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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00436531v2


Tree expansion in time-dependent perturbation theory

Christian Brouder and Ângela Mestre
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The computational complexity of time-dependent perturbation theory is well-known to be largely
combinatorial whatever the chosen expansion method and family of parameters (combinatorial se-
quences, Goldstone and other Feynman-type diagrams...). We show that a very efficient perturba-
tive expansion, both for theoretical and numerical purposes, can be obtained through an original
parametrization by trees and generalized iterated integrals. We emphasize above all the simplicity
and naturality of the new approach that links perturbation theory with classical and recent results
in enumerative and algebraic combinatorics. These tools are applied to the adiabatic approximation
and the effective Hamiltonian. We prove perturbatively and non-perturbatively the convergence of
Morita’s generalization of the Gell-Mann and Low wavefunction. We show that summing all the
terms associated to the same tree leads to an utter simplification where the sum is simpler than any
of its terms. Finally, we recover the time-independent equation for the wave operator and we give
an explicit non-recursive expression for the term corresponding to an arbitrary tree.

I. INTRODUCTION

Effective Hamiltonians provide a way to determine the low-energy eigenvalues of a (possibly infinite dimensional)
Hamiltonian by diagonalizing a matrix defined in a subspace of small dimension, called the model space and hereafter
denoted by M . Because of this appealing feature, effective Hamiltonians are used in nuclear, atomic, molecular,
chemical and solid-state physics1.
These theories are plagued with a tremendous combinatorial complexity because of the presence of folded diagrams

(to avoid singularities of the adiabatic limit), partial resummations, subtle “linkedness” properties and the exponential
growth of the number of graphs with the order of perturbation. This complexity has two consequences: on the one
hand, few results are proved in the mathematical sense of the word, on the other hand, it is difficult to see what is
the underlying structure of the perturbative expansion that could lead to useful resummations and non-perturbative
approximations.
To avoid these pitfalls, we take a bird’s-eye view of the problem and consider a general time-dependent Hamiltonian

H(t). This way, we disentangle the problem from the various particular forms that can be given to the Hamiltonian
and which have lead in the past to various perturbative expansions. To be precise, take the example of fermions
in molecular systems. The Coulomb interaction between the electrons (say V ) can be viewed as a perturbation
of a “free Hamiltonian” modeling the interaction with the nuclei (in the Born-Oppenheimer approximation). One
can take advantage of the particular form of V (which is a linear combination of products of two creation and two
annihilation operators in the second quantization picture) to represent the perturbative expansions using a given family
of Goldstone diagrams (see e.g. ref. 2 for such a family). However, the general results on perturbative expansions
(such as the convergence of the time-dependent wave operator) do not depend on such a particular choice.
Thus, we consider an Hamiltonian H(t) and we build its evolution operator U(t, t0), which is the solution of the

Schrödinger equation (in units ~ = 1)

ı
∂U(t, t0)

∂t
= H(t)U(t, t0), (1)

with the boundary condition U(t0, t0) = 1. In perturbation theory, H(t) := e−ǫ|t|eıH0tV e−ıH0t is the adiabatically
switched interaction Hamiltonian in the interaction picture (here H0 and V stand respectively for the “free” and
interaction terms of the initial Hamiltonian) and singularities show up in the adiabatic limit (t0 → −∞ and ǫ → 0).
Morita discovered2 that, in this setting, the time-dependent wave operator

Ω(t, t0) := U(t, t0)P
(

PU(t, t0)P
)−1

,

where P is the projection onto the model space M , has no singularity in the adiabatic limit. Moreover, the wave
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operator determines the effective Hamiltonian because

Heff := lim
ǫ→0

PHΩ(0,−∞). (2)

However, as we have already alluded to, the effective computation of these operators raises several combinatorial and
analytical problems that have been addressed in a long series of articles (several of which will be referred to in the
present article).
In the first sections of the paper, we consider a general time-dependent Hamiltonian H(t) (not necessarily in the

interaction picture). In this broader setting, Jolicard3 found that the time-dependent wave operator provides also a
powerful description of the evolution of quantum systems (see ref. 4 for applications). Then, we derive three (rigorously
proven) series expansions of the wave operator. The first one is classical and can be physically interpreted as the
replacement of causality (i.e. the Heaviside step function θ(t−t′)) by a “propagator” θP (t−t′) := θ(t−t′)Q−θ(t′−t)P ,
where Q = 1−P . This “propagator” is causal out of the model space (θP (t− t′) = 0 for t < t′ on the image of Q) and
anticausal on it, like the Feynman propagator of quantum field theory5. However, this sum of causal and anticausal
orderings is cumbersome to use in practice. A second series expansion is obtained by writing the wave operator
as a sum of integrals over all possible time orderings of the Hamiltonians H(ti) (see Sect. II B). This expansion,
parametrized by all the permutations (or equivalent families), is used in many-body theory and gives rise to a large
number of complicated terms. The third expansion is obtained by noticing that some time orderings can be added to
give simpler expressions. This series is naturally indexed by trees and is the main new tool developed in the present
paper. Among others, we derive a very simple recurrence relation for the terms of the series. We also show that the
very structure of the corresponding generalized iterated integrals showing up in the expansion is interesting on its
own. These integrals carry naturally a rich algebraic structure that is connected to several recent results in the field
of combinatorial Hopf algebras and noncommutative symmetric functions. The corresponding algebraic results that
point out in the direction of the existence of a specific Lie theory for effective Hamiltonians (generalizing the usual
Lie theory) are gathered in an Appendix.
In the last sections of the paper, we restrict H(t) to the interaction picture and we consider the adiabatic limit.

We first prove that the adiabatic limit exists non perturbatively. We show that the effective Hamiltonian defined
by eq. (2) has the expected properties. Then, we expand the series and we give a rigorous (but lengthy) proof that
the term corresponding to each time ordering has an adiabatic limit. Then, we consider the series indexed by trees
and we give a short and easy proof of the existence of that limit. Finally, we provide a direct rule to calculate
the term corresponding to a given tree and establish the connection between the time-dependent approach and the
time-independent equations discovered by Lindgren6 and Kvasnička7.
The existence of this series indexed by trees can be useful in many ways: (i) It describes a sort of superstructure

that is common to all many-body theories without knowing the exact form of the interaction Hamiltonian; (ii)
It considerably simplifies the manipulation of the general term of the series by providing a powerful recurrence
relation; (iii) It provides simple algorithms to calculate the terms of the series; (iv) The number of trees of order n,
1

n+1

(

2n
n

)

≈ 4n

n
3
2
√
π
being subexponential, it improves the convergence of the series8,9; (v) It can deal with problems

where the Hamiltonian H0 is not quadratic. Indeed, many-body theories most often require the Hamiltonian H0 to
be free, i.e. to be a quadratic function of the fields10. As noticed by Bulaevskii11, this is not the good point of view
for some applications. For example, in the microscopic theory of the interaction of radiation with matter, it is natural
to take for H0 the Hamiltonian describing electrons and nuclei in Coulomb interaction12, the perturbation being the
interaction with the transverse electric field. In that case, quadratic free Hamiltonians many-body theories break
down whereas our approach is still valid. Actually, it is precisely for that reason that we originally developed the tree
series approach; (vi) Last, but not least, the tree-theoretical approach connects many-body theories with a large field
of knowledge that originates in the “birth of modern bijective combinatorics” in the seventies with in particular the
seminal works of Foata, Schützenberger and Viennot13,14. See e.g. ref. 15 for a survey of the modern combinatorial
theory of tree-like structures.
From the physical point of view, the tree expansion is particularly interesting in the adiabatic limit. Indeed, the

denominator of each of its terms is a product of EQ
i − EP

j factors, where EP
j is the energy of a state in the model

space M and EQ
j the energy of a state not belonging to M . In the usual many-body expansions, the denominators are

products of
∑

iE
Q
i −

∑

j E
P
j factors, where the sums contain various numbers of elements (corresponding therefore

to multiple transitions between low-energy and excitated levels). In that sense, the tree expansion is the simplest
possible because each term is a product of single transitions between two states.
We now list the main new results of this paper: (i) A recursion formula that generates the simplified terms of

the time-dependent perturbation series (theorem 5); (ii) when the interaction is adiabatically switched on, a non-
perturbative proof of the convergence of the wave operator and a characterization of the states of the model space
that are transformed into eigenstates of H by the wave operator (theorem 6); (iii) a proof of the existence of the
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adiabatic limit for the terms of the series expansion of the wave operator (theorem 9); (iv) a recursive formula
(lemma 13) and an explicit form (theorem 14) for the general term of the time-independent perturbation series.

II. TIME-DEPENDENT HAMILTONIAN AND COMBINATORICS

We consider a time-dependent Hamiltonian H(t), which is a self-adjoint operator on a Hilbert space H, and its
evolution operator U(t, t0) defined in eq. (1). Since we are interested in the combinatorial aspects of the problem, we
consider the simple case where H(t) is a strongly continuous map from R into the bounded self-adjoint operators on
H16. In that case, the Picard-Dyson series

1 +

∞
∑

n=1

(−ı)n
∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnH(t1) . . . H(tn),

converges in the uniform operator topology to U(t, t0) and U(t, t0) is a jointly strongly continuous two-parameter
family of unitaries on H (see section X.12 of ref. 17).
Following Morita2, Jolicard3 established a connection between the evolution operator and the effective Hamiltonian

approach by defining

Ω(t, t0) := U(t, t0)P
(

PU(t, t0)P
)−1

,

where P is a projection operator onto M and
(

PU(t, t0)P
)−1

is the inverse of PU(t, t0)P as a map from M = PH
to itself. This map is invertible if and only if there is no state |φ〉 in M such that 〈φ|U(t, t0)P = 0. This condition is
similar to the one of time-independent perturbation theory18. We assume from now on that the condition is satisfied
and we define three expansions for Ω(t, t0).

A. First expression for Ω

We start by proving an elegant expression for Ω, that was stated by Michels and Suttorp19 and Dmitriev and
Solnyshkina20.

Theorem 1

Ω(t, t0) = P +Q

∞
∑

n=1

(−ı)n
∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtnH(t1)θP (t1 − t2)H(t2) . . . θP (tn−1 − tn)H(tn)P, (3)

where Q = 1− P and θP (t) = θ(t)Q − θ(−t)P , with θ the Heaviside step function.

