18,581 research outputs found

    Prion expression is activated by Adenovirus 5 infection and affects the adenoviral cycle in human cells

    Get PDF
    The prion protein is a cell surface glycoprotein whose physiological role remains elusive, while its implication in transmissible spongiform encephalopathies (TSEs) has been demonstrated. Multiple interactions between the prion protein and viruses have been described: viruses can act as co-factors in TSEs and life cycles of different viruses have been found to be controlled by prion modulation. We present data showing that human Adenovirus 5 induces prion expression. Inactivated Adenovirus did not alter prion transcription, while variants encoding for early products did, suggesting that the prion is stimulated by an early adenoviral function. Down-regulation of the prion through RNA interference showed that the prion controls adenovirus replication and expression. These data suggest that the prion protein could play a role in the defense strategy mounted by the host during viral infection, in a cell autonomous manner. These results have implications for the study of the prion protein and of associated TSEs

    Electrostatics in the Stability and Misfolding of the Prion Protein: Salt Bridges, Self-Energy, and Solvation

    Full text link
    Using a recently developed mesoscopic theory of protein dielectrics, we have calculated the salt bridge energies, total residue electrostatic potential energies, and transfer energies into a low dielectric amyloid-like phase for 12 species and mutants of the prion protein. Salt bridges and self energies play key roles in stabilizing secondary and tertiary structural elements of the prion protein. The total electrostatic potential energy of each residue was found to be invariably stabilizing. Residues frequently found to be mutated in familial prion disease were among those with the largest electrostatic energies. The large barrier to charged group desolvation imposes regional constraints on involvement of the prion protein in an amyloid aggregate, resulting in an electrostatic amyloid recruitment profile that favours regions of sequence between alpha helix 1 and beta strand 2, the middles of helices 2 and 3, and the region N-terminal to alpha helix 1. We found that the stabilization due to salt bridges is minimal among the proteins studied for disease-susceptible human mutants of prion protein

    Evolutionary descent of prion genes from a ZIP metal ion transport ancestor

    Get PDF
    In the more than 20 years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into the function of PrP may be obtained through a characterization of its molecular neighborhood. Quantitative interactome data revealed the spatial proximity of a subset of metal ion transporters of the ZIP family to mammalian prion proteins. A subsequent bioinformatic analysis revealed the presence of a prion-like protein sequence within the N-terminal, extracellular domain of a phylogenetic branch of ZIPs. Additional structural threading and ortholog sequence alignment analyses consolidated the conclusion that the prion protein gene family is phylogenetically derived from a ZIP-like ancestor molecule. Our data explain structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The connection to ZIP proteins is expected to open new avenues to elucidate the biology of the prion protein in health and disease

    Computational Studies of the Structural Stability of Rabbit Prion Protein Compared to Human and Mouse Prion Proteins

    Get PDF
    Prion diseases are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. The neurodegenerative diseases such as Creutzfeldt-Jakob disease, variant Creutzfeldt-Jakob diseases, Gerstmann-Stra¨\ddot{a}ussler-Scheinker syndrome, Fatal Familial Insomnia, Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (or 'mad-cow' disease) and chronic wasting disease in cattle belong to prion diseases. By now there have not been some effective therapeutic approaches to treat all these prion diseases. Dogs, rabbits and horses were reported to be resistant to prion diseases. By the end of year 2010 all the NMR structures of dog, rabbit and horse prion proteins (X-ray for rabbits too) had been finished to release into protein data bank. Thus, at this moment it is very worth studying the NMR and X-ray molecular structures of horse, dog and rabbit prion proteins to obtain insights into their immunity prion diseases. The author found that dog and horse prion proteins have stable molecular dynamical structures whether under neutral or low pH environments, but rabbit prion protein has stable molecular dynamical structures only under neutral pH environment. Under low pH environment, the stable α\alpha-helical molecular structures of rabbit prion protein collapse into β\beta-sheet structures. This article focuses the studies on rabbit prion protein (within its C-terminal NMR, Homology and X-ray molecular structured region RaPrPC^\text{C} (120-230)), compared with human and mouse prion proteins (HuPrPC^\text{C} (125-228) and MoPrPC^\text{C} (124-226) respectively). The author finds that some salt bridges contribute to the structural stability of rabbit prion protein under neutral pH environment.Comment: Contributed as an invited Book Chapter to "Neurodegenerative Diseases / Book 2, Raymond Chuen-Chung Chang (eds.), INTECH Open Access Publisher, 2011, ISBN 979-953-307-672-9

    Intra- and interspecies interactions between prion proteins and effects of mutations and polymorphisms

