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Abstract

In this paper we investigate an new class of implicit-explicit two-step meth-
ods of Peer type for systems of ordinary differential equations with both non-
stiff and stiff parts included in the source term. An extrapolation approach
based on already computed stage values with equally high consistency order
is applied to construct such methods with strong stability properties. Opti-
mised implicit-explicit Peer methods of order p = 2, 3, 4, are given as result of
a search algorithm carefully designed to balance the size of the stability regions
and the extrapolation errors. Numerical experiments and a comparison to other
implicit-explicit methods are included.

Keywords: implicit-explicit (IMEX) Peer methods; extrapolation; stability

1 Introduction

Many initial value problems arising in practice are in a form u′ = F0(u) + F1(u),
where F0 is a non-stiff or mildly stiff part and F1 is a stiff contribution. Implicit-
explicit (IMEX) methods use this decomposition by treating only the F1 contribution
in an implicit fashion. The advantage of lower costs for explicit schemes is combined
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with the favorable stability properties of implicit schemes to enhance the overall
computational efficiency.

To construct suitable IMEX methods it is convenient if an implicit method is
available where all approximations have a high accuracy. Then a related explicit
method can be found by using extrapolation, and the combination of these implicit
and explicit methods leads in a natural way to IMEX methods with the same order
as the original implicit method. This idea was first used by Crouzeix [3] with linear
multistep methods of BDF type.

In this paper we will consider such IMEX methods based on implicit Peer meth-
ods. These methods introduced by Schmitt, Weiner and co-workers [1, 11, 12] are
a very comprehensive class of general linear methods (GLMs) in which the approxi-
mations in all stages have the same order. Peer methods can be viewed as a natural
generalization of linear multistep methods in the sense that each of the stages is a
linear multistep method itself. Due to their multi-stage structure they inherit good
stability properties and an easy step size change in every time step from one-step
methods without suffering from order reduction for stiff problems. IMEX-Peer meth-
ods are competitive alternatives to classic IMEX methods for large stiff problems.
Higher order IMEX Runge-Kutta methods are known to suffer from possible order
reduction and serious efficiency loss for stiff problems. Moreover, the increasing
number of necessary coupling conditions makes their construction difficult.

Recently, the same extrapolation approach was used by Cardone, Jackiewicz,
Sandu and Zhang [2] starting with diagonally implicit multistage integration meth-
ods (DIMSIMs). In those general linear methods the implicit internal stages are
followed by explicit stages. Due to these explicit stages the linear stability prop-
erties of the resulting IMEX methods is less favourable than for the IMEX-Peer
methods. Higher order IMEX-GLMs were constructed by Zhang, Sandu and Blaise
[18], based on an earlier developed partitioned GLM framework of the same authors
in [17].

In Section 2 of this paper we present the framework to obtain IMEX-Peer meth-
ods based on suitable implicit methods. The construction of specific classes of meth-
ods is performed in Section 3. Along with IMEX-BDF methods, which also fit in
the Peer form, we will construct IMEX-Peer methods based on the implicit methods
of order 3 and 4 that were developed by Beck, Weiner, Podhaisky and Schmitt [1].
Comparison of the stability regions of the methods shows promising results for the
latter methods. This is confirmed in the numerical experiments in Section 5 for two
advection-reaction problems with stiff reactions and a reaction-diffusion problem,
where the diffusion leads to stiffness.
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2 Implicit-Explicit Peer Methods Based on Extrapola-
tion

2.1 Implicit Peer methods

To solve initial value problems in a vector space V (e.g. V = Rm,m ≥ 1),

u′(t) = F (u(t)), u(0) = u0 ∈ V , (1)

we consider the so-called Peer methods introduced by Schmitt, Weiner and co-
workers [11, 1]. An s-stage Peer method provides approximations

wn = [wn,1, . . . , wn,s]
T ∈ Vs, wn,i ≈ u(tn + ci4t) , (2)

with nodes ci ∈ R such that ci 6= cj if i 6= j, and cs = 1. The starting vector
w0 = [w0,i] ∈ Vs is supposed to be given, or computed from a Runge-Kutta method,
for example.

