68,375 research outputs found

    Effect of defoliation height on regrowth of timothy and meadow fescue in the generative and vegetative phases of growth

    Get PDF
    Post-defoliation carbohydrate stores, leaf area and the number of active meristems are important factors affecting the subsequent regrowth of grasses. Defoliation height affects the magnitude of all these factors. Timothy (Phleum pratense L.) and meadow fescue (Festuca pratensis Huds.) are the two most common pasture species in Finland, but little is known about their response to defoliation height. In this study the effect of three defoliation heights, 3, 6 and 9 cm, on the regrowth rates of timothy and meadow fescue in both the generative (June–July) and vegetative (August) phases of growth were examined in two one-year experiment in year 2000 and 2001. In addition, the main postdefoliation parameters were measured and their contributions to regrowth were studied. In June–July 2000 the regrowth rates, kg dry matter ha-1 d-1, of both species increased linearly by 19% by increasing the cutting height from 3 to 9 cm. In August 2000 the regrowth rates increased by 27% and the cumulative regrowth dry matter yield increased by 29%. In 2001 the defoliation height had no effect on the regrowth rates but the cumulative regrowth yield increased by 10% by increasing the cutting height. Meadow fescue produced 8–21% higher cumulative regrowth yields than timothy. In the reproductive phase, the regrowth rate of timothy is dependent on the population density of vegetative tillers but for meadow fescue population density did not have such importance. In vegetative phase there was no single factor essential for regrowth rates of either of the species

    Using the Xenopus Developmental Eye Regrowth Stystem to Distinguish the Role of Developmental Versus Regenerative Mechanisms

    Get PDF
    A longstanding challenge in regeneration biology is to understand the role of developmental mechanisms in restoring lost or damaged tissues and organs. As these body structures were built during embryogenesis, it is not surprising that a number of developmental mechanisms are also active during regeneration. However, it remains unclear whether developmental mechanisms act similarly or differently during regeneration as compared to development. Since regeneration is studied in the context of mature, differentiated tissues, it is difficult to evaluate comparative studies with developmental processes due to the latter’s highly proliferative environment. We have taken a more direct approach to study regeneration in a developmental context (regrowth). Xenopus laevis, the African clawed frog, is a well-established model for both embryology and regeneration studies, especially for the eye. Xenopus eye development is well-defined. Xenopus is also an established model for retinal and lens regeneration studies. Previously, we demonstrated that Xenopus tailbud embryo can successfully regrow a functional eye that is morphologically indistinguishable from an age-matched control eye. In this study, we assessed the temporal regulation of retinal differentiation and patterning restoration during eye regrowth. Our findings showed that during regrowth, cellular patterning and retinal layer formation was delayed by approximately 1 day but was restored by 3 days when compared to eye development. An assessment of the differentiation of ganglion cells, photoreceptor cells, and MĂŒller glia indicated that the retinal birth order generated during regrowth was consistent with that observed for eye development. Thus, retina differentiation and patterning during regrowth is similar to endogenous eye development. We used this eye regrowth model to assess the role of known mechanisms in development versus regrowth. Loss-of-function studies showed that Pax6 was required for both eye development and regrowth whereas apoptosis was only required for regrowth. Together, these results revealed that the mechanisms required for both development and regrowth can be distinguished from regrowth-specific ones. Our study highlights this developmental model of eye regrowth as a robust platform to systematically and efficiently define the molecular mechanisms that are required for regeneration versus development

    Behaviour and effects of fluorine in annealed n+ polycrystalline silicon layers on silicon wafers

    No full text
    A comprehensive study is made of the behaviour and effects of fluorine in n+ polysilicon layers. Sheet resistance, TEM and SIMS are used to obtain quantitative data for the breakup of the interfacial oxide, the epitaxial regrowth of the polysilicon and the fluorine and arsenic distributions. The fluorine significantly increases both the initial oxide breakup and the initial polysilicon regrowth. It also produces inclusions in the layer which can affect the subsequent polysilicon regrowth and the arsenic distributions. Three regrowth stages and two regrowth mechanisms are distinguished and interpreted and a value of approximately 6x1011cm2s-1 is deduced for the effective diffusivity of fluorine in polysilicon at 950°C

