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Noise threshold for universality of 2-input gates
Falk Unger

Abstract—It is known that e-noisy gates with 2 inputs gate fails independently with probability less than
are universal for arbitrary computation (i.e. can compute ().0073 [12]. The first to prove an upper bound on
any function with bounded error), if all gates fail inde- the tolerable noise was Pippenger![11]. He proved
pendently with probability ¢ and € < 2 = (3= V7)/4~ 1ot formulas with gates of fan-in at mast where

8.856%. In this paper it is shown that this bound is tight L . .
for formulas, by proving that gates with 2 inputs, in which each gate fails independently with probability at

each gate fails with probability at least 3, cannot be |€aste 2_% —_ﬁu are not SuﬁiCient for universal
universal. Hence, there is a threshold on the tolerable computation (i.e. not all functions can be computed
noise for formulas with 2-input gates and it is 3. It is  with bounded error). Feder proved that this bound
conjectured that the same threshold also holds for circuits g|gg applies to circuits [8]. Later, Feder's bound was
improved tos — ﬁ by Evans and Schulman![6].

Index Terms—Computation with unreliable compo- For formulas with gates of fan-ik and & odd,
nents, fault-tolerant computation, noise threshold Evans and Schulmar|[7] proved the tight bound
B =1-—2"° _ Tight here means that if all gates

2 g

|. INTRODUCTION il indenc ey with th ived babili
During the last decades, computers have becorme MoePen ently with the same fixed probability

faster and faster, mainly due to advances in hard-= Br, then any function can be. bounded-error
cp_mputed, and if each gate fails with some proba-

ware miniaturization. However, there are physic :
limits to the possible extent of this miniaturization;,gcilr't‘}:“ilet l:;zt)ﬁ kugvr\?éﬁga?zg?nn%ttgggg Itso r?gtthgsss?tr)rll:
and the closer one gets to these limits, the less rob str 1 g_ 5 tﬁe threshold wgs first establighed b '
and more error-prone the components became [3],. | _ y
) . ) ajek and Weller([9].
[2]. It is estimated that the time when processor tar it h bl
architects face these limitations is within the next Hovx_/ever, SO far it has not _been po§5|be to
decadel([4]. establish thres_hold_s for gates wmen fan-lr_l (or
Gates, the smallest components of any proces<dfén Prove their existence), as pointed out.in [7]. In
can fail in (at least) two ways. The first is that thefarticular, the most basic case of fan-in 2, which
do not work at all. The second is that they worle MOSt commonly used, had been elusive. An
most of the time correctly, and fail sometimes. Thigtuitive argument why even fan-in is different is
type of errors is called “soft errors” by hardwaréha_t fqr even fan-in threshold gates (and in particular
engineers. We deal with faults of the second typdl@i0rity gates) can never be “balanced”, in the sense
In particular, we consider the computationg/'at the number of inputs on which they dreannot
model of noisy formulas. Formulas are a specialbe the same as the number of inputs on which they

kind of circuits in which each gate has exacti#€V-
one output wirdl. We ask how much noise on the Evans and Pippenger|[5] made some progress in
gates is tolerable, such that any function can still #ais direction. First, they show that all functions
computed by some formula with bounded-error. Wean be computed by formulas with noisy NAND-
will assume throughout that gates fail independentjates with fan-in 2, if each NAND-gate fails with
of each other. probability exactlye, for any0 < e < 8, = 327,
This question has been studied earlier. Already fecond, they show that with NAND-gates alone
1956 von Neumann discovered that reliable compiltis bound cannot be improved (They make some

tation is possible with noisy 3-majority gates if eachdditional assumptions which we discuss below).
This left open the question of what the bound is
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Amsterdam, The Netherlands. (Falk Unger@cwi.nl) it we allow all 16 gates with fan-in 2. We settle this