Proof. We first rewrite the Picard-Dyson series as U(t, t0) = 1 +
∑

n Un(t, t0) with U1(t, t0) := −ı
∫ t

t0
dt1H(t1) and,

for n > 1,

Un(t, t0) := (−ı)n
∫ t

t0

dt1 . . .

∫ t

t0

dtnH(t1)θ(t1 − t2) . . . θ(tn−1 − tn)H(tn).

Then, by using θ(t) + θ(−t) = 1, we notice that

θ(t) = P + θ(t) − θ(t)P − θ(−t)P = P + θP (t).

Now, we replace θ(t) by the sum of operators P + θP (t) in the expression for Un(t, t0). This gives us 2
n−1 terms with

various numbers of P and θP . Denote by Cn(t, t0) the term with no P (with the particular case C1(t, t0) = U1(t, t0)).
Take then any other term. There is an index i such that the first P from the left occurs after H(ti). Therefore, the
integrand of this term is

H(t1)θP (t1 − t2) . . . θP (ti−1 − ti)H(ti)PH(ti+1) . . .

Observe that the integral over t1, . . . , ti is independent from the integral over ti+1, . . . , tn. The first integral gives
Ci(t, t0), the second integral is a term of the Picard-Dyson series for Un−i(t, t0). Thus, the sum of the 2n−1 terms
yields

Un(t, t0) = Cn(t, t0) +

n−1
∑

i=1

Ci(t, t0)PUn−i(t, t0).
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If we denote by K(t, t0) the sum of all the Cn(t, t0) with n > 0, we obtain U = 1 +K +KP (U − 1), so that

UP = P +KPUP. (4)

The operator K is called the reduced evolution operator by Lindgren and collaborators21. If we define ω := P +QKP ,
eq. (4) becomes

UP = P + (ω − P + PKP )PUP = P + ωPUP − PUP + PKPUP.

This equation can be simplified by using eq. (4) again

UP = P + ωPUP − PP = ωPUP.

Thus, ω = Ω and eq. (3) is satisfied. 2

Despite its elegance, eq. (3) is not immediately usable. To illustrate this point, consider the third-order term

Ω3 = ıQ

∫ t

t0

dt1

∫ t

t0

dt2

∫ t

t0

dt3H(t1)θP (t1 − t2)H(t2)θP (t2 − t3)H(t3)P.

If we expand θP (t) = θ(t)Q − θ(−t)P , we obtain four terms

ıQH(t1)QH(t2)QH(t3)P for t1 ≥ t2 and t2 ≥ t3,

−ıQH(t1)QH(t2)PH(t3)P for t1 ≥ t2 and t2 ≤ t3,

−ıQH(t1)PH(t2)QH(t3)P for t1 ≤ t2 and t2 ≥ t3,

ıQH(t1)PH(t2)PH(t3)P for t1 ≤ t2 and t2 ≤ t3.

The first and last terms have integration range t1 ≥ t2 ≥ t3 and t3 ≥ t2 ≥ t1, respectively and give rise to iterated
integrals. The integration range of the second term is t1 ≥ t2 and t2 ≤ t3. Such an integration range is not convenient
because the relative position of t1 and t3 is not specified. The integration range has to be split into the two subranges
t1 ≥ t3 ≥ t2 and t3 ≥ t1 ≥ t2. Each subrange defines now an iterated integral. For example t1 ≥ t3 ≥ t2 gives

−ı

∫ t

t0

dt1

∫ t1

t0

dt3

∫ t3

t0

dt2QH(t1)QH(t2)PH(t3)P.

Similarly, the integration range of the third term (t1 ≤ t2 and t2 ≥ t3) is the union of t2 ≥ t1 ≥ t3 and t2 ≥ t3 ≥ t1.
We see that Ω3 is sum of six iterated integrals corresponding to the six possible orderings of t1, t2 and t3.

B. Ω in terms of permutations

We consider again the previous example, and we change variables to have a fixed integration range s1 ≥ s2 ≥ s3.
If we sum over all time orderings, we obtain

Ω3 = ı

∫ t

t0

ds1

∫ s1

t0

ds2

∫ s2

t0

ds3

(

QH(s1)QH(s2)QH(s3)P −QH(s1)QH(s3)PH(s2)P −QH(s2)QH(s3)PH(s1)P

−QH(s2)PH(s1)QH(s3)P −QH(s3)PH(s1)QH(s2)P +QH(s3)PH(s2)PH(s1)P
)

. (5)

In ref. 22, we showed that this result can be generalized to all orders and that Ωn is a sum of n! iterated integrals
corresponding to all the orderings of t1, . . . , tn. More precisely, we obtained the series expansion for Ω

Ω(t, t0) = P +

∞
∑

n=1

∑

σ∈Sn

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnX(tσ(1)) . . . X(tσ(n)), (6)

where Sn is the group of permutations of n elements. The operators X are defined, for n = 1, by X(t) := −ıQH(t)P
and, for n > 1 and any σ ∈ Sn, by X(tσ(1)) := −ıQH(tσ(1)) and

X(tσ(p)) := −ıQH(tσ(p)) if 1 < p < n and σ(p) > σ(p− 1),

X(tσ(p)) := ıPH(tσ(p)) if 1 < p < n and σ(p) < σ(p− 1),

X(tσ(n)) := −ıQH(tσ(n))P if σ(n) > σ(n− 1),

X(tσ(n)) := ıPH(tσ(n))P if σ(n) < σ(n− 1).
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Each term of eq. (6) is now written as an iterated integral. However, the expansion (6) is still not optimal because
some of its terms can be summed to get a simpler expression. As an example, consider the fourth and fifth terms of
eq. (5), where we replace si by ti.

Z := −ı

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

(

QH(t2)PH(t1)QH(t3)P +QH(t3)PH(t1)QH(t2)P
)

.

The first and second terms of the right hand side of this equation are denoted by Z1 and Z2, respectively. We
transform Z2 by exchanging variables t2 and t3.

Z2 = −ı

∫ t

t0

dt1

∫ t1

t0

dt3

∫ t3

t0

dt2QH(t2)PH(t1)QH(t3)P = −ı

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t1

t2

dt3QH(t2)PH(t1)QH(t3)P,

where we also exchanged the order of the integrations over t3 and t2. This can be added to Z1 and we obtain the
simpler expression

Z = −ı

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t1

t0

dt3QH(t2)PH(t1)QH(t3)P.

Such a simplification is not possible for the other terms of Ω3. In the next section, we determine how this simplification
can be extended to the general term of Ω.
Before closing this section, we need to specify more precisely the relation between the permutations σ and the

sequence of P and Q in the expansion of eq. (3). When we expand all the θP (ti − ti+1) in eq. (3), we obtain an
integrand of the form (−ı)nQH(t1)R1H(t2) . . . Rn−1H(tn)P , multiplied by a product of Heaviside functions, where
Ri takes the value −P or Q. We aim to determine the relation between the sequence R1 . . . Rn−1 and the permutations
σ in eq. (6). From the definition of X(tσ(i)), it appears that Ri = −P if σ(i) > σ(i+1) and Ri = Q if σ(i) < σ(i+1).
The set of indices i such that σ(i) > σ(i + 1) is called the descent set of σ, denoted by Dσ. It is also called the
shape of the permutation23. For instance, the descent set of the permutations (213) and (312) is {1}, corresponding
to (R1, R2) = (−P,Q).

C. Permutations and trees

In many-body physics, the expansion in Goldstone diagrams corresponds (among other things) to the expansion of
Ω into all time orderings Ωσ. In that context, several authors noticed that some diagrams corresponding to different
orderings can be added to give a simple sum1,19,24–27, as we saw in the previous section. These are special cases of the
simplification that we shall present which, as far as we know, was never stated in full generality. The first difficulty
is to find the proper combinatorial object to represent the sets of permutations that lead to simplified sums. We
shall find it after a short algebraic detour meant to recall the notion of tree and its relation to permutations13,23.
The trees we consider have received various names in the literature: binary trees in ref. 23, but also (to quote only a
few occurrences) plane rooted complete binary tree28, extended binary trees29 or planar binary trees30. Since these
objects are rarely used in physics, we first link them with the trees commonly found in graph theory. This lengthy
definition will then be replaced by a much easier one.
A common tree is a connected graph without loops. In other words, a common tree is a set of vertices linked by

edges such that there is a unique way to go from any vertex to any another one by travelling along edges. An example
of a common tree is given in fig. 1(a). A rooted tree is a common tree where one vertex was selected. This particular
vertex is called the root. The level of a vertex in a rooted tree is the number of edges that separates this vertex from
the root. The root has level 0. It is natural to draw a rooted tree by putting the root at the bottom and drawing a
vertex above another one if its level is larger. The rooted tree of fig. 1(b) was obtained by selecting as the root the
lowest left vertex of fig. 1(a). The root is indicated by a white dot and a dangling line. In a rooted tree, the children
of a vertex v are the vertices v′ that are linked to v by an edge and such that the level of v′ is larger than the level
of v. A plane rooted binary tree is a rooted tree where each vertex has zero, one or two children, and each edge is
oriented either to the left or to the right. If a vertex has two children, then one of the edges is oriented to the left
and the other one to the right. Fig. 1(c) shows one of the plane rooted trees that can be obtained from the rooted
tree of fig. 1(b). The adjective “plane” means that an edge going to the right cannot be identified with, or deformed
into an edge going to the left. A plane rooted complete binary tree is a plane rooted binary tree where each vertex is
“completed” by drawing leaves as follows: if a vertex has no child, draw a leaf (i.e. a line) to the left and one to the
right, if a vertex has one child, then draw a leaf to the right if the child is to the left and draw it to the left if the
child is to the right. Fig. 1(d) shows the plane rooted complete binary tree that is obtained from the plane rooted
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FIG. 1: Construction of plane rooted complete binary tree. (a) a common tree; (b) a rooted tree with its vertex levels; (c) a
plane rooted binary tree; (d) a plane rooted complete binary tree; (f) a simplified plane rooted complete binary tree.

binary tree of fig. 1(c). In practice, the vertices are no longer necessary and they are not drawn, as in fig. 1(f). If

Yn denotes the set of plane rooted complete binary trees with n vertices, we see that Y1 = { }, Y2 = { , },

