ)∩B∗RAT(φ) ⊆ T∞φ

(ii) Suppose that each property φi is monotonic. Then for all knowledge models for H

GK∗RAT(φ) ⊆ T∞φ

(iii) For some standard knowledge model for H

T∞φ ⊆GK∗RAT(φ)

So part (i) (respectively, (ii)) states that true common belief (respectively, common knowledge) of
φi-rationality of each player i implies that the players will choose only strategies that survive the iterated
elimination of non-φ-rational strategies.

Proof.
(i) Fix a belief model (Ω, s1, . . ., sn, P1, . . ., Pn) for H . Take a strategy si that is an element of the ith
component of GRAT(φ)∩B∗RAT(φ). Thus we have si = si(ω) for some state ω such that ω ∈ RAT(φ) and
ω ∈ B∗RAT(φ). The latter implies by (1) that for some evident event F

ω ∈ F ⊆ {ω′ ∈ Ω | ∀i ∈ {1, . . ., n} Pi(ω′)⊆ RAT(φ)} (4)

Take now an arbitrary ω′ ∈ F ∩ RAT(φ) and i ∈ {1, . . ., n}. Since ω′ ∈ RAT(φ), it holds that
player i is φi-rational in ω′, i.e., φi(si(ω′), Hi, (GPi(ω′))−i) holds. But F is evident, so Pi(ω

′)⊆ F .
Moreover by (4) Pi(ω′)⊆ RAT(φ), so Pi(ω′)⊆ F ∩ RAT(φ). Hence (GPi(ω′))−i ⊆ (GF∩RAT(φ))−i and
by the monotonicity of φi we conclude that φi(si(ω′), Hi, (GF∩RAT(φ))−i) holds.

By the definition of Tφ this means that GF∩RAT(φ) ⊆ Tφ(GF∩RAT(φ)), i.e. GF∩RAT(φ) is a post-fixpoint
of Tφ. But Tφ is monotonic since each property φi is. Hence by Tarski’s Fixpoint Theorem
GF∩RAT(φ) ⊆ T∞φ . But si = si(ω) and ω ∈ F ∩ RAT(φ), so we conclude by the above inclusion that si
is an element of the ith component of T∞φ . This proves the claim.

(ii) By the definition of common knowledge for all events E we have K∗E ⊆ E. Hence for all φ we
have K∗RAT(φ)⊆ RAT(φ) ∩K∗RAT(φ) and consequently GK∗RAT(φ) ⊆GRAT(φ)∩K∗RAT(φ).

So part (ii) follows from part (i).

(iii) Suppose T∞φ = (G1, . . ., Gn). Consider the event F := G1 × . . . × Gn in the standard model for
H . Then GF = T∞φ . Define each possibility correspondence Pi by

Pi(ω) :=

{
F if ω ∈ F
Ω \ F otherwise
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Each Pi is a knowledge correspondence (also when F = ∅ or F = Ω) and clearly F is an evident event.
Take now an arbitrary i ∈ {1, . . ., n} and an arbitrary state ω ∈ F . Since T∞φ is a fixpoint of Tφ and

si(ω) ∈ Gi we have φi(si(ω), Hi, (T
∞
φ )−i), so by the definition of Pi we have φi(si(ω), Hi, (GPi(ω))−i).

This shows that each player i is φi-rational in each state ω ∈ F , i.e., F ⊆ RAT(φ).
Since F is evident, we conclude by (2) that in each state ω ∈ F it is common knowledge that each

player i is φi-rational, i.e., F ⊆K∗RAT(φ). Consequently

T∞φ = GF ⊆GK∗RAT(φ)

2

Items (i) and (ii) show that when each property φi is monotonic, for all belief models of H it holds
that the joint strategies that the players choose in the states in which each player i is φi-rational and it is
common belief that each player i is φi-rational (or in which it is common knowledge that each player i
is φi-rational) are included in those that remain after the iterated elimination of the strategies that are not
φi-rational.

Note that monotonicity of the φi properties was not needed to establish item (iii).
By instantiating the φi’s with specific properties we get instances of the above result that refer to

specific definitions of rationality. This will allow us to relate the above result to the ones established
in the literature. Before we do this we establish a result that identifies a large class of properties φi for
which Theorem 1 does not apply.

Theorem 2. Suppose that a joint strategy s 6∈ T∞φ exists such that

φi(si, Hi, ({sj}j 6=i))

holds all i ∈ {1, . . ., n}. Then for some knowledge model for H the inclusion

GK∗RAT(φ) ⊆ T∞φ

does not hold.