Iprecise definitions for all terms used can be found in Sefion quéstion in this paper.
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Theorem 1. AssumeA > 0. Functions that are the thresholds, then for anyé > 0 there is some
computable with biag\ by a formula in which all 0 < # < 1 such that ifo < max{|d,.|,|d|} then
gates have fan-in at most 2 and fail independently
with probability at least?, = (3 — +/7)/4, depend 19| < 6 max{|dal, |3y} ()
on at most a constant number of input bits. This would mean that the bias goes down exponen-

Together with the first mentioned result froni [Sfially with the number of computation steps, until
this gives the exact threshold for formulas with gates reachess. Further, it is easy to show that for
of fan-in 2. It extends the second result from [5] iany ¢ > 0 there is a functionf such that any
the following ways: (1) We allow all gates of fan-informula computingf has one input bit:; on which
2, instead of only NAND-gates. (2) We prove that if depends and the number of computation steps on
the noise is exactly,, then no universal boundedany path fromz; to the output bit is at least.
error computation is possible. (3) In contrast to oyfence, the bias cannot be bounded away from zero
result, the upper bound in![5] only applies to “softfor all f andz;.
inputs. They show that gates with noise more thanunfortunately, [(1) is not always true. Sometimes
ﬁ2 cannot increase the b|a§. More precisely, if th@le bias can actually go @JWe use a more so-
inputs to the formula are noisy themselves and hapRisticated approach, showing that the bias goes
bias at mostA > 0, then the output of the formulagown “on average”: We define potential function
cannot have larger bias thak. This left open the q, which is positive and bounded df, 1]. Instead
case where the input bits are not noisy and eithgf showing [1) we show that for any > 0 there
0 or 1, which is the case we care about most. Ol some0 < # < 1 such that if§ < max{|d,], ||}
argument shows that even with perfect inputs faulihen
tolerant computation is not possible for noise at least
By |0c|g(c) < Omax{|dalg(a), |d]q(D)}.  (2)

.To prove Theoren[]l we intrpduce a new tec%nd if & > max{|6,],|5|} then [2) holds for
nique, which is also applicable in the case of fan-jp _ | Since ¢ is bounded, this implies that for

2. We expect that it can be extended to other fan-ghy arbitrarily small constanit > 0 the bias of any

cases. formula becomes) () after a constant number of
~We conjecture that our bound also holds fqfomputation steps. We can then proceed as above.
circuits. We give the main proof in Sectidn]V. In Section
[Twe prove [2), in the main Lemmia 1. Sectién V
A. Outline of the proof contains some remarks on our particular choice of

For any functionf : {0,1}* — {0,1} we will e

choose an input bit;; which f depends on, and
fix all other bits such thaf still depends onz; .
Assume thatf is computed by a formuld with A circuit is composed of gates. Eagfate has a
noisy gates that fail independently with probabilitgertain number of input wires, which is called the
at least3,. Then, for each gate in the formula fan-inof the gate. The wires can take boolean values
with input wiresA and B and output wireC’' we can 0 or 1. A gate computes an output bit as a boolean
definea = %p[A =0z = 0]+%[p>[A =0z =1] function Qf its Input .bl'[S. Aformula is a particular .
andd, =P[A =0z =0 —P[A=0|z =1] type of circuit in which the gates are connected in
and analogously fo3 and C. The variablea can @ tree, with the output gate at the root and the input
be seen as the average probabilityobeing0. We Dbits at the leaves. In particular, this means that each
call 6, the bias of A with respect to the two inputgate has exactly one output wire.
settingsz; = 0 andz; = 1. A (perfect) PARITY-gate with input bits:; and

To prove our result one could attempt the followz2 outputso if z; = z, and1 otherwise. A (perfect)
ing, which will turn out to not quite work (but we OR-gate outputs if z; =z, = 0 and1 otherwise.
then show how to fix that): For aianoisy gate with , L
fan-in 2, input wires A, B and output wireC', we /1’3”;3? ixinflg/'foa?o?sv}%iﬂedwﬁ ?2;3 ejrlb/;(;’(f“jf)b

’ c b a

would like to show that if the noise is at least 0.128 > 1/10.