Peer methods are general linear methods, based on the requirement that all
approximations wn,j have the same order. Here, we will primarily aim at order
p = s. With s × s coefficient matrices P = (pij), Q = (qij), R = (rij), and the
m×m identity matrix I, the usual general form of the implicit methods of this Peer
type is

wn = (P ⊗ I)wn−1 +4t(Q⊗ I)F (wn−1) +4t(R⊗ I)F (wn) . (3)

where F (w) = [F (wi)] ∈ Vs is the application of F to all components of w ∈ Vs.
In the following, for an s× s-matrix we will use the same symbol for its Kronecker
product with the identity matrix as mapping from the space Vs to itself. Then, (3)
simply reads

wn = Pwn−1 +4tQF (wn−1) +4tRF (wn) . (4)

The matrix R is taken to be lower triangular, giving diagonally implicit methods,
with diagonal R if parallelism is a special case of interest [12]. Implicit peer methods
with good stability properties, i.e., L(α)-stability with large angles α, can be found
by taking Q = 0 [1]. We will choose these methods to construct implicit-explicit
peer methods based on extrapolation. Then the method reads

wn = Pwn−1 +4tRF (wn) . (5)

Some requirements or desirable properties are briefly discussed here for the implicit
method (5).

Zero-stability. The matrix P should be power bounded to have stability for the
trivial problem u′(t) = 0. Let spr(P ) be the spectral radius of P . Since one eigen-
value of P will be equal to 1 for pre-consistency, the requirement of zero-stability
means

spr(P ) = 1 and eigenvalues with modulus 1 are not defective. (6)
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This requirement was enforced by Schmitt, Weiner et al. by taking P such that one
eigenvalue equals 1 and the others are 0. This choice, called optimal zero-stability,
made the construction of methods more tractable. We will also look at methods
that are strongly zero-stable, where P has one eigenvalue 1 and the other eigen-
values have modulus less than 1. This holds for example for the well-known BDF
methods.

Accuracy. Let e = (1, . . . , 1)T ∈ Rs. It will be assumed that

Pe = e . (7)

This is the so-called pre-consistency condition, which means that for the trivial
equation u′(t) = 0, we get solutions wn,i = 1 provided that w0,j = 1, j = 1, . . . , s.
Inserting exact solution values w(tn) = [u(tn + ci4t)] ∈ Vs in the implicit scheme
(5) gives the residual-type local errors

rn = w(tn)− Pw(tn−1)−4tRw′(tn) . (8)

Let c = (c1, . . . , cs)
T with point-wise powers cj = (cj1, . . . , c

j
s)T . Then Taylor expan-

sion gives

w(tn) = e⊗ u(tn) +4tc⊗ u′(tn) +
1

2
4t2c2 ⊗ u′′(tn) + . . . (9)

w(tn−1) = e⊗ u(tn) +4t(c− e)⊗ u′(tn) +
1

2
4t2(c− e)2 ⊗ u′′(tn) + . . . , (10)

from which we obtain
rn =

∑
j≥i)

4tjdj ⊗ u(j)(tn) (11)

with

dj =
1

j!

(
cj − P (c− e)− jRcj−1

)
. (12)

The method is said to have (stage) order q if (7) holds and dj = 0 for j = 1, 2, . . . , q.
We will be interested in methods with (stage) order s. With the Vandermonde
matrices V0 = (cj−1

i ) and V1 = ((ci−1)j−1) for i, j = 1, . . . , s, C = diag(c1, c2, . . . , cs)
and D = diag(1, 2, . . . , s), the conditions for having stage order s with the implicit
method (5) are

CV0 − P (C − I)V1 −RV0D = 0 . (13)

Remark 2.1 (superconvergence). For a method with (stage) order q, it is possible
to have convergence with order equal to q + 1. This is discussed under the heading
super-convergence in the book of Strehmel, Weiner & Podhaisky ([15], Sect. 5.3) for
non-stiff problems. It will also hold for stiff problems; see Hundsdorfer [7] for results
with stiff linear systems.
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2.2 Extrapolation

Based on an implicit method with order s, a related explicit method can be found by
extrapolation, leading to implicit-explicit methods. This is a well-known procedure
for linear multistep methods, see for instance Crouzeix [3] or the review in the book
of Hundsdorfer and Verwer ([9], Section IV.4.2). Recently this idea was also used
with a class of general linear methods, the so-called diagonally implicit multistage
integration methods (DIMSIMs), by Cardone, Jackiewicz, Sandu, and Zhang [2].
Here, we will use this extrapolation idea to obtain implicit-explicit Peer methods.

Having an implicit method, where all approximations wn,j have order s, we can
obtain a corresponding explicit method by extrapolation using a Lagrange polyno-
mial of degree s− 1, giving ϕ(tn,i) =

∑
j sijϕ(tn−1,j) +O(4ts) for smooth functions

ϕ, with tn,i = tn + ci4t. The extrapolation coefficients are sij = Πk 6=j(ci − ck +
1)/(cj − ck).