Proof. We extend the standard model for H by the knowledge correspondences P1, . . ., Pn where for all
i ∈ {1, . . ., n}, Pi(ω) = {ω}. Then for all ω and all i ∈ {1, . . ., n}

GPi(ω) = ({s1(ω)}, . . ., {sn(ω)})

Let ω′ := s. Then for all i ∈ {1, . . ., n}, GPi(ω′) = ({s1}, . . ., {sn}), so by the assumption each
player i is φi-rational in ω′, i.e., ω′ ∈ RAT(φ). By the definition of Pis the event {ω′} is evident and
ω′ ∈ KRAT(φ). So by (1) ω′ ∈ K∗RAT(φ). Consequently s = (s1(ω

′), . . ., sn(ω′)) ∈ GK∗RAT(φ).
This yields the desired conclusion by the choice of s. 2

4. Applications

We now analyze to what customary game-theoretic properties the above two results apply. By a belief
of player i about the strategies his opponents play given the set G−i of their joint strategies we mean one
of the following possibilities:
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• a joint strategy of the opponents of player i, i.e., s−i ∈ G−i, called a point belief ,

• or, in the case the game is finite, a joint mixed strategy of the opponents of player i

(i.e., (m1, . . .,mi−1,mi+1, . . .,mn), where mj ∈ ∆Gj for all j 6= i), called an independent belief ,

• or, in the case the game is finite, an element of ∆G−i, called a correlated belief .

In the second and third case the payoff function pi can be lifted in the standard way to an expected
payoff function pi : Hi × Bi(G−i)→R, where Bi(G−i) is the corresponding set of beliefs of player i
held given G−i.

We use below the following abbreviations, where si, s′i ∈ Hi and G−i is a set of the strategies of the
opponents of player i:

• (strict dominance) s′i �G−i
si for

∀s−i ∈ G−i pi(s′i, s−i) > pi(si, s−i)

• (weak dominance) s′i �wG−i
si for

∀s−i ∈ G−i pi(s′i, s−i) ≥ pi(si, s−i) ∧ ∃s−i ∈ G−i pi(s′i, s−i) > pi(si, s−i)

In the case of finite games the relations �G−i
and �wG−i

between a mixed strategy and a pure strategy
are defined in the same way.

We now introduce natural examples of the optimality notion.

• sdi(si, Gi, G−i) ≡ ¬∃s′i ∈ Gi s
′
i �G−i

si

• (assuming H is finite) msdi(si, Gi, G−i) ≡ ¬∃m′i ∈ ∆Gi m
′
i �G−i

si

• wdi(si, Gi, G−i) ≡ ¬∃s′i ∈ Gi s
′
i �wG−i

si

• (assuming H is finite) mwdi(si, Gi, G−i) ≡ ¬∃m′i ∈ ∆Gi m
′
i �wG−i

si

• bri(si, Gi, G−i) ≡ ∃µi ∈ Bi(G−i) ∀s′i ∈ Gi pi(si, µi) ≥ pi(s
′
i, µi)

So sdi and wdi are the customary notions of strict and weak dominance and msdi and mwdi are their
counterparts for the case of dominance by a mixed strategy. Note that the notion bri of best response,
comes in three ‘flavours’ depending on the choice of the set Bi(G−i) of beliefs.

Consider now the iterated elimination of strategies as defined in Subsection 2.5, so with the repeated
reference by player i to the strategy set Hi. For the optimality notion sdi such a version of iterated
elimination was studied in [2], for mwdi it was used in [4], while for bri it corresponds to the
rationalizability notion of [3].

In [10], [2] and [7] examples are provided showing that for the properties sdi and bri in general
transfinite iterations (i.e., iterations beyond ω0) of the corresponding operator are necessary to reach
the outcome. So to establish for them part (iii) of Theorem 1 transfinite iterations of the Tφ operator
are necessary.

The following lemma holds.
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Lemma 2. The properties sdi, msdi and bri are monotonic.

Proof. Straightforward. 2

So Theorem 1 applies to the above three properties. In contrast, Theorem 1 does not apply to the
remaining two properties wdi and mwdi, since, as indicated in [8], the corresponding operators Twd and
Tmwd are not monotonic, and hence the properties wdi and mwdi are not monotonic.

In fact, the desired inclusion does not hold and Theorem 2 applies to these two optimality properties.
Indeed, consider the following game:

L R

U 1, 1 0, 1

D 1, 0 1, 1

Then the outcome of iterated elimination for both wdi and mwdi yields G := ({D}, {R}). Further,
we have wd1(U, {U,D}, {L}) and wd2(L, {L,R}, {U}), and analogously for mwd1 and mwd2.

So the joint strategy (U,L) satisfies the conditions of Theorem 2 for both wdi and mwdi. Note that
this game also furnishes an example for non-monotonicity of wdi since wd1(U, {U,D}, {L,R}) does
not hold.

This shows that the optimality notions wdi and mwdi cannot be justified in the used epistemic
framework as ‘stand alone’ concepts of rationality.

5. Consequences of Common Knowledge of Rationality

In this section we show that common knowledge of rationality is sufficient to entail the customary
iterated elimination of strictly dominated strategies. We also show that weak dominance is not amenable
to such a treatment.