[I. DEFINITIONS
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ther, ¢ is symmetric aroundl/2 and convex. In
(82,1 — f2] ¢ is bounded betweeq,;, = ¢(1/2) =
—V7/2 +73/32 > 09 and ¢ = q(B2) =
(247 + 8v/7)/128 < 2.1, see Figuré&Tll.

For anye < 1/2 we define the function

Ne(z) = (1 — 2¢)z + e

If = is the probability that some variable (s then
n.(x) is the probability that it i) after it has gone
through ane-noisy channel.

A. Technical Lemmas

Fig. 1. Graph ofy(x) In the rest of this section we establish inequality
(8) in Lemmall, from which the proof of the main
theorem will follow relatively straightforwardly. The

We call a gatee-noisy if it outputs the correct proof of this inequality is quite technical and so at
result with probabilityl — e and with probability first reading the reader might just want to read the

e it outputs the opposite. We say that a formul&atement of Lemma 1 and then move immediately

F with noisy gates computes the functighwith to Section 1V, where we establish the main result.

bias A > 0 if for all z € f7'(0), y € f~'(1): Inequality [8) can also be checked with the help of

P[F(x) = 0] > A+ P[F(y) = 0|8 If f can be a computer (e.g. using Mathematica [1]), but in the

computed with some biad > 0 we also say that remainder of this section we will prove it rigorously.

[ is computable with bounded-error. Proposition 1: For all a,b with 8, < a,b < 1 —

A function f : {0,1}" — {0,1} depends on the g, it holds that

i-th input bitz; if there is some setting of the other

bits, such that flippinge; flips the function value. q(a)q(b) — (1 = 26:)(ag(a) + bg(b))q(ns, (ab))

The number of bits thaf depends on is denoted by = 0. (4)

d(f). Proof: We write a = z¢ + s, andb = z¢ + sy

In a formula, we define thelepth of a wire A, W .0.g. let|s,| > |s,| and choose-1 < k < 1 s.t.

denoted bydepth(A), as the number of 2-inputs — ks,. Then the Ihs of[{4) can be written as
gates on a path from to the output wire. Gates "

with fan-in 1 are not counted. ZTi(k)SM' (5)
For the definition of the quantities and ¢, for a b
wire A we refer to Sectiof T=A.

=0
The reason why (5) only starts with a quadratic term
in s, is our special choice of, see Section V-A for

IIl. BIAS REDUCTION FOR NOISY GATES more on this. The first coefficient is easily computed
We define the constanty = 1/(2 — 45;) = (1 + & ( 3ﬁ) 12
_ = (3- 37 1).
V/7)/6 2 0.61. It will turn out later that an OR-gate ro(k) = (3= 57) (1)

with input wires A, B performs best whem ~ z, This function attains its minimum value df —
andb = . Further, we define thgotential function 3+/7/4 ~ 1.02 atk = 0. Therefore, there is a > 0
s.t. fora, b € [xg — K, 29 + &] the Ihs of [4) is non-
4 ) )
q(z) = (? + 2\ﬁ) (z—3) negative. We show that = 0.02 is a solution.
9 The absolute value of the other coefficients for
+ (#‘%) (#=3)"=%+% @ _1 <k < 1 can be bounded byri (k)| < 5,
~ 1979z — 0.5 + 336z — 0.5+ 096 [ra(k)| < 31, [ro(k)| < 18, |ra(k)| < 68, [rs(k)| <
326 and for all other|r;(k)| < 5000. Therefore, if
This is a biquadratic function ifiz — 1/2). Fur- |s,| < 1/50, (§) is at least

3For our purposes it does not matter that with this definitfcand Sg (1'02 - 5(0'02) - 31(0-02)2 - 18(0-02)3 e )
f are actually computed by the sarfie > 0.9082 > 0.