Y3 = { , , , , }. They are much more numerous than the common trees (there is only one common
tree with one, two or three vertices). For notational convenience, plane rooted complete binary trees will be simply
called “trees” in the rest of the paper.
Fortunately, there exists a much simpler definition of the trees, that use a sort of building rule. We first denote

the empty tree, i.e. the tree with no vertex, by , which is a dangling line without root (a dangling line with a root

and no other vertex belongs to the tree ). Then, for any integer n, Yn, is defined recursively by Y0 := { } and, for
n > 0, Yn := {T1 ∨ T2 : T1 ∈ Yk, T2 ∈ Yn−k−1, k = 0, . . . , n − 1}, where T1 ∨ T2 is the grafting of the two trees T1

and T2, by which the dangling lines of T1 and T2 are brought together and a new root (with its own dangling line) is

grown at their juncture. For example, ∨ = , ∨ = , ∨ = . Note that each tree of Yn has n
vertices (including a root) and n+ 1 leaves. The order |T | of a tree T is the number of its vertices.
If Cn denotes the number of elements of Yn, the recursive definition of Yn implies that C0 = 1 and Cn =

∑n−1
k=0 CkCn−k−1, so that Cn = 1

n+1

(

2n
n

)

are the famous Catalan numbers. For n=0 to 10, Cn=1, 1, 2, 5, 14,

42, 132, 429, 1430, 4862, 16796. The Catalan numbers enumerate a large number of (sometimes quite different)
combinatorial objects31. The main practical interest of trees with respect to other combinatorial interpretations is
that their recursive definition is very easy to implement.
We noticed in the previous section that, at order three, the terms Ωσ corresponding to two specific permutations σ

can be added to give a simple result. At the general order, we shall see that the sum of Ωσ is simple if it is carried
out over permutations σ associated with the same tree. But for this, we need to associate a tree to each permutation.
The relevant map from permutations to trees belongs to “the ABC’s of classical enumeration”32 and is historically
one of the founding tools of modern bijective and algebraic combinatorics13,23,33. We describe it in the next section.

1. From permutations to trees

We first map any n-tuple I = (i1, . . . , in) of distinct integers to a tree T ∈ Yn. The mapping φ is defined recursively

as follows: if I = (i) contains a single integer, then φ(I) := ; otherwise, pick up the smallest element ik of I, then

φ(I) := ∨ φ
(

(i2, . . . , in)
)

, if k = 1,

φ(I) := φ
(

(i1, . . . , in−1)
)

∨ , if k = n,

φ(I) := φ
(

(i1, . . . , ik−1)
)

∨ φ
(

(ik+1, . . . , in)
)

, otherwise.
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In the following, we frequently abuse notation by writing φ(i1, . . . , in) or even φ(i1 . . . in) instead of φ
(

(i1, . . . , in)
)

.

For a permutation σ ∈ Sn, the corresponding tree is φ(σ) = φ
(

σ(1), . . . , σ(n)
)

. For example

φ(1) = ,

φ(12) = , φ(21) = ,

φ(123) = , φ(132) = , φ(213) = ,

φ(231) = , φ(312) = , φ(321) = .

Note that the two permutations (213) and (312) correspond to the same tree, and they are also the two permutations
that add up to a simple sum in the calculation of Z at the end of section II B. This is not a coincidence.
To simplify the proofs, we embrace the three cases of the definition of φ into a single one as follows. We first define

the concatenation product of two tuples I = (i1, . . . , in) and J = (j1, . . . , jm) as I · J = (i1, . . . , in, j1, . . . , jm). We
extend this definition to the case of the zero-tuple I0 = ∅ by I0 · I = I · I0 = I. Then, for any n-tuple I of distinct

integers, we define φ(I) by φ(I) = if n = 0 and φ(I) = φ(I1) ∨ φ(I2) otherwise, where I1 and I2 are determined by
I = I1 · (min I) · I2. Note that I1 or I2 can be the zero-tuple.
We first prove an easy lemma.

Lemma 2 If the elements of the two n-tuples I = (i1, . . . , in) and J = (j1, . . . , jn) of distinct integers have the same
ordering (i.e. if ik < il if and only if jk < jl for all k and l in {1, . . . , n}), then φ(I) = φ(J).

Proof. The proof is by induction. If n = 0, then I = J = ∅ and φ(I) = φ(J) = . Assume that the property
is true for k-tuples of distinct integers up to k = n − 1 and take two n-tuples I and J having the same ordering.
Then, the minimum element of both is at the same position k (i.e. min I = ik and min J = jk) and I = I1 · (ik) · I2,
J = J1 · (jk) · J2, where I1 and J1 (I2 and J2, respectively) are two (k − 1)-tuples ((n − k)-tuples, respectively) of
distinct integers have the same ordering. By the recursion hypothesis, we have φ(I1) = φ(J1) and φ(I2) = φ(J2) and
the definition of φ gives us φ(I) = φ(I1) ∨ φ(I2) = φ(J1) ∨ φ(J2) = φ(J). 2

As a useful particular case, we consider the situation where J describes the ordering of the elements of I: we
order the elements of I = (i1, . . . , in) increasingly as ik1 < · · · < ikn

. Then jl is the position of il in this ordering.
More formally, J := (τ−1(1), . . . , τ−1(n)), where τ is the permutation (k1, . . . , kn). The n-tuple J is called the
standardization of I and it is denoted by st(I). If we take the example of I = (5, 8, 2), the position of 5, 8 and 2 in
the ordering 2 < 5 < 8 is 2, 3 and 1, respectively. Thus, st(5, 8, 2) = (2, 3, 1). By construction, I and st(I) have the
same ordering and φ(I) = φ(st(I)). We extend the standardization to the case of I = ∅ by st(∅) = ∅.

2. From trees to permutations

Conversely, we shall need to know the permutations corresponding to a given tree: ST := {σ ∈ S|T | : φ(σ) = T }

(we extend this definition to the case of T = by defining the zero-element permutation group S0 := {∅}). The
solution of this problem is given by

Lemma 3 If T = T1 ∨ T2, where |T1| = n and |T2| = m (n or m can be zero), all the permutations of ST have the
form I = I1 · (1) · I2, where I1 is a subset of n elements of {2, . . . , n+m + 1} ordered according to a permutation α
of ST1 (i.e. st(I1) = α) and I2 is the complement of I1 in {2, . . . , n+m+ 1}, ordered according to a permutation β
of ST2 (i.e. st(I2) = β).

Proof. The proof is given in refs. 29 and 30, but we can sketch it here for completeness. The simplest examples are

ST = {∅} for T = and ST = {(1)} for T = . Now take T = T1 ∨ T2 as in the lemma. By the definition of
φ, the minimum of the tuple I = (σ(1), . . . , σ(n + m + 1)) is σ(n + 1) = 1 and I = I1 · (1) · I2, where φ(I1) = T1

and φ(I2) = T2. We saw in the previous section that φ(I1) = φ(st(I1)). By definition st(I1) is a permutation of Sn.
Therefore, st(I1) belongs to ST1 and, similarly, st(I2) belongs to ST2 . It is now enough to check that each element of
ST is obtained exactly once by running the construction over all orderings and all permutations of T1 and T2. 2

This lemma allows us to recursively determine the number of elements of ST , denoted by |ST |, by |ST | = 1 for T =

and T = and, for T = T1 ∨ T2,

|ST | =

(

|T | − 1

|T1|

)

|ST1 | |ST2 |. (7)
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See ref. 29 for an alternative approach.

Example: Consider the tree T = T1 ∨ T2, with T1 = and T2 = , so that n = 1 and m = 3. ST1 contains
the single permutation α = (1) and, according to the examples given in the previous section, the two permutations
of ST2 are β1 = (213) and β2 = (312). We choose the permutations α and β1, we pick up n = 1 element (for example
3) in the set J = {2, 3, 4, 5}, so that I1 = (3) and we order the remaining elements {2, 4, 5} according to β1, so that
I2 = (4, 2, 5). This gives us σ = (31425). If we pick up the other elements of J to build I1 we obtain (21435), (41325)
and (51324). We add the elements obtained by choosing β2 and we obtain eight permutations:

ST = {(21435), (21534), (31425), (31524), (41325), (41523), (51324), (51423)}.

We can check that eq. (7) holds and that |ST | = 8.

D. Recursion formula

The permutations corresponding to a tree can be used to make a partial summation of the terms of the Picard-Dyson
expansion.

Definition 4 For any tree T , we define ΩT (t, t0) by ΩT (t, t0) = P if T = and

ΩT (t, t0) :=
∑

σ∈ST

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnX(tσ(1)) . . . X(tσ(n)),

otherwise, where n = |T |.

With this notation we have obviously Ω(t, t0) =
∑

T ΩT (t, t0) =
∑

σ Ωσ(t, t0), with the notation Ωσ(t, t0) :=
∫ t

t0
dt1

∫ t1
t0

dt2 . . .
∫ tn−1

t0
dtnX(tσ(1)) . . . X(tσ(n)) and where σ runs over all permutations (of all orders). The term

of order 0 of this series is Ω| = P and the term of order one is

ΩT (t, t0) = −ı

∫ t

t0

dsQH(s)P,

for T = . The other terms enjoy a remarkably simple recurrence relation:

Theorem 5 If |T | > 1, then ΩT (t, t0) can be expressed recursively by

ΩT (t, t0) = −ı

∫ t

t0

dsQH(s)ΩT2(s, t0), if T = ∨ T2,

ΩT (t, t0) = ı

∫ t

t0

dsΩT1(s, t0)H(s)P, if T = T1 ∨ ,

ΩT (t, t0) = ı

∫ t

t0

dsΩT1(s, t0)H(s)ΩT2 (s, t0), if T = T1 ∨ T2,

where T1 6= and T2 6= .

Note that a similar recursive expression was conjectured by Olszewski for the nondegenerate Rayleigh-Schrödinger
expansion27.
Proof. Let us prove the theorem recursively. Consider an arbitrary T = T1 ∨ T2, |T | > 1, and assume the formulas to

hold for all the trees T ′ with |T ′| < |T |. Consider for example the case where T1 6= and T2 6= (the other cases
are even simpler). We define:

AT := ı

∫ t

t0

dsΩT1(s, t0)H(s)ΩT2(s, t0) =
∑

α∈ST1 ,β∈ST2

ı

∫ t

t0

dsΩα(s, t0)H(s)Ωβ(s, t0).