We can apply this extrapolation with ϕ(t) = F (u(t)). Starting from the implicit
method (5), this yields the explicit method

wn = Pwn−1 +4tQ̂F (wn−1) , (14)

with coefficient matrix Q̂ = (q̂ij) given by Q̂ = RS, where S = (sij). By the
construction, all the stages have again order s, at least, so (14) is an explicit Peer
method.

The extrapolation may be improved by using the last available information,
whereby a value ϕ(tn,i) is found as linear combination of some of the values ϕ(tn−1,j)
together with the most recent values ϕ(tn,j), j = 1, . . . , i− 1, say

ϕ(tn,i) =
∑
j

s
(1)
ij ϕ(tn−1,j) +

∑
j≤i−1

s
(2)
ij ϕ(tn,j) +O(4ts) , i = 1, . . . , s. (15)

Setting S1 = (s
(1)
ij ), S2 = (s

(2)
ij ), this will lead to an explicit Peer method of the form

wn = Pwn−1 +4tQ̂F (wn−1) +4tR̂F (wn) (16)

with
Q̂ = RS1, R̂ = RS2 . (17)

Note that R̂ is strictly lower triangular, since R is lower triangular and S2 is strictly
lower triangular.

Defining vectors Φm = [ϕ(tm,i)] ∈ Vs, the error vector for the extrapolation,
δn = Φn − S1Φn−1 − S2Φn, can be expanded in a Taylor series at tn,

δn = (I − S1 − S2)e⊗ ϕ(tn) +
∑
j≥1

1

j!

(
(I − S2)cj − S1(c− e)j

)
⊗ ϕ(j)(tn)4tj . (18)
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Therefore, the conditions for order s reads

(I − S2)cj − S1(c− e)j = 0, 0 ≤ j ≤ s− 1 , (19)

which is equivalent to the relation S1V1 = (I − S2)V0. The choice of a strictly lower
triangular S2 thus determines S1.

2.3 Implicit-Explicit Peer Methods

The combination of the related implicit and explicit methods (4), (16) can now be
used to construct an implicit-explicit (IMEX) method for systems of the form

u′(t) = F0(u(t)) + F1(u(t)) , (20)

where F0 will represent the non-stiff or mildly stiff part, and F1 gives the stiff part
of the equation. The resulting IMEX scheme is

wn = Pwn−1 +4tQ̂F0(wn−1) +4tR̂F0(wn) +4tRF1(wn) . (21)

The extrapolation idea is used here only on the F0. For non-stiff problems, this
IMEX method will have order s for any decomposition F = F0 + F1. However, for
stiff problems it should be required that the derivatives of ϕk(t) = Fk(u(t)), k = 0, 1,
are bounded by a moderate constant which is not affected by the stiffness parameters,
such as the spatial mesh width h for semi-discrete systems obtained from PDEs.

Remark 2.2 (linearly implicit methods). As a special case of (20), we can consider
F0(u) = F (u) − Ju, F1(u) = Ju, with a Jacobian approximation J ≈ F ′(u). This
gives the linearly implicit Peer method

wn = Pwn−1 +4tQ̂F (wn−1) +4tR̂F (wn)−4tQ̂Jwn−1 +4t(R− R̂)Jwn . (22)

By the above construction, leading to the IMEX scheme (21), all stages will be
consistent of order s. However, since F1 is linear here, it is possible that the order
conditions are in fact a bit too strong.

The standard local consistency analysis for the IMEX-Peer method (21) with
exact solution values u(tn,i) yields for the residual-type local errors

rn = Eim +4tREex +O
(
4ts+2

)
, (23)

where Eim = ds+1 ⊗ u(s+1)(tn)4ts+1 is the leading error term of the corresponding
implicit Peer method with constant time steps. Replacing in (18) ϕ(t) by F0(u(t))
taken as function of t, we find for the leading error vector of the extrapolation,

Eex =
1

s!
((I − S2)cs − S1(c− e)s)⊗ ds

dts
F0(u(tn))4ts . (24)

Together with zero-stability of the implicit Peer method and standard arguments for
multistep methods (see [6], Lemma 2.1), we have the following convergence result
for the IMEX scheme (21):
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Theorem 2.1. Let the s-stage implicit Peer method (5) with coefficients (c, P,R) be
zero-stable and consistent of order s for constant step size. Let the starting values
satisfy w0,i−u(t0 + ci4t) = O(4ts), i = 1, . . . , s. Then the IMEX scheme (21) with
R̂ = RS2 and Q̂ = R(I − S2)V0V

−1
1 is convergent of order s for constant step size

and arbitrary strictly lower triangular matrix S2.

