369,929 research outputs found

    Exact Probability Distribution versus Entropy

    Full text link
    The problem addressed concerns the determination of the average number of successive attempts of guessing a word of a certain length consisting of letters with given probabilities of occurrence. Both first- and second-order approximations to a natural language are considered. The guessing strategy used is guessing words in decreasing order of probability. When word and alphabet sizes are large, approximations are necessary in order to estimate the number of guesses. Several kinds of approximations are discussed demonstrating moderate requirements concerning both memory and CPU time. When considering realistic sizes of alphabets and words (100) the number of guesses can be estimated within minutes with reasonable accuracy (a few percent). For many probability distributions the density of the logarithm of probability products is close to a normal distribution. For those cases it is possible to derive an analytical expression for the average number of guesses. The proportion of guesses needed on average compared to the total number decreases almost exponentially with the word length. The leading term in an asymptotic expansion can be used to estimate the number of guesses for large word lengths. Comparisons with analytical lower bounds and entropy expressions are also provided

    Probability distribution of the order parameter

    Full text link
    The probability distribution of the order parameter is exploited in order to obtain the criticality of magnetic systems. Monte Carlo simulations have been employed by using single spin flip Metropolis algorithm aided by finite-size scaling and histogram reweighting techniques. A method is proposed to obtain this probability distribution even when the transition temperature of the model is unknown. A test is performed on the two-dimensional spin-1/2 and spin-1 Ising model and the results show that the present procedure can be quite efficient and accurate to describe the criticality of the system.Comment: 5 pages, 7 figures, to appear in Braz. J. Phys. 34, June 200

    Probability distribution of drawdowns in risky investments

    Full text link
    We study the risk criterion for investments based on the drawdown from the maximal value of the capital in the past. Depending on investor's risk attitude, thus his risk exposure, we find that the distribution of these drawdowns follows a general power law. In particular, if the risk exposure is Kelly-optimal, the exponent of this power law has the borderline value of 2, i.e. the average drawdown is just about to divergeComment: 5 pages, 4 figures (included

    The Probability Distribution for Non-Gaussianity Estimators

    Get PDF
    One of the principle efforts in cosmic microwave background (CMB) research is measurement of the parameter fnl that quantifies the departure from Gaussianity in a large class of non-minimal inflationary (and other) models. Estimators for fnl are composed of a sum of products of the temperatures in three different pixels in the CMB map. Since the number ~Npix^2 of terms in this sum exceeds the number Npix of measurements, these ~Npix^2 terms cannot be statistically independent. Therefore, the central-limit theorem does not necessarily apply, and the probability distribution function (PDF) for the fnl estimator does not necessarily approach a Gaussian distribution for N_pix >> 1. Although the variance of the estimators is known, the significance of a measurement of fnl depends on knowledge of the full shape of its PDF. Here we use Monte Carlo realizations of CMB maps to determine the PDF for two minimum-variance estimators: the standard estimator, constructed under the null hypothesis (fnl=0), and an improved estimator with a smaller variance for |fnl| > 0. While the PDF for the null-hypothesis estimator is very nearly Gaussian when the true value of fnl is zero, the PDF becomes significantly non-Gaussian when |fnl| > 0. In this case we find that the PDF for the null-hypothesis estimator fnl_hat is skewed, with a long non-Gaussian tail at fnl_hat > |fnl| and less probability at fnl_hat < |fnl| than in the Gaussian case. We provide an analytic fit to these PDFs. On the other hand, we find that the PDF for the improved estimator is nearly Gaussian for observationally allowed values of fnl. We discuss briefly the implications for trispectrum (and other higher-order correlation) estimators.Comment: 10 pages, 6 figures, comments welcom

    Exact probability distribution functions for Parrondo's games

    Full text link
    We consider discrete time Brownian ratchet models: Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. We find that in some cases there are oscillations near the maximum of the probability distribution, and after many rounds there are two limiting distributions, for the odd and even total number of rounds of gambling. We assume that the solution of the aforementioned models can be applied to portfolio optimization.Comment: 5 pages, 3 figure
    • …
    corecore