This proves the case—1/50 < a,b < zo+1/50. Fact 4: Leta,b, u with 83 < a,b <1— 3 Then
For all other|a — x| > 1/50 or |b—xy| > 1/50 the
proposition follows from Fadt]1 with: = 0. u q(a) = (1 = 262)bg(ns, (ab — p)) > 0.22
We now state some bounds on polynomials. Th : L a
are similar in spirit to[(4), with the crucial differencef%idg gr((ab))ci/é 1</i :23—(<f—ﬁf2—)$(1—5§2—%
that these bounds are not tight. This is convenieﬁt,z 0. -
because there are several techniques for finding” Proof: For u = 0 (and all 3, < a < 1 — )
global optima of multivariate polynomials up to ahe term is lower bounded b(y23._For both cases
bitrary precision. See [10] for an overview. We havg <1/2, u=—(a—B)(1—Bs—b)and1/2 <a
used the computer algebra program Mathematica_ _(1'_ By — a)(1 = B — b) the term is Igwér

—10
[1]. We used an accuracy df0~™ and rounded p,, n4eq by 22. Using convexity of; as above the
the results in such a way that the bounds gige® ¢, .t follows. u
rigorousl _ _ We can state our main Lemma.
Fact 1. For alla,b with f, < a,b<1—f with | (.| e By < € < 1/2. Assume anr-noisy
la—mzo[ >1/50 and0 < p < &= (1—Fr—a)(l- OR-gate or PARITY-gate, with input wired and

<
<

f> — b) it holds that B and output wireC'. Let
q(a)q(b) — (1 — 2>)(aq(a) + bq(b))q(ns,(ab + 1)) By < PA=0|2;=0] < 1—0,
> 0.0003. e B <Pla=0lm=1<1-p O

Proof: Notice thaty only appears in the termand let the same be true fd8. Definea, b, c and

q(ng,(ab + w)). For0 < u < ¢ we notice that by dq, &, d. for A, B, C as in Sectiorll.
c?nv?xity Of)gl and quer;trity( 01;37/32 (it f(z”OWS ;f;?t 1) The following inequality holds fo# = 1:
q(ns,(ab + < max{q(ns,(ab)), q(ns,(ab + :
Tr?lfs, (%) g minimized :‘](B)ru =0 onrﬁu - f.g For |0clg(c) < Omax{|dalg(a), [0]q(b)}.  (8)
i = 0 the Ihs of [6) is lower bounded b§.0003
and forp = £ by 0.01. [ |

Fact 2: For all a,b,;u with By < b < 1 — f3,
1/2<a<1l-pyand|p| <&:=2(1—pFs—a)(l—
B2 — b) it holds that

2) For anyd > 0 there is a0 < # < 1 such that
if |04 > d or |0 > 6, (8) is still true for this
0.

Proof: We consider the OR-gate first. We have
P[C=0]|z=0] =n((a+6,/2) (b+ d/2)) and
a(@)q(b) — ((2a — )g(a) + (2b— 1)q(0))(1 — 26) P[C = 0 | 7 = 1] = 1. ((a— 6a/2) (b~ 6/2)),

X q(ngy(ab+ (1 —a)(1 —b) +p))  which implies

> 0.45.
de = (ady+bd,) (1 — 2e)
Proof: For = ¢ the term is lower bounded ¢ = ne(ab+ 6.0,/4).
by 0.48 and foru = —¢& by 0.55. Using convexity
of ¢ as above the fact follows. m Increasing decreased).| as well as alsg(c), since

Fact 3: For all a,b,n with 8, < b < 1 — f3,, c gets closer tal/2 and ¢ decreases towards/2.
Br<a<1/2and|u| <¢&:=2(a—p)(1—3,—0b) Thus we may assume = fj,. Further, we may
it holds that assumed,|q(a) > |0y|q(b). Note that, fory, = 0 we

then also haveé, = 0 and the Lemma holds trivially.
q(a)q(b) — (1 —2a)q(a) + (26— 1)q(b))(1 = 2B2) |y the remaindber we therefore assume# 0. Iny
- 048 X q(ns,(ab+ (1 —a)(1 =b) + 1)) ey, we will even assume, > 0: In cased, < 0
= Ve we can just formally replace every occurrence)of
Proof: For u = ¢ the term is lower bounded byand o, With —0, resp.—d,. Because of the absolute
0.51 and foru = —¢ by 0.48. The fact then follows value signs, this will not change the validity f (9).

by convexity ofg as above. m SO we have to prove

“Even more simple, one could bound the first derivatives aedich (1 — 2€) |ady + bda| g (e (ab + 6405/4)) (9)
all values of the polynomials on a small enough grid. < 0|04]q(a).