This first important point is that, for a given tree T , all the permutations σ ∈ ST have the same descent set. This is a
well-known fact23,30 that can be deduced from the characterization of ST at the end of section II C. As a consequence,
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the sequence of operators P , Q and H is the same for all α and β in AT , and only the order of the arguments ti
varies. Therefore, the conditions of lemma 16 (see appendix A) are satisfied and we get:

AT =
∑

γ

Ωγ(t, t0),

where γ runs over the permutations such that γ(|T1| + 1) = 1, st(γ(1), ..., γ(|T1|)) ∈ ST1 , st(γ(|T1| + 2), ..., γ(|T1| +
|T2|+1)) ∈ ST2 . The set of permutations γ satisfying these equations is precisely ST , so that, finally: AT = ΩT (t, t0).
This concludes the proof of the theorem. 2

E. Remarks

1. Nonlinear integral equation

If we denote χ(t, t0) = Ω(t, t0)− P , then the recurrence relations add up to

ıχ(t, t0) =

∫ t

t0

dsQH(s)P +

∫ t

t0

dsQH(s)χ(s, t0)−

∫ t

t0

dsχ(s, t0)H(s)P −

∫ t

t0

dsχ(s, t0)H(s)χ(s, t0). (8)

The derivative of this equation with respect to t was obtained in a different way by Jolicard3.

2. Permutations, trees and descents

We saw that, for a given tree T , all permutations of ST have the same descent set. We can now give more details30,34.
The relation between the trees and the sequences of operators P and Q in eq. (3) is very simple. Consider the sequence
of leaves from left to right. Each leaf pointing to the right corresponds to a P , each leaf pointing to the left correspond

to a Q. For example, the tree corresponds to the sequence QQPP . From the combinatorial point of view, this
description emphasizes the existence of a relationship between trees and descent sets (or, equivalently, hypercubes),
see e.g. refs. 23,34–37 and our Appendix.

III. ADIABATIC SWITCHING

Morita’s formula is most often applied to an interaction Hamiltonian Hǫ(t) := e−ǫ|t|eıH0tV e−ıH0t. We write
E0, ..., En, ... and Φ0, ...,Φn, ... for the eigenvalues of H0 and for an orthogonal basis of corresponding eigenstates. We
assume that the spectrum is discrete and that the eigenvalues are ordered by (weakly) increasing order. The ground
state may be degenerate (E0 = E1 = ... = Ek for a given k). The model space M (see the Introduction) is the vector
space generated by the lowest N eigenstates of H0 (with N ≥ k). We assume that the energies of the eigenstates of
M are separated by a finite gap from the energies of the eigenstates that do not belong to M . The projector P is the
projector onto the model space M . Following the notation of the Introduction, the energies of the eigenstates that

belong (resp. do not belong) to M are denoted by EP
i (resp. EQ

i ).
In this section, we prove the convergence of each term of the perturbation expansion of the wave operator when

ǫ → 0. For notational convenience, we assume that t ≤ 0. We first give a nonperturbative proof of this convergence.
Then, we expand in series and we consider the different cases of the previous sections.

A. Nonperturbative proof

The nonperturbative proof is important in this context because its range of validity is wider than the series expansion
(no convergence criterion for the series is required). Moreover, the proof that the wave operator indeed leads to an
effective Hamiltonian is much easier to give in the nonperturbative setting.
The first condition required in the nonperturbative setting is that the perturbation V must be relatively bounded

with respect to H0 with a bound strictly smaller than 1. This condition is satisfied for the Hamiltonian describing
nuclei and electrons interacting through a Coulomb potential38. Before stating the second condition, we define
the time independent Hamiltonian h(λ) = H0 + λV , its eigenvalues Ej(λ) and its eigenprojectors Pj(λ), such that
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h(λ)Pj(λ) = Ej(λ)Pj(λ). The second condition is that the eigenvalues Ej(λ) coming from the eigenstates of the
model space (i.e. such that Pj(0)P = Pj(0)) are separated by a finite gap from the rest of the spectrum. According
to Kato38, the eigenvalues and eigenprojectors can be chosen analytic in λ. Then, a recent version of the adiabatic
theorem39,40 shows that there exists a unitary operator A, independent of ǫ, such that

lim
ǫ→0

||Uǫ(0,−∞)Pj(0)− eıθj/ǫAPj(0)|| = 0,

where Uǫ(t, t0) is the evolution operator for the Hamiltonian Hǫ(t) = e−ǫ|t|eıH0tV e−ıH0t and

θj =

∫ 1

0

Ej(0)− Ej(λ)

λ
dλ.

In other words, the singularity of Uǫ(0,−∞)Pj(0) is entirely described by the factor eıθj/ǫ. The operator A satisfies
the intertwining property APj(0) = Pj(1)A. To connect this result with the case that we are considering in this
paper, we have to choose a model space M that satisfies the following condition: there is a set I of indices j such that
P =

∑

j∈I Pj(0), where P is the projector onto M .

This enables us to give a more precise condition for the invertibility of PUǫ(0,−∞)P . The adiabatic theorem
shows that, for small enough ǫ, PUǫ(0,−∞)P is invertible if and only if PAP is invertible. If we rewrite PAP =
∑

j PAPj(0) =
∑

j PPj(1)A, the unitarity of A implies that PAP is invertible iff the kernel of
∑

j PPj(1) is trivial.

We recover the well-known invertibility condition18 that no state of the model space should be orthogonal to the vector
space spanned by all the eigenstates of H with energy Ej(1), where j runs over I. Note that, when the condition of
invertibility is not satisfied, it can be recovered by adding the perturbation step by step39.
Then, we have

Theorem 6 With the given conditions, the wave operator

Ω := lim
ǫ→0

Uǫ(0,−∞)P (PUǫ(0,−∞)P )−1

is well defined. Moreover, there are states |ϕ̃j〉 in the model space such that Ω|ϕ̃j〉 is an eigenstate of H with eigenvalue

Ej(1) and the effective Hamiltonian Heff := PHΩ satisfies Heff |ϕ̃j〉 = Ej(1)|ϕ̃j〉.

Proof. We first define Ajk = Pj(0)APk(0), for j and k in I. Then an inverse B of PAP is defined by
∑

k∈I AjkBkl =

δjlPj(0) where Bjk = Pj(0)BPk(0). Then, (PUǫ(0,−∞)P )−1 ≃
∑

jk e
−ıθj/ǫBjk and

Ωǫ(0,−∞) := Uǫ(0,−∞)P (PUǫ(0,−∞)P )−1 ≃
∑

jk

APj(0)Bjk.

Since the right hand side does not depend on ǫ, then Ωǫ(0,−∞) has no singularity at ǫ = 0 and

Ω = lim
ǫ→0

Ωǫ(0,−∞) =
∑

jk

APj(0)Bjk.

This proves the existence of the wave operator. To prove the existence of the states |ϕ̃j〉 of the theorem, define
|ϕ̃j〉 = PA|ϕj〉, where |ϕj〉 is an eigenstate of Pj(0): Pj(0)|ϕj〉 = |ϕj〉. Indeed, we have

Ω|ϕ̃j〉 = ΩPAPj(0)|ϕj〉 =
∑

km

APk(0)BkmAmj |ϕj〉 = APj(0)|ϕj〉 = Pj(1)A|ϕj〉,

where we used the intertwining property in the last equation. We can now check that Ω|ϕ̃j〉 is an eigenstate of H
with eigenvalue Ej(1).

HΩ|ϕ̃j〉 = h(1)Pj(1)A|φj〉 = Ej(1)Pj(1)A|φj〉 = Ej(1)Ω|ϕ̃j〉. (9)

Finally, by multiplying eq. (9) by P from the left, we obtain

Heff |ϕ̃j〉 = Ej(1)PΩ|ϕ̃j〉 = Ej(1)|ϕ̃j〉,

because PΩ = P and P |ϕ̃j〉 = |ϕ̃j〉. 2

Thus, the eigenvalues of Heff are eigenvalues of the full Hamiltonian H . This is exactly what is expected from an
effective Hamiltonian. In practice, the operator A is not known and the states |ϕ̃j〉 are obtained by diagonalizing
Heff .
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B. Series expansion

We consider again the series expansion in terms of permutations. A straightforward calculation41,42 of the Picard-
Dyson series gives us

Uǫ(0,−∞)|Φ0〉 = |Φ0〉+
∞
∑

n=1

∑

i1...in

|Φi1 〉〈Φi1 |V |Φi2〉 . . . 〈Φin−1 |V |Φin〉〈Φin |V |Φ0〉

(E0 − Ei1 + nıǫ)(E0 − Ei2 + (n− 1)ıǫ) . . . (E0 − Ein + ıǫ)
,

where we used the completeness relation 1 =
∑

i |Φi〉〈Φi|. This expression clearly shows that the terms of the
expansion (and the evolution operator) are divergent as ǫ → 0 when any Eik is equal to E0.
For σ ∈ Sn, we set Ωσ(t) := Ωσ(t,−∞). We then have

Ωσ(t) = (−ı)n
∫ t

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtnQe(ǫ+ıH0)tσ(1)V e−ıH0tσ(1)R1

σ

e(ǫ+ıH0)tσ(2)V e−ıH0tσ(2)R2
σ . . . R

n−1
σ e(ǫ+ıH0)tσ(n)V e−ıH0tσ(n)P,

where Rk
σ := Q if σ(k+1) > σ(k) and Rk

σ := −P if σ(k+1) < σ(k). We replace Rk
σ by ±

∑

αk+1
|αk+1〉〈αk+1| where,

if Rk
σ = Q, then ± = + and the sum is over the image of Q, and if Rk

σ = −P , then ± = − and the sum is over the
image of P . Thus

Ωσ(t) = (−ı)n(−1)d
∫ t

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtne

(ǫ+ıF1−ıF2)tσ(1)e(ǫ+ıF2−ıF3)tσ(2) . . . e(ǫ+ıFn−ıFn+1)tσ(n)

∑

α1...αn+1

|α1〉〈α1|V |α2〉 . . . 〈αn|V |αn+1〉〈αn+1|, (10)

where d is the number of elements of the descent set of σ, Fi is the energy of αi and where the sum over α1 is over
the image of Q, the sum over αn+1 is over the image of P and the sum over αk for 1 < k < n+1 is over the image of
Q if σ(k) > σ(k − 1) and over the image of P otherwise. Consider now the time integral

fσ(t) :=

∫ t

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtne

(ǫ+ıF1−ıF2)tσ(1)e(ǫ+ıF2−ıF3)tσ(2) . . . e(ǫ+ıFn−ıFn+1)tσ(n)

=

∫ t

−∞
dsτ(1)

∫ sτ(1)

−∞
dsτ(2) . . .