Given a sequence of properties φ := (φ1, . . ., φn), we introduce an operator Uφ on the restrictions of
H defined by

Uφ(G) := G′,

where G := (G1, . . ., Gn), G′ := (G′1, . . ., G
′
n), and for all i ∈ {1, . . ., n}

G′i := {si ∈ Gi | φi(si, Gi, G−i)}.

So when defining the set of strategies G′i we use in the second argument of φi the set Gi of player’s i
strategies in the current restriction G. That is, Uφ(G) determines the ‘locally’ φ-optimal strategies in
G. In contrast, Tφ(G) determines the ‘globally’ φ-optimal strategies in G, in that each player i must
consider all of his strategies s′i that occur in his strategy set Hi in the initial game H .

So the ‘global’ form of optimality coincides with rationality, as introduced in Subsection 2.5, while
the customary definition of iterated elimination of strictly (or weakly) dominated strategies refers to the
iterations of the appropriate instantiation of the ‘local’ Uφ operator.

Note that the Uφ operator is non-monotonic for all non-trivial optimality notions φi such that
φi(si, {si}, ({sj}j 6=i)) for all joint strategies s, so in particular for bri, sdi,msdi, wdi and mwdi. Indeed,
given s let Gs denote the corresponding restriction in which each player i has a single strategy si.
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Each restriction Gs is a fixpoint of Uφ. By non-triviality of φis we have Uφ(H) 6= H , so for each
restrictionGs with s including an eliminated strategy the inclusion Uφ(Gs)⊆ Uφ(H) does not hold, even
though Gs ⊆H . In contrast, as we saw, by virtue of Lemma 2 the Tφ operator is monotonic for bri, sdi
and msdi.

First we establish the following consequence of Theorem 1. When each property φi equals bri, we
write here RAT(br) and similarly with Usd.

Corollary 1.

(i) For all belief models
GRAT(br)∩B∗RAT(br) ⊆ U∞sd

(ii) for all knowledge models
GK∗RAT(br) ⊆ U∞sd

where in both situations we use in bri the set of poinr beliefs.

Proof.
(i) By Lemma 2 and Theorem 1(i) GRAT(br)∩B∗RAT(br) ⊆ T∞br Each best response to a joint strategy of the
opponents is not strictly dominated, so for all restrictions G

Tbr(G)⊆ Tsd(G)

Also, for all restrictions G, Tsd(G)⊆ Usd(G). So by Lemma 1 T∞br ⊆ U∞sd , which concludes the proof.

(ii) By part (i) and the fact that K∗RAT(br)⊆ RAT(br). 2

Part (ii) formalizes and justifies in the epistemic framework used here the often used statement:

common knowledge of rationality implies that the players will choose only strategies that
survive the iterated elimination of strictly dominated strategies

for games with arbitrary strategy sets and transfinite iterations of the elimination process, and where
best response means best response to a point belief.

In the case of finite games Theorem 1 implies the following result. For the case of independent
beliefs it is implicitly stated in [19], explicitly formulated in [20] (see [14, page 181]) and proved using
Harsanyi type spaces in [21].

Corollary 2. Assume the initial game H is finite.

(i) For all belief models for H
GRAT(br)∩B∗RAT(br) ⊆ U∞msd,

(ii) for all knowledge models for H
GK∗RAT(br) ⊆ U∞msd,

where in both situations we use in bri either the set of point beliefs or the set of independent beliefs or
the set of correlated beliefs.
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Proof. The argument is analogous as in the previous proof but relies on a subsidiary result and runs
as follows.
(i) Denote respectively by brpi, brii and brci the best response property w.r.t. point, independent and
correlated beliefs of the opponents. Below φ stands for either brp, bri or brc.

By Lemma 2 and Theorem 1 GRAT(φ)∩B∗RAT(φ) ⊆ T∞φ . Further, for all restrictions G we have
both Tφ(G)⊆ Uφ(G) and Ubr(G)⊆ Ubri(G)⊆ Ubrc(G). So by Lemma 1 T∞φ ⊆ U∞brc. But by the result
of [22], (page 60) (that is a modification of the original result of [23]), for all restrictions G we have
Ubrc(G) = Umsd(G), so U∞brc = U∞msd, which yields the conclusion.

(ii) By (i) and the fact that K∗RAT(br)⊆ RAT(br). 2

Finally, let us clarify the situation for the remaining two optimality notions, wdi and mwdi. For them
the inclusions of Corollaries 1 and 2 do not hold. Indeed, it suffices to consider the following initial
game H:

L R

U 1, 0 1, 0

D 1, 0 0, 0

Here every strategy is a best response but D is weakly dominated by U . So both U∞wd and U∞mwd

are proper subsets of T∞br . On the other hand by Theorem 1(iii) for some standard knowledge
model for H we have GK∗RAT(br) = T∞br . So for this knowledge model neither GK∗RAT(br) ⊆ U∞wd nor
GK∗RAT(br) ⊆ U∞mwd holds.
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