483 research outputs found

    A Survey of Alternating Permutations

    Get PDF
    This survey of alternating permutations and Euler numbers includes refinements of Euler numbers, other occurrences of Euler numbers, longest alternating subsequences, umbral enumeration of classes of alternating permutations, and the cd-index of the symmetric group.Comment: 32 pages, 7 figure

    The Matrix Ansatz, Orthogonal Polynomials, and Permutations

    Get PDF
    In this paper we outline a Matrix Ansatz approach to some problems of combinatorial enumeration. The idea is that many interesting quantities can be expressed in terms of products of matrices, where the matrices obey certain relations. We illustrate this approach with applications to moments of orthogonal polynomials, permutations, signed permutations, and tableaux.Comment: to appear in Advances in Applied Mathematics, special issue for Dennis Stanto

    Some congruences involving central q-binomial coefficients

    Full text link
    Motivated by recent works of Sun and Tauraso, we prove some variations on the Green-Krammer identity involving central q-binomial coefficients, such as ∑k=0n−1(−1)kq−(k+12)[2kk]q≡(n5)q−⌊n4/5⌋(modΦn(q)), \sum_{k=0}^{n-1}(-1)^kq^{-{k+1\choose 2}}{2k\brack k}_q \equiv (\frac{n}{5}) q^{-\lfloor n^4/5\rfloor} \pmod{\Phi_n(q)}, where (np)\big(\frac{n}{p}\big) is the Legendre symbol and Φn(q)\Phi_n(q) is the nnth cyclotomic polynomial. As consequences, we deduce that \sum_{k=0}^{3^a m-1} q^{k}{2k\brack k}_q &\equiv 0 \pmod{(1-q^{3^a})/(1-q)}, \sum_{k=0}^{5^a m-1}(-1)^kq^{-{k+1\choose 2}}{2k\brack k}_q &\equiv 0 \pmod{(1-q^{5^a})/(1-q)}, for a,m≥1a,m\geq 1, the first one being a partial q-analogue of the Strauss-Shallit-Zagier congruence modulo powers of 3. Several related conjectures are proposed.Comment: 16 pages, detailed proofs of Theorems 4.1 and 4.3 are added, to appear in Adv. Appl. Mat

    Open Diophantine Problems

    Full text link
    We collect a number of open questions concerning Diophantine equations, Diophantine Approximation and transcendental numbers. Revised version: corrected typos and added references.Comment: 58 pages. to appear in the Moscow Mathematical Journal vo. 4 N.1 (2004) dedicated to Pierre Cartie

    Determinants of (generalised) Catalan numbers

    Full text link
    We show that recent determinant evaluations involving Catalan numbers and generalisations thereof have most convenient explanations by combining the Lindstr\"om-Gessel-Viennot theorem on non-intersecting lattice paths with a simple determinant lemma from [Manuscripta Math. 69 (1990), 173-202]. This approach leads also naturally to extensions and generalisations.Comment: AmS-TeX, 16 pages; minor correction

    The cyclic sieving phenomenon: a survey

    Full text link
    The cyclic sieving phenomenon was defined by Reiner, Stanton, and White in a 2004 paper. Let X be a finite set, C be a finite cyclic group acting on X, and f(q) be a polynomial in q with nonnegative integer coefficients. Then the triple (X,C,f(q)) exhibits the cyclic sieving phenomenon if, for all g in C, we have # X^g = f(w) where # denotes cardinality, X^g is the fixed point set of g, and w is a root of unity chosen to have the same order as g. It might seem improbable that substituting a root of unity into a polynomial with integer coefficients would have an enumerative meaning. But many instances of the cyclic sieving phenomenon have now been found. Furthermore, the proofs that this phenomenon hold often involve interesting and sometimes deep results from representation theory. We will survey the current literature on cyclic sieving, providing the necessary background about representations, Coxeter groups, and other algebraic aspects as needed.Comment: 48 pages, 3 figures, the sedcond version contains numerous changes suggested by colleagues and the referee. To appear in the London Mathematical Society Lecture Note Series. The third version has a few smaller change

    Tree expansion in time-dependent perturbation theory

    Get PDF
    The computational complexity of time-dependent perturbation theory is well-known to be largely combinatorial whatever the chosen expansion method and family of parameters (combinatorial sequences, Goldstone and other Feynman-type diagrams...). We show that a very efficient perturbative expansion, both for theoretical and numerical purposes, can be obtained through an original parametrization by trees and generalized iterated integrals. We emphasize above all the simplicity and naturality of the new approach that links perturbation theory with classical and recent results in enumerative and algebraic combinatorics. These tools are applied to the adiabatic approximation and the effective Hamiltonian. We prove perturbatively and non-perturbatively the convergence of Morita's generalization of the Gell-Mann and Low wavefunction. We show that summing all the terms associated to the same tree leads to an utter simplification where the sum is simpler than any of its terms. Finally, we recover the time-independent equation for the wave operator and we give an explicit non-recursive expression for the term corresponding to an arbitrary tree.Comment: 22 pages, 2 figure
    • …
    corecore