∫ sτ(n−1)

−∞
dsτ(n)e

(ǫ+ıF1−ıF2)s1e(ǫ+ıF2−ıF3)s2 . . . e(ǫ+ıFn−ıFn+1)sn ,

where τ = σ−1. The integral over sτ(n) is

∫ sτ(n−1)

−∞
dsτ(n)e

(ǫ+ıFτ(n)−ıFτ(n)+1)sτ(n) =
e(ǫ+ıFτ(n)−ıFτ(n)+1)sτ(n−1)

(ǫ+ ıFτ(n) − ıFτ(n)+1)
.

The integrand of the integral over sτ(n−1) becomes

e(2ǫ+ı(Fτ(n)+Fτ(n−1)−Fτ(n)+1−Fτ(n−1)+1)sτ(n−1)

(ǫ+ ıFτ(n) − ıFτ(n)+1)
.

A straightforward recursive argument shows that

fσ(t) =
eXσ(n)t

Xσ(1) . . . Xσ(n)
,

where

Xσ(k) := kǫ+ ı(Fσ−1(n) + · · ·+ Fσ−1(n−k+1) − Fσ−1(n)+1 − · · · − Fσ−1(n−k+1)+1). (11)

Therefore,

Ωσ(t) =
∑

α1...αn+1

(−ı)n(−1)deXσ(n)t

Xσ(1) . . . Xσ(n)
|α1〉〈α1|V |α2〉 . . . 〈αn|V |αn+1〉〈αn+1|. (12)
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C. Examples

A few examples of Ωσ(0) are

Ω(1)(0) = (−ı)
∑

ΦiΦj

|Φi〉〈Φi|V |Φj〉〈Φj |

ǫ+ ı(EQ
i − EP

j )
,

Ω(12)(0) = (−ı)2
∑

ΦiΦjΦk

|Φi〉〈Φi|V |Φj〉〈Φj |V |Φk〉〈Φk|
(

ǫ+ ı(EQ
j − EP

k )
)(

2ǫ+ ı(EQ
i − EP

k )
) ,

Ω(21)(0) = −(−ı)2
∑

ΦiΦjΦk

|Φi〉〈Φi|V |Φj〉〈Φj |V |Φk〉〈Φk|
(

ǫ+ ı(EQ
i − EP

j )
)(

2ǫ+ ı(EQ
i − EP

k )
) .

Finally we consider two examples that will prove useful:

Ω(213)(0) = −(−ı)3
∑

ΦiΦjΦkΦl

|Φi〉〈Φi|V |Φj〉〈Φj |V |Φk〉〈Φk|V |Φl〉〈Φl|
(

ǫ+ ı(EQ
k − EP

l )
)(

2ǫ+ ı(EQ
k + EQ

i − EP
l − EP

j )
)(

3ǫ+ ı(EQ
i − EP

l )
) ,

Ω(312)(0) = −(−ı)3
∑

ΦiΦjΦkΦl

|Φi〉〈Φi|V |Φj〉〈Φj |V |Φk〉〈Φk|V |Φl〉〈Φl|
(

ǫ+ ı(EQ
i − EP

j )
)(

2ǫ+ ı(EQ
k + EQ

i − EP
l − EP

j )
)(

3ǫ+ ı(EQ
i − EP

l )
)
.

By adding these two terms, we obtain a denominator involving only the difference of two energies.

Ω(213)(0) + Ω(312)(0) = −(−ı)3
∑

ΦiΦjΦkΦl

|Φi〉〈Φi|V |Φj〉〈Φj |V |Φk〉〈Φk|V |Φl〉〈Φl|
(

ǫ+ ı(EQ
i − EP

j )
)(

ǫ + ı(EQ
k − EP

l )
)(

3ǫ+ ı(EQ
i − EP

l )
)
.

Note that the sum is simpler than either Ω(213)(0) or Ω(312)(0). This is a general statement and the simplification
becomes spectacular at higher orders. For the example of n = 7, there is a single tree T which is the sum of 80
permutations, and the denominator of ΩT is simpler than the denominator of Ωσ for any of the 80 permutations σ of
ST . This will be proved in section IV. Note also that, if we assume that the states in the image of P (i.e. the model

space) are separated from the states in the image of Q by a finite gap δ, so that EQ
i −EP

j ≥ δ, then the denominators
of all the examples are non-zero when ǫ → 0. In other words, the limit limǫ→0 Ωσ(0) exists for all the examples. In
the next section, we show that this result is true for all permutations σ.

D. Convergence of Ωσ(t)

Definition (11) is convenient for a computer implementation but it does not make it clear that Xσ(k) is nonzero
if ǫ = 0. For that purpose, we need an alternative expression for Xσ(k), which is essentially a corrected version of
the graphical rule given by Michels and Suttorp19. We first extend any permutation σ ∈ Sn to the sequence of n+ 2
integers σ̄ = (σ̄(1), . . . , σ̄(n+ 2)) = (0, σ(1), . . . , σ(n), 0). Then, for k ∈ {1, . . . , n}, we define the two sets

S<
σ (k) := {i | 1 ≤ i ≤ n+ 1 and σ̄(i) < k ≤ σ̄(i + 1)},

S>
σ (k) := {i | 1 ≤ i ≤ n+ 1 and σ̄(i) ≥ k > σ̄(i + 1)}.

For example, if σ = (41325), then S<
σ (1) = {1}, S<

σ (2) = {1, 3}, S<
σ (3) = {1, 3, 5}, S<

σ (4) = {1, 5}, S<
σ (5) = {5} and

S>
σ (1) = {6}, S>

σ (2) = {2, 6}, S>
σ (3) = {2, 4, 6}, S>

σ (4) = {2, 6}, S>
σ (5) = {6}. The graphical meaning of these sets is

illustrated in Figure 2. Notice that the vertical axis is oriented downwards in order to reflect the time-ordering in the
integrals Sσ(t).

Lemma 7 (i) S<
σ (k) cannot be empty and (ii) S<

σ (k) and S>
σ (k) have the same number of elements.

The lemma follows from the graphical interpretation of the construction of S>
σ (k) and S<

σ (k). The graph of σ
(constructed as in Figure 1) is a sequence of edges connecting the points (i, σ̄(i)). Since the graph starts from (0, 0)
and since there exists one point with ordinate n, any horizontal line with non integer ordinate y, 0 < y < n, will be
crossed from above by a segment (remember the vertical axis is oriented downwards). A similar elementary topological
argument shows that such a horizontal line is always crossed successively from above and below by segments, the
series of crossings starting from above and ending from below, which implies |S<

σ (k)| = |S>
σ (k)|.

The key step in the proof of convergence is
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FIG. 2: Construction of S<
σ (3) for σ = (41325). We build σ̄ = (0, 4, 1, 3, 2, 5, 0), we draw a continuous line L starting from

(1, σ̄(1)) = (1, 0) to (2, σ̄(2)) = (2, 4), to (3, σ̄(3)) = (3, 1), . . . , up to (7, σ̄(7)) = (7, 0). To determine S<
σ (3), we draw a

horizontal dashed line just above 3 and we gather the segments of L crossing the dashed line from above. In our case the
segments are

(

(1, 0), (2, 4)
)

,
(

(3, 1), (4, 3)
)

and
(

(5, 2), (6, 5)
)

. S<
σ (3) is the set of abscissae of the first point of each segment:

S<
σ (3) = {1, 3, 5}. Similarly, S>

σ (3) is obtained from the segments that cross the dashed line from below: S>
σ (3) = {2, 4, 6}.

Lemma 8 For σ ∈ Sn and a given sequence α1, . . . , αn+1, compatible with σ (see eq. (10)), we have

Xσ(k) = kǫ+
∑

j∈S<
σ (n−k+1)

ıFQ
j −

∑

j∈S>
σ (n−k+1)

ıFP
j , (13)

where we write FQ
i = Fi (resp. FP

i = Fi) when αi belongs to the image of Q (resp. of P ).

Proof. We first show that it is true for k = 1. Indeed, Xσ(1) = ǫ + ı(Fσ−1(n) − Fσ−1(n)+1). Let j = σ−1(n), we have
σ(j) = n. Then, either j = 1 and |α1〉 is in the image of Q, or j > 1 and σ ∈ Sn implies σ(j) = n > σ(j − 1), so that

|αj〉 is in the image of Q. Thus, in all cases, Fσ−1(n) = FQ
σ−1(n). Consider now Fj+1. Either j = n and |αj+1〉 = |αn+1〉

is in the image of P , or j < n and σ(j + 1) < σ(j) = n, so that |αj+1〉 is in the image of P . Thus, in all cases,

Fσ−1(n)+1 = FP
σ−1(n)+1. Therefore, Xσ(1) = ǫ + ı(FQ

σ−1(n) − FP
σ−1(n)+1). On the other hand, S<

σ (n) = {σ−1(n)} and

S>
σ (n) = {σ−1(n) + 1} since (j, n) is the only point of the graph with ordinate n. Thus, the two members of eq. (13)

are equal for k = 1.
Assume now that eq. (13) holds for all the Xσ(i) with i = 1, . . . , k, k < n, and consider the equation (which is true

by definition of the Xσ(i)s):

Xσ(k + 1) = Xσ(k) + ǫ + ı(Fj − Fj+1), (14)

where j = σ−1(n − k). We first treat the case 1 < j < n. Four possible situations can arise: (i) σ(j − 1) > σ(j) >
σ(j + 1), (ii) σ(j − 1) < σ(j) > σ(j + 1), (iii) σ(j − 1) > σ(j) < σ(j + 1) and (iv) σ(j − 1) < σ(j) < σ(j + 1). In
case (i), we have Fj = FP

j and Fj+1 = FP
j+1. On the other hand, condition (i) implies σ̄(j) > σ̄(j + 1) > σ̄(j + 2), so

that S>
σ (n− k) = S>

σ (n− k+1) and S<
σ (n− k) is obtained from S<

σ (n− k+ 1) by removing {j} and adding {j + 1}.
eq. (14) together with the hypothesis that eq. (13) holds for Xσ(k) imply that eq. (13) holds for Xσ(k + 1). Case

(ii) implies Fj = FQ
j and Fj+1 = FP

j+1, case (iii) implies Fj = FP
j and Fj+1 = FQ

j+1, case (iv) implies Fj = FQ
j and

Fj+1 = FQ
j+1. In all cases, these identities imply that the two expressions (14) and (13) for Xσ(k + 1) do agree.