Eventually, we define the following two error constants for later use:

cim = ‖ds+1‖ =

∥∥∥∥ 1

(s+ 1)!

(
cs+1 − P (c− e)s+1 − (s+ 1)Rcs

)∥∥∥∥ (25)

and

cex =

∥∥∥∥ 1

s!

(
(R− R̂)cs − Q̂(c− e)s

)∥∥∥∥ . (26)

with ‖ ·‖ being the Euclidean norm in Rs. The first one is given by the implicit Peer
method and the second one is related to the extrapolation process.

2.4 Stability of IMEX Peer Methods

We consider the general test equation

y′(t) = λ0y(t) + λ1y(t), t ≥ 0, (27)

with complex parameters λ0 and λ1. Define zi = hλi, i = 0, 1. In what follows we
adopt the notation to our schemes. Applying an IMEX-Peer method to (27) gives

Y n+1 = (I − z0RS2 − z1R)−1(P + z0RS1)Y n . (28)

This can be formalized to Y n+1 = M(z0, z1)Y n. For given z0 and z1, stability is
ensured if

ρ(M(z0, z1)) < 1. (29)

The stability function of the IMEX-Peer method is defined as the characteristic
polynomial of the stability matrix M(z0, z1):

ζ(w, z0, z1) = det(wI −M(z0, z1)) . (30)

Consequently, the IMEX-Peer method is stable for given z0, z1 ∈ C if all the roots
wi(z0, z1), i = 1, . . . , s, of the stability function ζ(w, z0, z1) are inside the unit circle.

The higher order implicit Peer methods considered here are L(α)-stable with
respect to the implicit part z1 ∈ C. Therefore, we introduce the sets

Sβ =

{
z0 ∈ C : (29) holds for any z1 ∈ C with

Re(z1) < 0 and |Im(z1)| ≤ tan(β)|Re(z1)|

}
. (31)
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In order to compute these sets for specific angles β with 0 ≤ β ≤ α, we first define
for fixed y ∈ R,

Sβ,y = {z0 ∈ C : (29) holds for fixed z1 = −|y|/ tan(β) + y ı} (32)

and find then Sβ from the intersection of all Sβ,y, y ∈ R, which follows from the
maximum principle. The set SE := Sβ,0 is independent of β and corresponds to
the stability region of the explicit method. Since Sα ⊂ SE , the goal is to construct
IMEX-Peer methods for which SE is large and SE\Sα is as small as possible for
angles α that are close to π/2, whereas the error constant for the extrapolation, cex,
is still of moderate size.

The boundary locus method can be used to compute the boundary of Sβ,y:

∂Sβ,y = {z0 ∈ C : ζ(eθ ı, z0,−|y|/ tan(β) + y ı) = 0, θ ∈ [0, 2π)} . (33)

Varying the eigenvalues w = eθ ı for fixed z1(y) = −|y|/ tan(β) + y ı, y ∈ R, allows
to reformulate the eigenvalue problem M(z0, z1)x = wx into an eigenvalue problem
for z0(eθ ı, y), i.e., G(eθ ı, z1(y))x = z0x with

G = (eθ ıR̂+ Q̂)−1(eθ ıI − eθ ız1(y)R− P ) . (34)

The set of all eigenvalues z0(eθ ı, y) contains the boundary of Sβ,y. A similar approach
was also successfully applied in [2] for DIMSIMs.

3 Construction of IMEX-Peer Methods

3.1 IMEX-Peer Methods with Equidistant Nodes

We will first consider IMEX Peer methods with equidistant nodes. A good candidate
within this class are the IMEX-BDF methods introduced in [3, 16] and further
analysed in [4]. Taken with s steps of length 4t/s, they can be reformulated as
IMEX-Peer methods.

Starting at t = tn−1 with approximate solutions un−1−i/s ≈ u(tn−1 − i4t/s) for
i = 0, . . . , s− 1, we have for s (constant) steps of the s-step IMEX-BDF method:

k = 1, . . . , s :

s∑
i=0

ai un−1− i−k
s

=
4t
s
eTs S


F0(un−2+ k

s
)

...
F0(un−1+ k−1

s
)

+
4t
s
F1(un−1+ k

s
) (35)

with es = (0, . . . , 0, 1)T ∈ Rs and S = (sij) = V0V
−1

1 defined by the normalized
vector c = (0, 1, . . . , s−1)T . In order to obtain the standard form of a Peer method,
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we set

wn−1 =


un−2+ 1

s

un−2+ 2
s

...
un−1

 and wn =


un−1+ 1

s

un−1+ 2
s

...
un

 . (36)

This yields

A2wn = −A1wn−1 +
4t
s
B1F0(wn−1) +

4t
s
B2F0(wn) +

4t
s
F1(wn) (37)

with the matrices

A1 =


as as−1 · · · a1

0 as · · · a2
...