In the remainder, we will repeatedly use tlhaand If &, is small, i.e.0, < 4,/100, then upper

b are bounded betweef, and1 — 3, and that in bounding the first occurrence of by d,q(a)/q(b)

this range,0.9 < ¢nin < ¢(a) < Guae < 2.1, to get from [9) to [(ID) was far from tight. A

without mentioning it each time. We distinguish theetter bound i$, < d,q(a)/(10g¢(b)), which derives

following cases: from q(a)/(10g(b)) > Gmin/(10Gmaz) > 1/100.
5, > 0: Since we assumegd,|q(a) > |d|q(b), it Analogously to the derivation of (10) we get

is enough to provel (9) where we replace the first

occurrence o, by d,q(a)/q(b). Cancellings, and fq(a)q(b)

multiplying by ¢(b) we get ;(3 — 2f,) (aq(a)/10 4 bq(b)) q (ns, (ab + 6.0,/4))

a(a)q(®) N @ s~ 5 4
12 y @), a > Bs. Thus, ag(a) > Bagmin and also

> (. (1= 202) (aq(a) + ba(b)) 4 (s, (ab + 6uti/4)) q (ng, (ab+ 0,0,/4)) > qmi. Hence,qthe lhs 0f(12)

(10) s at least(1 — 24,)3.q;,;,9/10 smaller than the lhs

In casela — x| > 1/50 or |b— x| > 1/50, note Of (10). Since we already proyeq earlier thiat](10)
that 0,8,/4 < (1 — B — a)(1 — B35 — b). If we set holds forf = 1 without the restriction, < 5a/1OQ,
1 = 6,6,/4 and@ = 1, then by Fadfll the Ihs of (LO)We co_nclude that (12) holds for sonfle< 1. This
is greater thar.0003. This implies the existence oféstablishes paffl 2 of the Lemma féy < 4,/100.
af < 1 for (10) and settles both parts of the Lemma. d» < 0: It is enough to prove[{9) where we
We are left with the casda — 29| < 1/50 replacelad,+0bd,| by (a)|bda| or (b)[ady|. If in case
and |b — z,| < 1/50. By (7) we can then bound (@) we canceb, andq(a)_aft_er the replacement, we
6,)2<1—Py—a<1—Py—1zy+1/50<0.33and See that @ < 1 must exist if
similarly 9,/2 < 0.33, i.e.(1—205)d,05/4 < 0.1. We
also note that in our case37 < 7n,(ab) < 0.42. q(a) = (1 = 202)ba(ng, (ab + 0ads/4)) = x, (13)
By ConveXity, min0_37§x§0_42 q(l‘) — q(l‘ + 0]_) =
q(0.42) — q(0.52) > 0.02, and thusq(ng,(ab) +
0.1) < q(ng,(ab)) — 0.02. This last inequality,
convexity of ¢ and (1 — 2/5)d,0,/4 < 0.1 imply
q(13,(ab) +(1=25)3400/4) < q(13,(ab)) — GF(1—
2/32)d405/4. Noting thatns, (ab) + (1 —285)0,0,/4 =
g, (ab + 6,05/4) this becomes

for somey > 0. Note that in case < 1/2 we have
—(a — B2)(1 — By —b) < 6,05/4 < 0 and in case
1/2 < a we have—(1 — By —a)(1 — 5 —b) <
da0p/4 < 0. The Lemma then follows from Fakt 4.
For case (b) we note thatd,| < ad,q(a)/q(b).
Replacing|ad, + bd,| in (@) by ad.q(a)/q(b) and
rearranging terms we get exactly the samelas (13),

b+ 5,0,/4 11 with ¢ andb swapped. We proceed as in case (a).
2 : b/4) 5.5 (11) We now consider the PARITY-gate. First note,
< a(n,(ab)) = (1 = 2/32)dads/20. that if the two input wires of a noiseless PARITY