It remains to treat the boundary cases. If j = 1, then Fj = FQ
1 and we have either (i) σ(1) < σ(2) and F2 = FQ

2

or (ii) σ(1) > σ(2) and F2 = FP
2 . We know that σ̄(1) = 0, thus, case (i) corresponds to σ̄(1) < σ̄(2) < σ̄(3), so that

according to eq. (13),

Xσ(k + 1)−Xσ(k) = ı(FQ
1 − FQ

2 ),

in agreement with eq. (14). In case (ii) we have σ̄(1) < σ̄(2) > σ̄(3), which amounts to add ıFQ
1 and remove ıFP

2 .
Again, eq. (13) holds for k + 1. Finally, if j = n, then Fj+1 = FP

n+1 and we have (i) σ(n − 1) < σ(n) and Fn = FQ
n

or (ii) σ(n − 1) > σ(n) and Fn = FP
n . Case (i) corresponds to σ̄(n) < σ̄(n+ 1) > σ̄(n + 2), case (ii) corresponds to

σ̄(n) > σ̄(n+ 1) > σ̄(n + 2). In all cases, the relation given by eq. (13) is satisfied for k + 1 and the induction proof
is complete. 2

We can now ready to prove
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Theorem 9 The limit

Ωσ = lim
ǫ→0

Ωσ(0), (15)

is well-defined.

Proof. To prove the term-wise convergence of Ωσ(t) as ǫ → 0, consider eq. (13). The sets S<
σ (n − k + 1) and

S>
σ (n− k + 1) have the same number of elements, say nk and, by the gap hypothesis, we have FQ

j − FP
i ≥ δ for any

i and j. Therefore, |Xσ(k)|2 ≥ k2ǫ2 + n2
kδ

2 ≥ δ2, since nk ≥ 1. Thus, the denominator remains away from zero by a
finite amount for any ǫ ≥ 0 and the limit of 1/Xσ(k) for ǫ → 0 is well-defined. 2

IV. TREES

We showed that, for each permutation σ, the wave operator Ωσ(t,−∞) has a well-defined limit as ǫ → 0. The
detailed proof was rather lengthy and the final expression for Xσ(k) suggests physically the simultaneous occurrence
of transitions from states of the model space to states out of it. The convergence is actually much easier to show
in terms of trees, and the expressions showing up in the expansion are simpler, mathematically and physically, each
factor of the denominator corresponding to a single difference between an energy in the model space and an energy
out of it.
In this section, if N is the dimension of the model space, we write i ∈ Q for i > N and j ∈ P for 1 ≤ j ≤ N , both

for notational simplicity, and to emphasize the meaning of the indices, that correspond respectively to eigenstates in
the image of Q and in the image of P (i.e. the model space).

Proposition 10 If T = T1 ∨ T2, then, for t ≤ 0,

ΩT (t) := ΩT (t,−∞) =
∑

i∈Q,j∈P

e(ıE
Q
i
−ıEP

j +|T |ǫ)tΩij
T |Φi〉〈Φj |, (16)

where Ωij
T is obtained recursively by:

For T = , Ωij := −ı
〈Φi|V |Φj〉

ıEQ
i
−ıEP

j
+ǫ

.

For T1 = , T2 6= : Ωij
T := −ı

∑

k∈Q

〈Φi|V |Φk〉Ωkj
T2

ıEQ
i
−ıEP

j
+|T |ǫ .

For T1 6= , T2 = : Ωij
T := ı

∑

k∈P

Ωik
T1

〈Φk|V |Φj〉
ıEQ

i
−ıEP

j
+|T |ǫ .

For T1 6= , T2 6= : Ωij
T := ı

∑

k∈P,l∈Q

Ωik
T1

〈Φk|V |Φl〉Ωlj

T2

ıEQ
i
−ıEP

j
+|T |ǫ .

Proof. The computation of Ωij follows from eq. (12). Let us consider for example the case T1 = , T2 6= . Then,

by applying theorem 5:

ΩT (t) = −ı
∑

i∈Q,j∈P

∫ t

−∞
dsQeǫse−ıEQ

i
se(ıE

Q
i
−ıEP

j +|T2|ǫ)sΩij
T2
eiH0sV |Φi〉〈Φj |.

We replace Q by
∑

k∈Q

|Φk〉〈Φk| and obtain, by using |T | = |T2|+ 1,

ΩT (t) = −ı
∑

k,i∈Q,j∈P

∫ t

−∞
dse(ıE

Q

k
−ıEP

j +|T |ǫ)s〈Φk|V |Φi〉Ω
ij
T2
|Φk〉〈Φj |

= −ı
∑

k,i∈Q,j∈P

e(ıE
Q

k
−ıEP

j +|T |ǫ)t

ıEQ
k − ıEP

j + |T |ǫ
〈Φk|V |Φi〉Ω

ij
T2
|Φk〉〈Φj |,

The two other cases can be treated similarly. 2

Since, for arbitrary i and j, EQ
i − EP

j ≥ δ, we get:

Corollary 11 The limit Ω̄T (t) = lim
ǫ→0

ΩT (t) is well defined.
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A. Relation with the Rayleigh-Schrödinger perturbation theory

Kvasnička7 and Lindgren6 independenty obtained an equation for the time-independent Rayleigh-Schrödinger per-
turbation theory of possibly degenerate systems:

[ω,H0]P = V ωP − ωPV ωP, (17)

where the time-independent wave operator ωP transforms eigenstates |Φ0〉 of H0 into eigenstates ωP |Φ0〉 of H0 + V
and where PωP = P (see ref. 43 p. 202 for details).
Equation (17) is an important generalization of Bloch’s classical results44 because it is also valid for a quasi-

degenerate model space (i.e. when the eigenstates of H0 in the model space have different energies). The relation
between time-dependent and time-independent perturbation theory is established by the following proposition:

Proposition 12 We have ωP = Ω = limǫ→0 Ω(0).

Proof. We take the derivative of eq. (8) with respect to time and we substitute χ(t, t0) = Ω(t, t0)− P . This gives us

ı
d

dt
Ω(t, t0) = H(t)Ω(t, t0)− Ω(t, t0)H(t)Ω(t, t0).

If we take t = 0 and t0 = −∞, we obtain by continuity

ı
d

dt
Ω(t)|t=0 = V Ω(0)− Ω(0)V Ω(0).

When we compare this equation with eq. (17), we see that ωP and Ω satisfy the same equation if

ı lim
ǫ→0

dΩ(t)

dt
|t=0 = [ lim

ǫ→0
Ω(0), H0]. (18)

To show this, we prove it for each term ΩT . Indeed, eq. (16) gives us

ı
dΩT (t)

dt
=

∑

i∈Q,j∈P

(EP
j − EQ

i + ı|T |ǫ)e(ıE
Q
i
−ıEP

j +|T |ǫ)tΩij
T |Φi〉〈Φj |,

and

[ΩT (t), H0] =
∑

i∈Q,j∈P

(EP
j − EQ

i )e(ıE
Q
i
−ıEP

j +|T |ǫ)tΩij
T |Φi〉〈Φj |.

By continuity in ǫ, these two expressions are identical for all t when ǫ → 0. If we take t = 0 and we sum over all trees
T , then we recover eq. (18). Therefore, ωP and Ω satisfy the same equation. It remains to show that they have the
same boundary conditions: ΩP = Ω and PΩ = P . By eq. (3), these two equations are true for Ω(t) with any value
of t and ǫ. 2

As a corollary, proposition 10 provides a recursive construction of the wave operator Ω.

B. An explicit formula for ΩT

In this section, we show how ΩT (t) can be obtained non-recursively from the knowledge of T . The key idea is to
replace T by another combinatorial object, better suited to that particular computation. We write therefore γT for
the smallest permutation for the lexicographical ordering in ST (we view a permutation as a word to make sense of the
lexicographical ordering: to (35421) corresponds the word 35421, so that e.g. (35421) < (54231)). Since ST is always
non empty, the map γ : T 7−→ γT is well-defined and an injection from the set of trees to the set of permutations.
These permutations are called Catalan permutations29, 312-avoiding permutations (i.e. permutations for which there
does not exist i < j < k such that σ(j) < σ(k) < σ(i), see ref. 31 p. 224), Kempf elements45 or stack words46.
Various elementary manipulations can be done to understand such a map. We list briefly some obvious properties

and introduce some notation that will be useful in our forthcoming developments. If I = (a1, ..., ak) is a sequence of
integers, we write I[n] for the shifted sequence (a1 + n, ..., ak + n).
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Then, let T = T1∨T2 be a tree. The permutation γ(T ) (that we identify with the corresponding word or sequence)

can be constructed recursively as γ( ) = ∅, γ( ) = (1) and

γ(T ) := (γ(T1)[1], 1, γ(T2)[|T1|+ 1])).

The left inverse of γ, say T , is also easily described recursively as T (∅) = , T (1) := and

T (σ) := T ((σ(1), ..., σ(k))[−1]) ∨ T ((σ(k + 2), ..., σ(n))[−k − 1]),

where σ ∈ Sn, σ = (σ(1), ..., σ(k), 1, σ(k + 2), ..., σ(n)) is in the image of γ.
Permutations in the image of γ can be characterized recursively similarly: with the same notation as in the previous

paragraph, σ is in the image of γ if and only if (σ(1), ..., σ(k))[−1] and (σ(k + 2), ..., σ(n))[−k − 1] are in the image
of γ, where k is the integer such that σ(k) = 1,
We are now in a position to compute ΩT (t). Let us write AT for all the sequences α = (α1, ..., αn+1) associated to

γ(T ) as in equation (10). We write, as usual, Fi for the eigenvalue associated to αi. Recall that α1 ∈ Q, αn+1 ∈ P
whereas αi, i 6= 1, n+ 1 is in Q if σ(i) > σ(i − 1) and in P otherwise.
These sequences are actually common to the expansions of all the Ωσ(t), σ ∈ ST (this is because they depend only

on the positions of descents in the permutations σ ∈ ST , as discussed in the proof of thm. 5). They appear therefore
in the expansion of ΩT (t) =

∑

σ∈ST

Ωσ(t). They actually also correspond exactly to the sequences of eigenvectors that

show up in the recursive expansion of ΩT (t) (proposition 16) (this should be clear from our previous remarks, but
can be checked directly from the definition of the recursive expansion). We can refine the recursion of proposition 10
accordingly:

Lemma 13 We have: ΩT (t) =
∑

α

e(ıF1−ıFn+1+|T |ǫ)tΩα

T |α1〉〈αn+1|, where Ωα

T (t) is defined recursively by:

Ω
Φi,Φj = −ı

〈Φi|V |Φj〉

ıEQ
i − ıEP

j + ǫ
,

Ωα

T = ı
Ω

(α1,...,αk)
T1

〈αk|V |αk+1〉Ω
(αk+1,...,αn,αn+1)
T2

ıF1 − ıFn+1 + |T |ǫ
,

where T = T1 ∨ T2 and k = |T1|. For T1 = , we have Ω
(α1)
T1

= −1 and for T2 = , we have Ω
(αn+1)
T2

= 1.