...
. . .

...
0 0 · · · as

 , A2 =


a0 0 · · · 0
a1 a0 · · · 0
...

...
. . .

...
as−1 as−2 · · · a0

 (38)

and

B1 =


ss1 ss2 · · · sss
0 ss1 · · · ss,s−1
...

...
. . .

...
0 0 · · · ss1

 , B2 =


0 0 · · · 0
sss 0 · · · 0
...

. . .
. . .

...
ss2 · · · sss 0

 . (39)

In Table 1, the coefficients of the BDF methods for s = 2, 3, 4 are provided. Note
that A2 is invertible since always a0 6= 0. The coefficients of the equivalent IMEX-
Peer method are then determined by the following Lemma:

Lemma 3.1. An s-stage IMEX-BDF method (35) with s steps of length 4t/s is
equivalent to an s-stage IMEX-Peer (21) with nodes c = (1/s, 2/s, . . . , 1)T and co-
efficient matrices

P = −A−1
2 A1, Q̂ = (1/s)A−1

2 B1, R̂ = (1/s)A−1
2 B2, and R = (1/s)A−1

2 . (40)

IMEX-BDF methods have proven to work very well and therefore they are a
good target for general IMEX-Peer methods with p = s.

Example 3.1. Exemplarily, the (peer-)coefficients of the IMEX-BDF3 method with
three steps of length 4t/3 are given. The node vector c = (0, 1, 2) yields eT3 S =
(1,−3, 3). Thus, the matrices in (21) are:

P =


2
11 − 9

11
18
11

36
121 −140

121
225
121

450
1331 −1629

1331
2510
1331

 , R =


2
11 0 0

36
121

2
11 0

450
1331

36
121

2
11

 , (41)
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Q̂ =


2
11 − 6

11
6
11

36
121 − 86

121
42
121

450
1331 − 954

1331
404
1331

 , R̂ =


0 0 0

6
11 0 0

42
121

6
11 0

 . (42)

The eigenvalues of P are 1 and (−119± 27
√

39i)/2662.

s a0 a1 a2 a3 a4 α

2 3
2 −2 1

2 90.00o

3 11
6 −3 3

2 −1
3 86.03o

4 25
12 −4 3 −4

3
1
4 73.35o

Table 1: Coefficients and stability values for L(α)-
stability of BDF methods for s = 2, 3, 4.

3.2 General IMEX-Peer Methods

3.2.1 The case s = 2

The two-stage singly implicit methods (5) with order two form a one-parameter
family, with free parameter c1, say. The choice c1 = 1/2 produces the above im-
plicit BDF2 method with step-size 4t/2. Note that requiring optimal zero stability,
with P having a single eigenvalue one and the other zero, yields a completely de-
fined method. However, this would exclude interesting methods, such as the BDF2
method.

In order to find an IMEX method, where the explicit method has a larger stability
region, we start with the implicit BDF2 method with step size 4t/2 and then apply

extrapolation with a strictly lower triangular S2 = (s
(2)
ij ) 6= 0, say s

(2)
21 = µ 6= 0.

Note that µ = 2 recovers the IMEX-BDF2 method from above. A careful study of
the stability matrix revealed that the largest interval (−βR, 0) of the real negative
axis in the stability region is obtained if µ is the smallest root of the polynomial
µ2 − 20µ + 20, i.e., µ = µ∗ = 10 − 4

√
5 ≈ 1.0557 with real stability boundary

βR ≈ 5.38. Choosing µ equal to this optimal µ∗ gives a stability region which
is pinched off at the real point x∗ ≈ −2.54. Taking µ a bit larger, for example
µ = µ∗ + 1/10, gives a better shaped stability region, as shown in Figure 1. The
coefficients of the resulting IMEX-Peer2 method are

c =

(
1
2

1

)
, P =

(
−1

3
4
3

−4
9

13
9

)
, R =

(
1
3 0

4
9

1
3

)
, S2 =

(
0 0

µ 0

)
, (43)

accomplished with R̂ = RS2 and Q̂ = R(I − S2)V0V
−1

1 .
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Figure 1: IMEX-Peer2 method. Implicit method with c1 = 1
2 , i.e., BDF2 with

4t/2. Plots of the stability regions of the corresponding explicit methods with

s
(2)
21 = µ 6= 0; left panel with optimal µ = µ∗ = 10 − 4

√
5, right panel with

µ = µ∗ + 1
10 .