    Get PDF
    Recently, crystallization of the prion protein in a dimeric form was reported. Here we show that native soluble homogenous FLAG-tagged prion proteins from hamster, man and cattle expressed in the baculovirus system are predominantly dimeric. The PrP/PrP interaction was confirmed in Semliki Forest virus-RNA transfected BHK cells co-expressing FLAG- and oligohistidine-tagged human PrP. The yeast two-hybrid system identified the octarepeat region and the C-terminal structured domain (aa90-aa230) of PrP as PrP/PrP interaction domains. Additional octarepeats identified in patients suffering from fCJD reduced (wtPrP versus PrP+90R) and completely abolished (PrP+90R versus PrP+90R) the PrP/PrP interaction in the yeast two-hybrid system. In contrast, the Met/Val polymorphism (aa129), the GSS mutation Pro102Leu and the FFI mutation Asp178Asn did not affect PrP/PrP interactions. Proof of interactions between human or sheep and bovine PrP, and sheep and human PrP, as well as lack of interactions between human or bovine PrP and hamster PrP suggest that interspecies PrP interaction studies in the yeast two-hybrid system may serve as a rapid pre-assay to investigate species barriers in prion diseases

    Pathogenic mutations in the hydrophobic core of the human prion protein can promote structural instability and misfolding

    Get PDF
    Transmissible spongiform encephalopathies, or prion diseases, are caused by misfolding and aggregation of the prion protein PrP. These diseases can be hereditary in humans and four of the many disease-associated missense mutants of PrP are in the hydrophobic core: V180I, F198S, V203I and V210I. The T183A mutation is related to the hydrophobic core mutants as it is close to the hydrophobic core and known to cause instability. We have performed extensive molecular dynamics simulations of these five PrP mutants and compared their dynamics and conformations to wild-type PrP. The simulations highlight the changes that occur upon introduction of mutations and help to rationalize experimental findings. Changes can occur around the mutation site, but they can also be propagated over long distances. In particular, the F198S and T183A mutations lead to increased flexibility in parts of the structure that are normally stable, and the short β-sheet moves away from the rest of the protein. Mutations V180I, V210I and, to a lesser extent, V203I cause changes similar to those observed upon lowering the pH, which has been linked to misfolding. Early misfolding is observed in one V180I simulation. Overall, mutations in the hydrophobic core have a significant effect on the dynamics and stability of PrP, including the propensity to misfold, which helps to explain their role in the development of familial prion diseases

    Targeting of the prion protein to the cytosol: mechanisms and consequences

    No full text
    Prion diseases are characterized by the conformational transition of the cellular prion protein (PrPC) into an aberrant protein conformer, designated scrapie-prion protein (PrPSc). A causal link between protein misfolding and neurodegeneration has been established for a variety of neurodegenerative disease, such as Alzheimer's disease, Parkinson's disease and polyglutamine diseases, but there is an ongoing debate about the nature of the neurotoxic species and how non-native conformers can damage neuronal populations. PrP is normally imported into the endoplasmic reticulum (ER) and targeted to the outer leaflet of the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. However, several conditions, such as ER stress or some pathogenic mutations in the PrP gene, can induce the mislocalization of PrP in the cytosol, where it has a neurotoxic potential as demonstrated in cell culture and transgenic mouse models. In this review we focus on intrinsic factors and cellular pathways implicated in the import of PrP into the ER and its mistargeting to the cytosol. The findings summarized here not only reveal a complex regulation of the biogenesis of PrP, but also provide interesting new insight into toxic activities of pathogenic protein conformers and quality control pathways of ER-targeted proteins

    Molecular dynamics studies on the NMR and X-ray structures of rabbit prion protein wild-type and mutants

    Full text link
    Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species such as sheep, goats, mice, humans, chimpanzees, hamsters, cattle, elks, deer, minks, cats, chicken, pigs, turtles, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular protein into insoluble abnormally folded infectious prions and the conversion is believed to involve conformational change from a predominantly alpha-helical protein to one rich in beta-sheet structure. Such conformational changes may be amenable to study by molecular dynamics (MD) techniques. For rabbits, classical studies show they have a low susceptibility to be infected, but in 2012 it was reported that rabbit prion can be generated (though not directly) and the rabbit prion is infectious and transmissible (Proceedings of the National Academy of Sciences USA 109(13): 5080-5). This paper studies the NMR and X-ray molecular structures of rabbit prion protein wild-type and mutants by MD techniques, in order to understand the specific mechanism of rabbit prion protein and rabbit prions.Comment: (The 2nd version of arXiv1304.7633

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP
    corecore