288 research outputs found

    Projector calibration method based on optical coaxial camera

    Get PDF
    This paper presents a novel method to accurately calibrate a DLP projector by using an optical coaxial camera to capture the needed images. A plate beam splitter is used to make imaging axis of the CCD camera and projecting axis of the DLP projector coaxial, so the DLP projector can be treated as a true inverse camera. A plate having discrete markers on the surface will be designed and manufactured to calibrate the DLP projector. By projecting vertical and horizontal sinusoidal fringe patterns on the plate surface from the projector, the absolute phase of each marker’s center can be obtained. The corresponding projector pixel coordinate of each marker is determined from the obtained absolute phase. The internal and external parameters of the DLP projector are calibrated by the corresponding point pair between the projector coordinate and the world coordinate of discrete markers. Experimental results show that the proposed method accurately obtains the parameters of the DLP projector. One advantage of the method is the calibrated internal and external parameters have high accuracy because of uncalibrating the camera. The other is the optical coaxes geometry gives a true inverse camera, so the calibrated parameters are more accurate than that of crossed-optical-axes, especially the principal points and the radial distortion coefficients of the projector lens

    Projector Self-Calibration using the Dual Absolute Quadric

    Get PDF
    The applications for projectors have increased dramatically since their origins in cinema. These include augmented reality, information displays, 3D scanning, and even archiving and surgical intervention. One common thread between all of these applications is the nec- essary step of projector calibration. Projector calibration can be a challenging task, and requires significant effort and preparation to ensure accuracy and fidelity. This is especially true in large scale, multi-projector installations used for projection mapping. Generally, the cameras for projector-camera systems are calibrated off-site, and then used in-field un- der the assumption that the intrinsics have remained constant. However, the assumption of off-site calibration imposes several hard restrictions. Among these, is that the intrinsics remain invariant between the off-site calibration process and the projector calibration site. This assumption is easily invalidated upon physical impact, or changing of lenses. To ad- dress this, camera self-calibration has been proposed for the projector calibration problem. However, current proposed methods suffer from degenerate conditions that are easily en- countered in practical projector calibration setups, resulting in undesirable variability and a distinct lack of robustness. In particular, the condition of near-intersecting optical axes of the camera positions used to capture the scene resulted in high variability and significant error in the recovered camera focal lengths. As such, a more robust method was required. To address this issue, an alternative camera self-calibration method is proposed. In this thesis we demonstrate our method of projector calibration with unknown and uncalibrated cameras via autocalibration using the Dual Absolute Quadric (DAQ). This method results in a significantly more robust projector calibration process, especially in the presence of correspondence noise when compared with previous methods. We use the DAQ method to calibrate the cameras using projector-generated correspondences, by upgrading an ini- tial projective calibration to metric, and subsequently calibrating the projector using the recovered metric structure of the scene. Our experiments provide strong evidence of the brittle behaviour of existing methods of projector self-calibration by evaluating them in near-degenerate conditions using both synthetic and real data. Further, they also show that the DAQ can be used successfully to calibrate a projector-camera system and reconstruct the surface used for projection mapping robustly, where previous methods fail

    Improving the accuracy of phase-shifting techniques

    Get PDF
    The traditional phase-shifting profilometry technique is based on the projection of digital interference patterns and computation of the absolute phase map. Recently, a method was proposed that used phase interpolation to the corner detection, at subpixel accuracy in the projector image for improving the camera–projector calibration. We propose a general strategy to improve the accuracy in the search for correspondence that can be used to obtain high precision three-dimensional reconstruction. Experimental results show that our strategy can outperform the precision of the phase-shifting method

    Projector Calibration Using a Markerless Plane

    Get PDF
    International audienceIn this paper we address the problem of geometric video projector calibration using a markerless planar surface (wall) and a partially calibrated camera. Instead of using control points to infer the camera-wall orientation, we find such relation by efficiently sampling the hemisphere of possible orientations. This process is so fast that even the focal of the camera can be estimated during the sampling process. Hence, physical grids and full knowledge of camera parameters are no longer necessary to calibrate a video projector

    A Multi-Projector Calibration Method for Virtual Reality Simulators with Analytically Defined Screens

    Get PDF
    The geometric calibration of projectors is a demanding task, particularly for the industry of virtual reality simulators. Different methods have been developed during the last decades to retrieve the intrinsic and extrinsic parameters of projectors, most of them being based on planar homographies and some requiring an extended calibration process. The aim of our research work is to design a fast and user-friendly method to provide multi-projector calibration on analytically defined screens, where a sample is shown for a virtual reality Formula 1 simulator that has a cylindrical screen. The proposed method results from the combination of surveying, photogrammetry and image processing approaches, and has been designed by considering the spatial restrictions of virtual reality simulators. The method has been validated from a mathematical point of view, and the complete system which is currently installed in a shopping mall in Spain has been tested by different users

    The hunt for submarines in classical art: mappings between scientific invention and artistic interpretation

    Get PDF
    This is a report to the AHRC's ICT in Arts and Humanities Research Programme. This report stems from a project which aimed to produce a series of mappings between advanced imaging information and communications technologies (ICT) and needs within visual arts research. A secondary aim was to demonstrate the feasibility of a structured approach to establishing such mappings. The project was carried out over 2006, from January to December, by the visual arts centre of the Arts and Humanities Data Service (AHDS Visual Arts).1 It was funded by the Arts and Humanities Research Council (AHRC) as one of the Strategy Projects run under the aegis of its ICT in Arts and Humanities Research programme. The programme, which runs from October 2003 until September 2008, aims ‘to develop, promote and monitor the AHRC’s ICT strategy, and to build capacity nation-wide in the use of ICT for arts and humanities research’.2 As part of this, the Strategy Projects were intended to contribute to the programme in two ways: knowledge-gathering projects would inform the programme’s Fundamental Strategic Review of ICT, conducted for the AHRC in the second half of 2006, focusing ‘on critical strategic issues such as e-science and peer-review of digital resources’. Resource-development projects would ‘build tools and resources of broad relevance across the range of the AHRC’s academic subject disciplines’.3 This project fell into the knowledge-gathering strand. The project ran under the leadership of Dr Mike Pringle, Director, AHDS Visual Arts, and the day-to-day management of Polly Christie, Projects Manager, AHDS Visual Arts. The research was carried out by Dr Rupert Shepherd
    corecore