3.2.2 The cases s = 3 and s = 4

To ensure good stability of the implicit Peer method with three or four stages, we
start with superconvergent singly-implicit methods of order p = s for constant step
size and optimal zero-stability, developed by Beck, Weiner, Podhaisky and Schmitt
([1], Table 3) for large stiff ODE systems. These methods are L(α)-stable with
angles 86.1o and 83.2o, and possess relatively small error constants. The nodes are
selected such that 0 < c1 < c2 < . . . < cs = 1. The free parameters are then the
d = s(s− 1)/2 inputs of the matrix S2.

As a design criterion, we would like to balance between optimal stability regions
Sα and small error constants cex for the extrapolation. The latter one is very im-
portant since extrapolation has to be done forward in time, i.e., future values are
approximated outside the range of given time points, which might cause relatively
large errors. We expect that optimizing Sα results also in reasonably shaped stability
regions SE of the explicit methods.

Eventually, we perform an optimization over the parameter space p ∈ Rd to
compute

p∗ = argmin{−|Sα|+ 1.5 10s |cex − c0|} , (44)

where cex is defined in (26) and c0 corresponds to the extrapolation based on the s
most recently computed stage values, i.e.,

w
(j+1)
n−1 , . . . , w

(s)
n−1 = w(0)

n , w(1)
n , . . . , w(j)

n , j = 0, . . . , s− 1 . (45)

We have c0 = 4.1082 10−2, 4.2632 10−3 for s = 3, 4, respectively. The corresponding
parameter vector p0 is taken as initial guess for the routine fminsearch implemented

11



in Matlab. This gives the parameters

p21 = 4.6617853424698374 100, p31 = 3.3696230360366979 100,
p32 = 5.6686050026329915 10−1,

(46)

for the IMEX-Peer3 method and

p21 = 4.0913830614894255 100, p31 = −1.2244427616780204 101,
p32 = 5.7564397758588521 100, p41 = 1.0587962913073733 101,
p42 = −7.7409749651373776 100, p43 = 4.1019377658951353 100,

(47)

for the IMEX-Peer4 method. We set s
(2)
ij = pij to define S2 in each case.

The resulting values for the stability regions Sα and SE as well as for the error
constants are collected in Table 2. For comparison, we also show the values for the
IMEX-BDF methods. It can be observed that (i) the error constants for the extrap-
olation are comparable, (ii) the sizes of the stability regions differ only moderately,
and (iii) the IMEX-Peer methods has a significantly larger interval (up to a factor
two) on the negative real axis included in the stability region. More details are
visible in Figure 2.

Method α |Sα| xmax |SE | xmax cim cex

IMEX-BDF2 90.0o 6.28 −2.67 6.98 −2.67 7.05 10−2 2.11 10−1

IMEX-BDF3 86.0o 7.27 −2.86 9.65 −2.86 8.93 10−3 3.57 10−2

IMEX-BDF4 73.4o 7.30 −2.84 9.92 −2.84 8.91 10−4 4.45 10−3

IMEX-Peer2 90.0o 7.44 −4.86 8.53 −5.22 7.05 10−2 2.78 10−1

IMEX-Peer3 86.1o 8.28 −3.07 10.68 −3.07 8.20 10−3 3.58 10−2

IMEX-Peer4 83.2o 4.64 −3.57 9.36 −3.57 3.43 10−4 4.27 10−3

Table 2: Size of stability regions Sα and SE , xmax at the negative real axis
and error constants for IMEX-BDF and IMEX-Peer methods with s = 2, 3, 4.

4 Comparison of Stability Regions

Here we compare the stability regions of the IMEX-Peer and IMEX-BDF methods
to those of the IMEX-DIMSIM methods developed and tested by Cardone et al.
[2]. There, the authors first selected an implicit DIMSIM method with suitable
stability and order properties, and then obtained the explicit component through an
optimization procedure that maximized the combined stability region of the pair.
They applied this methodology to construct IMEX pairs of orders one to four. In
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contrast, we took also care on the error constants for the underlying extrapolation
process. The stability regions Sβ for varying angle β and methods with s = 2, 3, 4,
are shown in Figure 2.

