6 research outputs found

    Existence results for nonlinear multi-term impulsive fractional q-integro-difference equations with nonlocal boundary conditions

    Get PDF
    This paper is concerned with the existence of solutions for a nonlinear multi-term impulsive fractional q q -integro-difference equation with nonlocal boundary conditions. The appropriated fixed point theorems are applied to accomplish the existence and uniqueness results for the given problem. We demonstrate the application of the obtained results with the aid of examples

    Caputo fractional qq-difference equations in Banach spaces

    Get PDF
    This paper aims to explore the existence results of a certain type of Caputo fractional qq-difference equations in Banach spaces. To achieve this goal, we employ a fixed point theorem that relies on the concept of measure of noncompactness and the convex-power condensing operator. We give an illustrative example in the last section

    Fractional Differential Equations, Inclusions and Inequalities with Applications

    Get PDF
    During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering

    Applied Mathematics and Fractional Calculus

    Get PDF
    In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the classical notions of differentiation and integration. These fractional and derivative integrals, which until not many years ago had been used in purely mathematical contexts, have been revealed as instruments with great potential to model problems in various scientific fields, such as: fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing or entropy theory. Since the differential and integral operators of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes, which in many cases is more useful than classical formulations. This is why the application of fractional calculus theory has become a focus of international academic research. This Special Issue "Applied Mathematics and Fractional Calculus" has published excellent research studies in the field of applied mathematics and fractional calculus, authored by many well-known mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea, Turkey, and Saudi Arabia

    Existence Theory for a Fractional q-Integro-Difference Equation with q-Integral Boundary Conditions of Different Orders

    No full text
    In this paper, we study the existence of solutions for a new class of fractional q-integro-difference equations involving Riemann-Liouville q-derivatives and a q-integral of different orders, supplemented with boundary conditions containing q-integrals of different orders. The first existence result is obtained by means of Krasnoselskii’s fixed point theorem, while the second one relies on a Leray-Schauder nonlinear alternative. The uniqueness result is derived via the Banach contraction mapping principle. Finally, illustrative examples are presented to show the validity of the obtained results. The paper concludes with some interesting observations
    corecore