28 research outputs found

    The Emission Structure of Formaldehyde MegaMasers

    Full text link
    The formaldehyde MegaMaser emission has been mapped for the three host galaxies IC\,860. IRAS\,15107++0724, and Arp\,220. Elongated emission components are found at the nuclear centres of all galaxies with an extent ranging between 30 to 100 pc. These components are superposed on the peaks of the nuclear continuum. Additional isolated emission components are found superposed in the outskirts of the radio continuum structure. The brightness temperatures of the detected features ranges from 0.6 to 13.4 ×104\times 10^{4} K, which confirms their masering nature. The masering scenario is interpreted as amplification of the radio continuum by foreground molecular gas that is pumped by far-infrared radiation fields in these starburst environments of the host galaxies.Comment: Accepted MNRA

    Arp 220 - IC 4553/4: understanding the system and diagnosing the ISM

    Full text link
    Arp220 is a nearby system in final stages of galaxy merger with powerful ongoing star-formation at and surrounding the two nuclei. Arp 220 was detected in HI absorption and OH Megamaser emission and later recognized as the nearest ultra-luminous infrared galaxy also showing powerful molecular and X-ray emissions. In this paper we review the available radio and mm-wave observational data of Arp 220 in order to obtain an integrated picture of the dense interstellar medium that forms the location of the powerful star-formation at the two nuclei.Comment: 9 pages, 4 figures, to appear in: IAU Symposium 242 Astrophysical Masers and their Environment

    Green Low-Carbon Technology for Metalliferous Minerals

    Get PDF
    Metalliferous minerals play a central role in the global economy. They will continue to provide the raw materials we need for industrial processes. Significant challenges will likely emerge if the climate-driven green and low-carbon development transition of metalliferous mineral exploitation is not managed responsibly and sustainably. Green low-carbon technology is vital to promote the development of metalliferous mineral resources shifting from extensive and destructive mining to clean and energy-saving mining in future decades. Global mining scientists and engineers have conducted a lot of research in related fields, such as green mining, ecological mining, energy-saving mining, and mining solid waste recycling, and have achieved a great deal of innovative progress and achievements. This Special Issue intends to collect the latest developments in the green low-carbon mining field, written by well-known researchers who have contributed to the innovation of new technologies, process optimization methods, or energy-saving techniques in metalliferous minerals development

    Detection of a methanol megamaser in a major-merger galaxy

    Full text link
    We have detected emission from both the 4_{-1}-3_{0} E (36.2~GHz) class I and 7_{-2}-8_{-1} E (37.7~GHz) class II methanol transitions towards the centre of the closest ultra-luminous infrared galaxy Arp 220. The emission in both the methanol transitions show narrow spectral features and have luminosities approximately 8 orders of magnitude stronger than that observed from typical class I methanol masers observed in Galactic star formation regions. The emission is also orders of magnitude stronger than the expected intensity of thermal emission from these transitions and based on these findings we suggest that the emission from the two transitions are masers. These observations provides the first detection of a methanol megamaser in the 36.2 and 37.7 GHz transitions and represents only the second detection of a methanol megamaser, following the recent report of an 84 GHz methanol megamaser in NGC1068. We find the methanol megamasers are significantly offset from the nuclear region and arise towards regions where there is Ha emission, suggesting that it is associated with starburst activity. The high degree of correlation between the spatial distribution of the 36.2 GHz methanol and X-ray plume emission suggests that the production of strong extragalactic class I methanol masers is related to galactic outflow driven shocks and perhaps cosmic rays. In contrast to OH and H2O megamasers which originate close to the nucleus, methanol megamasers provide a new probe of feedback (e.g. outflows) processes on larger-scales and of star formation beyond the circumnuclear starburst regions of active galaxies.Comment: Accepted for publication in ApJ

    Thermal Degradation of Chemical Warfare Agents Utilizing Pyrolyzed Cotton Balls

    Get PDF
    Since the Chemical Warfare Convention (CWC) Treaty was established in 1997, it has been prohibited for countries to stockpile, produce, or use chemical warfare agents (CWAs). However, it can be assumed that not every country or group is in accordance with these regulations, and therefore a method to deactivate and destroy these agents is necessary for international security. Current methods for destroying chemical warfare agents have predominantly relied up hydrolysis, high pressure peroxides, or oxidation reactions utilizing bleaching agents. While these methods are effective, they require a large quantity of decontamination agents relative to the amount of CWA present and can produce secondary hazardous byproducts. By utilizing pyrolyzed cotton balls as a vessel for igniting the agents with napalm, it is possible to quickly and effectively destroy a wide variety of chemical warfare agents with limited residue or byproducts. This presents a simple, low cost, and effective method to rapidly decompose large quantities of CWAs with limited waste or cross contamination

    Advanced Technologies for Oral Controlled Release: Cyclodextrins for oral controlled release

    Get PDF
    Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug-drug or drug-additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g. as osmotic pumps) and/ or hydrophobic CDs. New controlled delivery systems based on nanotechonology carriers (nanoparticles and conjugates) have also been reviewed

    The OH Megamaser Emission in Arp\,220: the rest of the story

    Full text link
    The OH Megamaser emission in the merging galaxy Arp220 has been re-observed with the Multi-Element Radio Linked Interferometer Network (MERLIN) and the European VLBI Network (EVN). Imaging results of the OH line emission at the two nuclei are found to be consistent with earlier observations and confirm additional extended emission structures surrounding the nuclei. Detailed information about the distributed emission components around the two nuclei has been obtained using a concatenated MERLIN and EVN database with intermediate (40 mas) spatial resolution. Continuum imaging shows a relatively compact West nucleus and a more extended East nucleus in addition to an extended continuum ridge stretching below and beyond the two nuclei. Spectral line imaging show extended emission regions at both nuclei together with compact components and additional weaker components north and south of the West nucleus. Spectral line analysis indicates that the dominant OH line emission originates in foreground molecular material that is part of a large-scale molecular structure that engulfs the whole nuclear region. Compact OH components are representative of star formation regions within the two nearly edge-on nuclei and define the systemic velocities of East and West as 5425 km/s and 5360 km/s. The foreground material at East and West has a 100 km/s lower velocity at 5314 and 5254 km/s. These emission results confirm a maser amplification scenario where the background continuum and the line emission of the star formation regions are amplified by foreground masering material that is excited by the FIR radiation field originating in the two nuclear regions.Comment: 17 pages, 18 figure

    Noise assisted directed motion at the molecular level - 2

    Get PDF
    The term noise is used to describe fluctuations about the mean deterministic stationary value of a physical quantity. It is now being increasingly realised that noise is an important ingredient to bring order in dynamical processes. Though it appears counterintuitive, noise seems to help in directing transport processes in biological systems at the molecular level. In Part 2 of the article, we discuss some more examples of noise assisted directed motion
    corecore