It is obvious that the two-step methods of Peer type allow the construction
of higher-order extrapolation-based IMEX schemes with larger stability regions.
Whereas the IMEX-DIMSIM2 scheme is still competitive with respect to absolute
size, the other two IMEX-DIMSIM schemes suffer clearly from small stability re-
gions. For these methods, we expect stability problems for larger time steps, which
is indeed confirmed by our numerical experiments. In Figure 3, we have collected
the values for the size of stability regions Sβ with β = α, 75o, 60o, 45o, 30o, 15o and
the absolute value of the left-most point xmax ∈ SE on the negative real axis.
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Figure 2: Top to bottom: stability regions Sα (black line), Sβ for β =
75o, 60o, 45o, 30o, 15o (blue lines), and S0 (red line) for IMEX-PEER(s), IMEX-
BDF(s), and IMEX-DIMSIM(s) methods, s = 2, 3, 4 (left to right).
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Figure 3: Size of stability regions Sβ for β = α, 75o, 60o, 45o, 30o, 15o (left
panel) and |xmax| on the negative real axis (right panel) for IMEX-PEER(s),
IMEX-BDF(s), and IMEX-DIMSIM(s) methods, s = 2, 3, 4.

5 Numerical Experiments

5.1 Linear Advection-Reaction Problem

A first PDE problem for accuracy test is a linear advection-reaction system from
[8]. The equations are

∂tu+ α1 ∂xu = −k1u+ k2v + s1 , (48)

∂tv + α2 ∂xu = k1u− k2v + s2 (49)

for 0 < x < 1 and 0 < t ≤ 1, with parameters

α1 = 0, α2 = 0, k1 = 106, k2 = 2k1, s1 = 0, s2 = 1,

and with the following initial and boundary conditions:

u(x, 0) = 1 + s2x, v(x, 0) =
k1

k2
u(x, 0) +

1

k2
s2, y(0, t) = 1− sin(12t)4 .

Note that there are no boundary conditions for v since α2 is set to be zero.
Fourth order finite differences on a uniform mesh consisting of m = 400 nodes

are applied in the interior of the domain. At the boundary we can take third order
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upwind biased finite differences, which here does not affect an overall accuracy of
four [8] and gives rise for a spatial error of 1.5 10−5.

In the IMEX setting, the reaction is treated implicitly and all other terms ex-
plicitly. Accurate initial values are computed by the variable step-size code ODE15S
with high tolerances. We have used step sizes 4t = 10−3, 5 10−4, 2.5 10−4, 10−4 and
compared the numerical values at the final time T = 1 with an accurate reference
solution in the l2-vector norm as in [2]. The results are plotted in Figure 4.
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Figure 4: Advection-Reaction-Problem: Temporal l2-errors at T = 1 of the
total concentration vs. scaled step sizes, m = 400. Comparison of IMEX-Peer,
IMEX-BDF and IMEX-DIMSIM methods.

All second-order and third-order methods show their classical orders and perform
nearly identical for this problem. For the IMEX-DIMSIM4 method we observe
order four, but the larger error constant compared to the IMEX-Peer4 and IMEX-
BDF4 scheme is apparent. The similar asymptotic behavior for the latter shows an
order reduction, which was also observed in [8] as an inherent issue for very high-
accuracy computations. However, this effect appears on a level far below the spatial
discretization error.
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5.2 Nonlinear Adsorption-Desorption Problem

The problem is taken from [8]. Let u and v be the dissolved and adsorbed concen-
tration, respectively, satisfying the equations

∂tu+ a ∂xu = κ(v − φ(u)) , (50)

∂tv = −κ(v − φ(u)) (51)

for 0 < x < 1 and 0 < t ≤ T , with φ(u) = k1u/(1 + k2u). The initial values are
set to zero, u0 = v0 = 0, and an oscillatory inflow condition is taken to get some
smooth variations in the solution, along with the shocks:

u(0, t) = 1− cos2(6πt) if a > 0 ,
u(1, t) = 0 if a < 0 .

The parameters are κ = 106, k1 = 50, k2 = 100, T = 1.25, and the velocity is set to

a = − 3

π
arctan(100(t− 1)) ,

giving approximately a = 1.5 for t < 1 (adsorption phase) and a = −1.5 for t > 1
(desorption phase).

We use the WENO5 scheme for the spatial discretization from Shu ([14], for-
mulas (2.58) − (2.63) with parameter ε = 10−12) on a uniform (cell centered) grid,
xi = (i − 1

2)4x, i = 1, . . . ,m, with mesh width 4x = 1/m. This WENO5 spatial
scheme provides high accuracy in smooth regions together with good monotonicity
properties near shocks. We set m = 800 and note that in this case the spatial error
is 1.2 10−3.

In the IMEX methods, the advection term is treated explicitly and the stiff
relaxation term implicitly, where a Newton method is efficiently performed at each
spatial node separately. As in [8] the starting values for the methods are taken as
w0 = 0. We have used step sizes 4 t = 2−j4x, j = 1, . . . , 5, and compared the
numerical values of the total concentration, u + v, at the final time t = T with an
accurate reference solution in the discrete l1-norm (‖v‖1 = h

∑
i |vi|), see Figure 5.