Let us now consider γT . For i = 1, . . . , n, we set: l(i) = inf{j ≤ i|∀k, j ≤ k ≤ i, γT (k) ≥ γT (i)} and r(i) = sup{j ≥
i|∀l, j ≥ l ≥ i, γT (l) ≥ γT (i)}. In words, l(i) is defined as follows: consider all the consecutive positions k on the left
of position i, such that the value of the permutation γT (k) is larger than γT (i). Then, l(i) is the leftmost of these
positions k. Similarly, r(i) is the rightmost position j such that, on all positions k between i and j, the permutation
γT (k) is larger than γT (i).

Theorem 14 We have:

Ωα

T = (−ı)n(−1)d−1〈α1|V |α2〉...〈αn|V |αn+1〉
n
∏

i=1

1

ıFl(i) − ıFr(i)+1 + (r(i)− l(i) + 1)ǫ
,

or, equivalently,

ΩT (t) = (−ı)n(−1)d−1
∑

α

|α1〉〈α1|V |α2〉...〈αn|V |αn+1〉〈αn+1|e
(ıF1−ıFn+1+|T |ǫ)t

n
∏

i=1

1

ıFl(i) − ıFr(i)+1 + (r(i)− l(i) + 1)ǫ
,

where d is the number of leaves of T pointing to the right.

For example, if T = , then γT = (213), l = (113), r = (133) and

Ω
ΦiΦjΦkΦl

T = −ı
∑

ΦiΦjΦkΦl

|Φi〉〈Φi|V |Φj〉〈Φj |V |Φk〉〈Φk|V |Φl〉〈Φl|
(

ǫ+ ı(EQ
i − EP

j )
)(

ǫ+ ı(EQ
k − EP

l )
)(

3ǫ+ ı(EQ
i − EP

l )
)
.
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Proof. We show that Ωα
T as defined in theorem 14 satisfies the recursion relation of lemma 13. Let us first consider

that T1 6= and T2 6= . Let i0 denote the index such that γT (i0) = 1, with 1 < i0 < n. The term of the
numerator corresponding to i0 is 〈αi0 |V |αi0+1〉, which is the central term of the recursion relation. We have l(i0) = 1
and r(i0) = n. Thus, the denominator is ıFl(i0) − ıFr(i0)+1 + (r(i0) − l(i0) + 1)ǫ = ıF1 − ıFn+1 + nǫ, which is the

denominator of the recursion relation. Now we check that the product of terms for i < i0 in theorem 14 is Ω
(α1,...,αi0−1)

T1
.

The matrix elements 〈α1|V |α2〉...〈αi0−1|V |αi0〉 obviously agree, so we must check that the denominators agree. Thus,
we verify that, for 1 ≤ i < i0, lT (i) = lT1(i) and rT (i) = rT1(i), where lT and rT denote the l and r vectors for tree
T . We know that γT (i) = γT1(i) + 1 for 1 ≤ i < i0. Thus, for k ≤ i, γT (k) ≥ γT (i) if and only if γT1(k) ≥ γT1(i) and
lT (i) = lT1(i). For rT , we notice that for l = i0 we have γT (l) = 1 < γT (i) and the relation γT (l) ≥ γT (i) does not
hold. Therefore, rT (i) < i0 and rT (i) = rT1 (i) by the same argument as lT (i) = lT1(i). The same reasoning holds for

T2 and the recursion relation is satisfied. The cases T1 = or T2 = are proved similarly. 2

We conclude this section with a geometrical translation of the previous theorem. Consider a tree T with |T | = n
and number its leaves from 1 for the leftmost leave to n+ 1 for the rightmost one. For each vertex v of T , take the
subtree Tv for which v is the root. In other words, Tv is obtained by chopping the edge below v and considering the
half-edge dangling from v as the dangling line of the root of Tv. For each tree Tv, build the pair (lv, rv) which are the
indices of the leftmost and rightmost leaves of Tv. Recall that |αi〉 belongs to the image of Q (resp. P ) if leaf i points

to the left (resp. right): this implies in particular that Flv = FQ
lv

and Frv = FP
rv . Then, the set of pairs (lv, rv) where

v runs over the vertices of T is the same as the set of pairs (l(i), r(i) + 1) of the theorem. The formula for Ωα
T can

be rewritten accordingly and this geometrical version can be proved recursively as theorem 14. Conversely, it can be
used to determine the tree corresponding to a given denominator.

V. CONCLUSION

We considered three expansions of the wave operator and we proved their adiabatic convergence. We proposed to
expand the wave operator over trees, and proved that this expansion reduced the number of terms of the expansion
with respect to usual (tractable) ones, simplified the denominators of the expansion into a product of the difference
of two energies and lead to powerful formulas and recursive computational methods.
We then showed that this simplification is closely related to the algebraic structure of the linear span of permutations

and of a certain convolution subalgebra of trees.
As far as the many-body problem is concerned, we showed that the simplification of diagrams is not due to the

details of the Hamiltonian but to the general structure of the wave operator. When the eigenstates and Hamiltonian
are expressed in terms of creation and annihilation operators and quantum fields, the algebra of trees mixes with the
Hopf algebraic structure of fields47,48. It would be interesting to investigate the interplay of these algebraic structures.
The terms of the Rayleigh-Schrödinger series are usually considered to be “quite complicated” (see ref. 49, p. 8) and

difficult to work with. The general term of the Rayleigh-Schrödinger series for quasi-degenerate systems is obtained
as the limit for ǫ → 0 of ΩT (0) in theorem 14. Through our recursive and non-recursive expressions for these terms,
many proofs of their properties become almost trivial. The tree structure suggests various resummations of this series,
that will be explored in a forthcoming publication.
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Appendix A: A crucial lemma

In this appendix we state and prove a lemma that is crucial to demonstrate theorem 5, which is one of the main
results of our paper. We first need a noncommutative analogue of Chen’s formulas for products of iterated integrals.
This analogue, proved in refs. 50 and 22, provides a systematic link between the theory of iterated integrals, the
combinatorics of descents, free Lie algebras and noncommutative symmetric functions (see ref. 22 and Appendix B of
the present article for further details).
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Let L = (L1, ..., Ln) be an arbitrary sequence of time-dependent operators Li(t), satisfying the same regularity
conditions as H(t) in section II. Let σ be a permutation in Sn and define:

ΩL
σ (t, t0) :=

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnL1(tσ(1)) . . . Ln(tσ(n)).

The notation is extended linearly to combinations of permutations, so that for µ :=
∑

σ∈Sn

µσσ, with µσ ∈ C.

Then ΩL
µ(t, t0) is defined as the linear combination

∑

σ∈Sn

µσΩ
L
σ (t, t0). For K := (K1, ...,Km) another sequence of

time-dependent operators, we write L ·K for the concatenation product (L1, ..., Ln,K1, ...,Km).
We also need to define the convolution product of two permutations. If α ∈ Sn and β ∈ Sm, then α ∗ β is the sum

of the
(

n+m
n

)

permutations γ ∈ Sn+m such that st(γ(1), ..., γ(n)) = (α(1), ..., α(n)) and st(γ(n + 1), ..., γ(n +m)) =
(β(1), ..., β(m)). Here, st is the standardization map defined in section II C 1. For instance,

(2, 3, 1) ∗ (1) = (2, 3, 1, 4) + (2, 4, 1, 3) + (3, 4, 1, 2) + (3, 4, 2, 1),

(1, 2) ∗ (2, 1) = (1, 2, 4, 3) + (1, 3, 4, 2) + (1, 4, 3, 2) + (2, 3, 4, 1) + (2, 4, 3, 1) + (3, 4, 2, 1).

In words, the product of two permutations α ∈ Sn and β ∈ Sm is the sum of all permutations σ of Sn+m such that the
elements of the sequence (σ(1), . . . , σ(n)) are ordered as the elements of (α(1), . . . , α(n)), in the sense that α(i) > α(j)
if and only if σ(i) > σ(j) and the elements of (σ(n+1), . . . , σ(n+m)) are ordered as the elements of (β(1), . . . , β(m)).
Now, we can state the noncommutative Chen formula50 (see also remark 3.3, p. 4111 of ref. 22)

Lemma 15 We have:

ΩL
α(t, t0)Ω

K
β (t, t0) = ΩL·K

α∗β (t, t0).

The following lemma can be proven similarly:

Lemma 16 We have, for L and K as above and J a time-dependent operator:
∫ t

t0

dsΩL
α(s, t0)J(s)Ω

K
β (s, t0) =

∑

γ

ΩL·(J)·K
γ (t, t0),

where γ runs over the permutations in Sn+m+1 with γ(n+1) = 1, st(γ(1), ..., γ(n)) = α, st(γ(n+2), ..., γ(n+m+1)) =
β.

Proof. We expand ΩL
α and ΩK

β

∫ t

t0

dsΩL
α(s, t0)J(s)Ω

K
β (s, t0) =

∫ t

t0

ds

∫ s

t0

du1 . . .

∫ un−1

t0

dun

∫ s

t0

dv1 . . .

∫ vm−1

t0

dvm

L1(uα(1)) . . . Ln(uα(n))J(s)K1(vβ(1)) . . .Km(vβ(m)).