I el o /) < gy (). Plg: %% S5 TOSBErEnt i, prooabiey esp
ging the lhs of this into[(10) and using Propositiog’ﬁ+ (1—a)(1— B). Thus, in our case
implies [10) ford = 1. This establishes par 1 of " ' ’

the Lemma forj, > 0. P[C =0z =0

Now part[2 of the Lemma. Let, > ¢ or = nl(a+6./2) (b+6,/2)
d > o. Consider first the case thajf is not too +(1—a—0,/2)(1—b—6,/2))
small compared t@,, sayd, > d,/100. Together and
with our assumptiond, |q(a) > |dy|q(b) this implies P[C =0z =1]
(1—205)0405/20 > (1—20,)6?/2000. With (1T) we = n((a—68,/2) (b—6,/2)
then getq(ns, (ab + d.0,/4)) + ¢ < q(np,(ab)) for +(1—a+6,/2) (1 —b+6,/2))

c = (1—2085)0%/2000 > 0 and putting this into[{4)
givesq(a)q(b) — (1—28,)(ag(a) +bg(b))(q(ns, (ab+ which implies

da0p/4)) + ¢) > 0. This implies the existence of a

0 < 1 for (I0) and establishes part 2 of the Lemma ¢ = 7 (ab+ (1 —a)(1 —b) + dads/2)
when g, > 4,/100. de = ((2a—1)0 + (20 —1)6,) (1 — 2¢)



We need to prove SetD = [log,d(f)]—1andj = 35— Letd < 1
be given by Lemmal1l for thi§. In case this results

(20 = 1)dy + (20 = 1)da| (1 — 2€) x in Gg< 1 —y252, setd = 1 — 23,. (The adjustment

oy (;’(776 (ab+ (1 —a)(l —=b) +du0p/2)) (14) > 1 — 28, is not really needed, but will later

< 010alq(a). simplify the proof.) We will prove inductively that
As for the OR-gate we only need to considet 3, for any wireC" at depthd < D
and may assume&, > 0 w.l.o.g, because otherwise A AD—d
we can just change the signs of béthandsd,. Also, 9(€)[0c] < max{5, 07 gmaa}- (15)
w.l.o.g. we assumé,|q(a) > |d|q(b). If 6, = 0, For d = D (18) holds trivially. Now take any
then alsod, = 0 and the Lemma becomes trivialwire C in F with depthd < D. We distinguish
So we assumé, > 0. Further, we may assumewhat signalC carries.
b > 1/2 (and therefore(2b — 1)d, > 0), because Firstly, C' can be an input wire carrying,. Then
formally replacinge andb by 1 —a and1 — b does necessarilyi # j, because input wires carrying
not changel(14). We condition on the sign2af-1. have depth at leadb + 1. Thus,d. = 0 and [I5)
First 2a — 1 > 0. It is enough to prove[(14), holds.
where we replace the first occurrence &f by Secondly,C can be the output of a noiseless
daq(a)/q(b), since we assumed,|q(a) > |9|q(b). NOT-gate, which has input wir&. Note that since
Cancellingé, and rearranging terms, the existenoge do not count NOT-gates in the depth of a wire,
of a0 < < 1 for (14) then follows from depth(C) = depth(B), ¢ = 1 —b andd. = —6.
a@)a(b) — (20— )a(a) + (26— a(b))(L—~28) e DY Symmetry of around’ 2 we get {15) for
- X q(np,(ab + (1 = a)(1 = b) + da06/2)) Thirdly, C' can be the output of gatg, with G
=X ' either an OR-gate or a PARITY-gate. Let the input
This inequality follows from Fadf]2 by noting thawires toG be A andB. If one wire is a constant, say
|0p] < 2(1 = B2 —b) and|d,| < 2(1 — By — a). A, then gate7 is essentially a (noisy) gate with fan-
In case2a —1 <0 we can proceed similarly,in 1. Hence,G always outputs either a (noisg)or
where this time we replace the first occurrencé,of 1, or G is the noisy identity- or the noisy NOT-gate.
by —d.q(a)/q(b) and boundd,| < 2(a — ;). The In the first two cases. = 0. In the last two cases
resulting inequality follows from Faci 3. m we can easily calculate thet—1/2[(1—2¢) = |c—
1/2| and|d.| < (1 —25,)|0,|. Because; decreases
monotonically towardd /2 and we chosé > 1 —
_ 2535, (18) holds.