As before, the results for the IMEX schemes with s = 2, 3, largely coincide. We
note that the IMEX-BDF2 and IMEX-DIMSIM3 method did not converge for the
largest time step. We clearly observe stability problems for IMEX-DIMSIM4, which
can be explained by the relatively small stability region of the underlying explicit
methods. The method needs small time steps to prevent instabilities, and even then
the error behavior favors the other fourth-order methods. IMEX-Peer4 and IMEX-
BDF4 gave nearly identical results with an increasing order reduction which was
already visible in the first test problem. In view of the spatial error, temporal errors
below 10−4 are of less importance for the total PDE error, however.
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Figure 5: Adsorption-Desorption-Problem: Temporal discrete l1-errors of the
total concentration vs. scaled step sizes, m = 800. Comparison of IMEX-Peer,
IMEX-BDF ans IMEX-DIMSIM methods.

5.3 The Schnakenberg Problem

A classical example of a two-dimensional reaction-diffusion equations for testing
numerical algorithms is the Schnakenberg system [13, 9]. The equations read

∂tu = D1∇2u+ κ(a− u+ u2v) , (52)

∂tv = D2∇2v + κ(b− u2v) , (53)

where u and v denote the concentration of activator and inhibitor, respectively. We
follow the setup in [9] and take D1 = 0.05, D2 = 1, κ = 100, a = 0.1305, b = 0.7695,
T = 1. The solution is computed on the unit square domain Ω = (0, 1)2 with the
initial conditions

u(x, y, 0) = a+ b+ 10−3 exp
(
−100 ∗ ((x− 1

3)2 + (y − 1
2)2)

)
,

v(x, y, 0) =
b

(a+ b)2
.

and homogeneous Neumann boundary conditions.
For the spatial discretization, we apply second-order finite differences on a uni-

form (cell centered) grid,
(
xi = (i− 1

2)h, yj = (i− 1
2)h
)
, i, j = 1, . . . ,m, with mesh

width h = 1/m, where m = 400 has been taken.
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Here, we treat the reaction explicitly and the diffusion implicitly. Accurate initial
values are computed by the variable step-size code ODE15S with high tolerances.
We have used step sizes 4 t = 23−j/m, j = 1, . . . , 5, and compared the numerical
values at the final time t = T with an accurate reference solution in the discrete
l2-norm, (‖v‖2 =

√
h
∑

i |vi|2), see Figure 6.
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Figure 6: Schnakenberg-Problem: Temporal discrete l2-errors at T = 1
vs. scaled step sizes, m = 400. Comparison of IMEX-Peer, IMEX-BDF and
IMEX-DIMSIM methods.

The second-order IMEX methods perform well and show their classical order.
IMEX-DIMSIM2 produced the best results due to a smaller error constant. The
higher order IMEX-DIMSIM schemes failed for larger time steps, whereas IMEX-
DIMSIM4 gave again unsatisfactory results at all. A further time, Peer and BDF
methods delivered nearly identical numerical solutions. Both showed a somehow
unpredictable behavior for larger time steps, but in this case they are still more
efficient than the DIMSIM schemes.

6 Conclusion

We have developed a new family of s-stage implicit-explicit Peer methods, starting
with L(α)-stable implicit Peer methods with order p = s and applying an extrap-
olation of the same order to preserve the order of convergence. The well-known
IMEX-BDF(s) methods applied with constant step size 4t/s fit into this frame-
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work when they are considered as s-stage Peer methods with equidistant nodes and
step size4t. We gave the corresponding formula to convert. We examined the linear
stability properties of these IMEX methods to construct new IMEX-Peer methods of
order p = 2, 3, 4, with optimally balanced size of stability regions and error constants
for the underlying extrapolation. A detailed comparison with the recently proposed
IMEX-DIMSIM methods [2] showed a significant improvement of the stability prop-
erties and a better performance of the higher-order methods for three numerical test
problems.

We are planning to extend this work to a variable step size environment and
to include other classes of implicit Peer methods, e.g., those with strictly diagonal
matrix R to allow an efficient parallelisation. We will also consider linearly implicit
Peer methods of higher order p ≥ 4 as developed in [10] and successfully applied
in [5] to large scale PDE problems within an adaptive Rothe approach. There are
L(α)-stable methods of this type with reasonable large angles α and small error
constants available up to order p = 8, which give them a clear advantage over higher
order BDF methods.
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