This is the same formula as for the expansion of ΩL
α(s, t0)Ω

K
β (s, t0), up to the term J(s) and the integration

∫ t

t0
ds

that however do not change the underlying combinatorics. Therefore, lemma 15 holds in the form
∫ t

t0

dsΩL
α(s, t0)J(s)Ω

K
β (s, t0) =

∑

σ

∫ t

t0

ds

∫ s

t0

ds1 . . .

∫ sn+m−1

t0

dsn+m

L1(sσ(1)) . . . Ln(sσ(n))J(s)K1(sσ(n+1)) . . .Km(sσ(n+m)),

where, by the definition of α∗β, the sum over σ is over all the permutations of Sn+m such that st(σ(1), . . . , σ(n)) = α
and st(σ(n + 1), . . . , σ(n + m)) = β. Now, we change variables to t1 = s, ti+1 = si for i = 1, . . . , n + m. The
permutation γ of t1, . . . , tn+m+1 corresponding to the permutation σ of s1, . . . , sn+m is characterized by γ(n+1) = 1
(because s ≥ si for all i), γ(i) = σ(i) + 1 for 1 ≤ i ≤ n and γ(i+ 1) = σ(i) + 1 for n+ 1 ≤ i ≤ n+m. Therefore,

∫ t

t0

dsΩL
α(s, t0)J(s)Ω

K
β (s, t0) =

∑

γ

∫ t

t0

dt1 . . .

∫ tn+m

t0

dtn+m+1

L1(tγ(1)) . . . Ln(tγ(n))J(tγ(n+1))K1(tγ(n+2)) . . .Km(tγ(n+m+1)),

where γ satisfies γ(n+ 1) = 1, st(γ(1), ..., γ(n)) = α, st(γ(n+ 2), ..., γ(n+m+ 1)) = β. The lemma is proved. 2

Notice that the same process would allow to derive combinatorial formulas for arbitrary products of iterated integrals
and for integrals with integrands involving iterated integrals, provided these products and integrands have expressions
similar to the ones considered in the two lemmas.
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Appendix B: The algebraic structure of tree-shaped iterated integrals

Our exposition of tree-parametrized time-dependent perturbation theory has focussed on the derivation of conver-
gence results and explicit formulas for the time-dependent wave operator. However, the reasons why such an approach
is possible and efficient are grounded into various algebraic and combinatorial properties of trees, descents and similar
objects.
These properties suggest that the theory of effective Hamiltonians is grounded into a new “Lie theory” generalizing

the usual Lie theory (or, more precisely, generalizing the part of the classical Lie theory that is relevant to the study
of the solutions of differential equations). First indications that such a theory exists were already pointed out in our
ref. 22. Indeed, we showed in this article that descent algebras of hyperoctahedral groups and generalizations thereof
are relevant to the time-dependent perturbation theory. Applications included an extension of the Magnus expansion
for the time-dependent wave operator. Our results below provide complementary insights on the subject and further
evidence that algebraic structures underly many-body theories.

1. The algebra structure

We know from ref. 22 and Sect II B that the family of integrals ΩL
σ (t, t0) is closed under the product. This

closure property is reflected into the convolution product of permutations. This result is a natural noncommutative
generalization of Chen’s formula for the product of iterated integrals. We show, in the present section, that the same
result holds for integrals parametrized by trees. We will explain, in the next sections, why such a result -which may
seem surprising from the analytical point of view- could be expected from the modern theory of combinatorial Hopf
algebras.
For L = (L1, ..., Ln) a family of time-dependent operators (with the usual regularity conditions), and T a tree with

n internal vertices, we write

ΩL
T (t, t0) :=

∑

σ∈ST

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnL1(tσ(1))L2(tσ(2)) . . . Ln(tσ(n)).

This notation is extended to linear combinations of trees, so that e.g. if Z = T+2T ′, where T and T ′ are two arbitrary
trees with the same number of vertices, then ΩL

Z(t, t0) = ΩL
T (t, t0)+2ΩL

T ′(t, t0). For i ≤ n, we write L≤i = (L1, ..., Li),
L≥i = (Li, ..., Ln).

Proposition 17 For L = (L1, ..., Ln) and K = (K1, ...,Km) two families of time-dependent operators and T = T1∨T2,
U = U1 ∨ U2 two trees, |T | = n, |T1| = p, |T2| = q, |U | = m, |U1| = l, |U2| = k, we have:

ΩL
T (t, t0)Ω

K
U (t, t0) =

t
∫

t0

dsΩL
T (s, t0)Ω

K≤l

U1
(s, t0)Kl+1(s)Ω

K≥l+2

U2
(s, t0) +

t
∫

t0

dsΩ
L≤p

T1
(s, t0)Lp+1(s)Ω

L≥p+2

T2
(s, t0)Ω

K
U (s, t0).

In the formula, one or several of the trees T1, T2, U1, U2 may be the trivial tree |.

Proof. Recall the integration by parts formula. For any integrable functions f and g we define F (t) :=
∫ t

t0
dsf(s),

G(t) :=
∫ t

t0
dsg(s) and H(t) := F (t)G(t). Then

H(t) =

∫ t

t0

ds
dH(s)

ds
=

∫ t

t0

dsf(s)G(s) +

∫ t

t0

dsF (s)g(s).

Now, we use this identity with F (t) = ΩL
T (t, t0). It follows from the proof of theorem 5 that f(s) is given by

f(s) = Ω
L≤p

T1
(s, t0)Lp+1(s)Ω

L≥p+2

T2
(s, t0),

with a similar identity for G(t) = ΩK
U (t, t0). The proposition follows. 2

In particular, it is a consequence of the proposition and a straightforward recursion argument that the linear span
of the integrals ΩL

T (t, t0) is closed under products.
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2. Hopf algebras and Lie theory

This result may be formalized algebraically. Let us write T for the set of formal power series with complex
coefficients over the set of trees. Proposition 17 enables us to define a product on trees, denoted by ∗, such that
ΩL

T (t, t0)Ω
K
U (t, t0) = ΩL·K

T∗U (t, t0). This product is defined recursively by the equation30

T ∗ U := (T ∗ U1) ∨ U2 + T1 ∨ (T2 ∗ U).

Proof. The empty tree is the unit for the product ∗. Assume that T ∗U is defined and satisfies the recursive relation
for all trees such that |T |+ |U | < n, and consider two trees T and U with |T |+ |U | = n. The first term on the right

hand side of proposition 17 is
∫ t

t0
dsΩL

T (s, t0)Ω
K≤l

U1
(s, t0)Kl+1(s)Ω

K≥l+2

U2
(s, t0). By the recursive relation, we have

ΩL
T (s, t0)Ω

K≤l

U1
(s, t0) = Ω

L·K≤l

T∗U1
.

Thus, the whole term can be written

∫ t

t0

dsΩL
T (s, t0)Ω

K≤l

U1
(s, t0)Kl+1(s)Ω

K≥l+2

U2
(s, t0) = ΩL·K

(T∗U1)∨U2
.

The second term of proposition 17 is treated similarly and we obtain

ΩL
T (t, t0)Ω

K
U (t, t0) = ΩL·K

(T∗U1)∨U2
+ΩL·K

(T1∨(T2∗U)

Therefore, the relation ΩL
T (t, t0)Ω

K
U (t, t0) = ΩL·K

T∗U (t, t0) gives us

T ∗ U = (T ∗ U1) ∨ U2 + T1 ∨ (T2 ∗ U).

2

Corollary 18 The product provides T with the structure of an associative algebra.

The corollary is a by-product of the associativity of the product of operators and of proposition 17.
Of course, although the analysis of tree-shaped iterated integrals leads to a straightforward proof, the associativity

property is a purely combinatorial phenomenon that originates ultimately from the associativity of the shuffle product.
See ref. 22 for the connections between the noncommutative Chen formula and shuffle products, see also section 4 of
ref. 51 for Schützenberger’s classical (but rarely quoted) analysis of the formal properties of the shuffle product -in
fact, the splitting of the convolution product of trees reflects the classical splitting of shuffle products into left and
right half-shuffle products that had appeared in the study of Lie polynomials and was first encoded combinatorially in
ref. 51. The associativity can also be checked directly or deduced from the associativity of the convolution product ∗
of permutations, since one may verify easily, using e.g. our description of the permutations in ST that the convolution
product as introduced above is nothing but the restriction to T of the convolution product on the algebra S =
∏

n∈N

C[Sn].

This fact that the linear span of trees (often written PBT) defines a subalgebra of S for the convolution product
(and even a Hopf subalgebra, referred to as the Hopf algebra of planar binary trees, whereas S is referred to as the
Malvenuto-Reutenauer or Hopf algebra of free quasi-symmetric functions in the litterature) is well-known. It was first
observed in ref. 30 and further investigated in a series of papers34,36,37,52. There is however a slight subtelty here,
since the embedding of PBT in S considered e.g. in ref. 30 is not the one we consider (another projection map from
permutations to trees is used) so that PBT and T , although isomorphic as algebras (the product rule in PBT is the
same as the one in T , see e.g. proposition 3.2 of ref. 30, where PBT is written C[Y∞]) do not agree as subalgebras
of S.
However, a corollary of this isomorphism is that the structures existing on PBT carry over to the analysis of the

algebraic properties of tree-shaped iterated integrals. The existence of a Hopf algebra structure seems particularly
meaningful since the classical applications of the theory of free Lie algebras to the analysis of differential equations
can be rewritten using the framework of Hopf algebras (see e.g. the accounts in refs. 53,54).
The same observation holds for the direct sum of the hyperoctahedral group algebras, that also carries naturally

a Hopf algebra structure55,56, and which applications to time-dependent perturbative Hamiltonians were studied in
ref. 22. We leave for further research the investigation of the possible role of these Hopf algebra structures in the
context of many-body theories.
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3. Permutations, trees and descents

Another meaningful observation, along the same lines, is that the three expansions we derived, based respectively on
sequences of P and Q (as in the first expression for Ω(t, t0)), on trees (third expression) and on permutations (second
expression), reflect at the analytical level the existence of projection maps and embeddings between hypercubes (or
the descent algebra), planar binary trees, and permutations. Following Viennot23, these maps have been at the origin
of modern enumerative combinatorics. We refer to refs. 30,34,36,37 for a detailed study of these maps that emphasizes
the existence of underlying geometrical structures that go beyond the Hopf algebraic ones.
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