    Subtotal resection of vestibular schwannoma: evaluation with Ki-67 measurement, magnetic resonance imaging, and long-term observation

    Get PDF
    Purpose The aim of this study was to compare the postoperative clinical and radiological data of patients with vestibular schwannomas who were initially managed by near total resection (NTR) or subtotal resection (STR). The Ki-67 analysis results were compared with tumor regrowth to determine the presence of a correlation between this proliferative index and postoperative tumor regrowth. Study Design Seventeen adult patients (7 male, 10 female) were retrospectively reviewed. Nine (52.9%) and eight (47.1%) patients underwent NTR and STR, respectively. Postoperative clinical and radiological data associated with vestibular schwannoma growth were compared with the Ki-67 immunohistochemical analysis results. Results Evidence of clinically significant regrowth was observed in four (23.5%) patients. Patients who underwent NTR had a lower rate/incidence of tumor regrowth than did patients who underwent STR. Patients with a higher Ki-67 index had the highest tumor regrowth rates. Conclusions Our study indicates that assessment of the Ki-67 index may be useful for determining the probability of regrowth of vestibular schwannomas when only partial removal is accomplished

    Compensating impurity effect on epitaxial regrowth rate of amorphized Si

    Get PDF
    The epitaxial regrowth of ion-implanted amorphous layers on Si with partly compensated doping profiles of 11B, 75As, and 31P was studied. Single implants of these impurities are found to increase the regrowth rate at 475 and 500°C. The compensated layers with equal concentrations of 11B and 31P or 11B and 75As show a strong decrease of the regrowth whereas for the layers with overlapping 75As and 31P profiles no compensation has been found

    Regrowth-related defect formation and evolution in 1 MeV amorphized (001) Ge

    Get PDF
    Geimplanted with 1MeV Siâș at a dose of 1×10Âč⁔cm⁻ÂČ creates a buried amorphous layer that, upon regrowth, exhibits several forms of defects–end-of-range (EOR), regrowth-related, and clamshell defects. Unlike Si, no planar {311} defects are observed. The minimal EOR defects are small dotlike defects and are very unstable, dissolving between 450 and 550°C. This is in contrast to Si, where the EOR defects are very stable. The amorphous layer results in both regrowth-related defects and clamshell defects, which were more stable than the EOR damage.This work is supported by Semiconductor Research Corporation Contract No. 00057787

    Photometric Studies of a WZ Sge-Type Dwarf Nova Candidate, ASAS160048-4846.2

    Full text link
    We report on our time-resolved CCD photometry during the 2005 June superoutburst of a WZ Sge-type dwarf nova candidate, ASAS 160048-4846.2. The ordinary superhumps underwent a complex evolution during the superoutburst. The superhump amplitude experienced a regrowth, and had two peaks. The superhump period decreased when the superhump amplitude reached to the first maximum, successively gradually increased until the second maximum of the amplitude, and finally decreased again. Investigating other SU UMa-type dwarf novae which show an increase of the superhump period, we found the same trend of the superhump evolution in superoutbursts of them. We speculate that the superhump regrowth in the amplitude has a close relation to the increase of the superhump period, and all of SU UMa-type dwarf novae with a superhump regrowth follow the same evolution of the ordinary superhumps as that of ASAS 160048-4846.2.Comment: 7 pages, 4 figure

    The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks

    Get PDF
    Abandoned management has caused many sites with free-standing, large oaks (Quercus robur) to become more shaded. This study shows how forest regrowth affects beetle species associated with old oaks in south-eastern Sweden. Beetles were trapped by pitfall traps placed in hollows and window traps placed near hollows in oak trunks in pasture woodlands. We assessed the influence of forest regrowth, tree size and original canopy cover on the species richness of saproxylic beetles (a total of 120 species identified) and the occurrence of 68 saproxylic beetle species in particular. Species richness was greatest in stands with large, free-standing trees. Large girth as well as low canopy cover increased frequency of occurrence for several species. Forest regrowth was found to be detrimental for many beetle species. As most localities with endangered beetles living in old oaks are small and isolated, ongoing management and the restoration of abandoned pasture woodlands should have a high priority in nature conservation
    • 

    corecore