Proof: Let f be any function and lef” be 5o we are left with the case where both inputs
any formula with noisy gates that fail independently, ; are non-constant. Sinagé< D, both wiresA
with probability at leasts,. Let ' computef with  and B are the output of some noisy gate, so the
bias A. We show thatf depends on at most aconditions [7) in Lemmall are satisfied. We may
constant number of bits, i.€(f) < ¢(A), for some assume|dy|q(b) < |d.q(a) w.l.o.g. If [5,]q(a) <
function ¢(A). A/2, then by parfil from Lemm@ 1 alg6,|q(c) <

Before starting we note the following: Eveey A /2 and [I5) holds. Ifd,|q(a) > A/2, then|d,| >
noisy fan-in-2 gate can be constructed from ean 5 A_ — 5. Then [I5) follows from paffl2 of Lemma
noisy PARITY- or ane-noisy OR-gate, perfect NOT—mq’g{’ﬁd the inductive assumption.
gates and constant inpUtS. Hence, we may asSuMmeet O be the output wire ofF, which by as-
that F' is constructed from perfect NOT-gates angymption has biasA. Becauseg(o)A < A/2
nOisy PAR'TY—gateS and OR-gates. is impossib|e (Sinceq(o) > Qin > 1/2)

Let z; be an input bit on whicly depends with \we get from [(I5): g(0)A < 6°gyas, and fur-
the additional property that any input wire & ther A < gllos2d(N1=1 (g, /qrin), Which implies
carryingz; has depth at leagliog, d(f)]. Because log;(Atmin/dmes) | 1 > log, d(f). Sinced depends

. . . log, 6
all gates_, inf” have fan-in _at mos?, the_ eX|ste_nce of only or12A, d(f) is upper bounded by the function
suchz; is guaranteed. Fix all other input bits such

that the output ofF’ changes when flipping;. A(A) i = 2 (Agmin/Gmaz ) 27 .

V. PROOF OFTHEOREM[I]
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V. DISCUSSION K

We have shown a tight threshold for the nois%]
which is tolerable for computation by formulas with
gates of fan-in at most 2. This is the first result for
gates with an even number of wires. It should bé!
possible to generalize it to other fan-in, althougl,
the proof is probably more tedious.

The same bound probably also appliecit@uits 8]
with gates of fan-in at most.

(9]
A. Choice of potential function

So far we have not given any idea of why wé
chose this particular potential function. In fact,
this choice is not unique. The choice of was
determined as follows: (1) It is convenient to chood&!
q symmetric aroundl/2, so applying a NOT-gate ;]
to wire A does not change the value of,|q(a).

(2) It is natural to scaleg such thatq(zg) =

1. (3) After these choices, we have to choose
L g(2)|s=0o = 3(—1+ /7). This ensures thaf](5)
does not have a linear term 53 and only starts
with the quadratic term, i.e." (k) = 0". (4) We
also needL, ¢(x)|,—s, > 16 —4+/7 ~ 5.42, because
that makes (k) > 0 for —1 < k < 1. The rest of
the choices are not so binding.

However, a quadratic function alone is not
enough. For[(5) to be at lea8tone also has con-
straints on higher derivatives @f The expression
in (3) for ¢ is one of the “nicer” possible potential
functions. One can also find a possihleby divid-
ing the interval5;, 1— ;] into smaller intervals and
defineq as different quadratic functions in each of
these intervals.
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